Подпишись и читай
самые интересные
статьи первым!

Статистика радиационных аварий в мире. Радиационная авария

Произошли в ходе наработки ядерных материалов для первых атомных бомб.

1 сентября 1944 года в США, штат Теннеси, в Ок-Риджской национальной лаборатории при попытке прочистить трубу в лабораторном устройстве по обогащению урана произошел взрыв гексафторида урана, что привело к образованию опасного вещества - гидрофтористой кислоты. Пять человек, находившихся в это время в лаборатории, пострадали от кислотных ожогов и вдыхания смеси радиоактивных и кислотных паров. Двое из них погибли, а остальные получили серьезные травмы.

В СССР первая тяжелая радиационная авария произошла 19 июня 1948 года , на следующий же день после выхода атомного реактора по наработке оружейного плутония (объект «А» комбината «Маяк» в Челябинской области) на проектную мощность. В результате недостаточного охлаждения нескольких урановых блоков произошло их локальное сплавление с окружающим графитом, так называемый «козел». В течение девяти суток «закозлившийся» канал расчищался путем ручной рассверловки. В ходе ликвидации аварии облучению подвергся весь мужской персонал реактора, а также солдаты строительных батальонов, привлеченные к ликвидации аварии.

3 марта 1949 года в Челябинской области в результате массового сброса комбинатом «Маяк» в реку Теча высокоактивных жидких радиоактивных отходов облучению подверглись около 124 тысяч человек в 41 населенном пункте. Наибольшую дозу облучения получили 28 100 человек, проживавших в прибрежных населенных пунктах по реке Теча (средняя индивидуальная доза - 210 мЗв). У части из них были зарегистрированы случаи хронической лучевой болезни.

12 декабря 1952 года в Канаде произошла первая в мире серьезная авария на атомной электростанции. Техническая ошибка персонала АЭС Чолк-Ривер (штат Онтарио) привела к перегреву и частичному расплавлению активной зоны. Тысячи кюри продуктов деления попали во внешнюю среду, а около 3800 кубических метров радиоактивно загрязненной воды было сброшено прямо на землю, в мелкие траншеи неподалеку от реки Оттавы.

29 ноября 1955 года «человеческий фактор» привел к аварии американский экспериментальный реактор EBR-1 (штат Айдахо, США). В процессе эксперимента с плутонием, в результате неверных действий оператора, реактор саморазрушился, выгорело 40% его активной зоны.

29 сентября 1957 года произошла авария, получившая название «Кыштымская». В хранилище радиоактивных отходов ПО «Маяк» в Челябинской области взорвалась емкость, содержавшая 20 миллионов кюри радиоактивности. Специалисты оценили мощность взрыва в 70-100 тонн в тротиловом эквиваленте. Радиоактивное облако от взрыва прошло над Челябинской, Свердловской и Тюменской областями, образовав так называемый Восточно-Уральский радиоактивный след площадью свыше 20 тысяч кв. км. По оценкам специалистов, в первые часы после взрыва, до эвакуации с промплощадки комбината, подверглись разовому облучению до 100 рентген более пяти тысяч человек. В ликвидации последствий аварии в период с 1957 по 1959 год участвовали от 25 тысяч до 30 тысяч военнослужащих. В советское время катастрофа была засекречена.

10 октября 1957 года в Великобритании в Виндскейле произошла крупная авария на одном из двух реакторов по наработке оружейного плутония. Вследствие ошибки, допущенной при эксплуатации, температура топлива в реакторе резко возросла, и в активной зоне возник пожар, продолжавшийся в течение 4 суток. Получили повреждения 150 технологических каналов, что повлекло за собой выброс радионуклидов. Всего сгорело около 11 тонн урана. Радиоактивные осадки загрязнили обширные области Англии и Ирландии; радиоактивное облако достигло Бельгии, Дании, Германии, Норвегии.

В апреле 1967 года произошел очередной радиационный инцидент в ПО «Маяк». Озеро Карачай, которое ПО «Маяк» использовало для сброса жидких радиоактивных отходов, сильно обмелело; при этом оголилось 2-3 гектара прибрежной полосы и 2-3 гектара дна озера. В результате ветрового подъема донных отложений с оголившихся участков дна водоема была вынесена радиоактивная пыль около 600 Ku активности. Была загрязнена территория в 1 тысячу 800 квадратных километров, на которой проживало около 40 тысяч человек.

В 1969 году произошла авария подземного ядерного реактора в Люценсе (Швейцария). Пещеру, где находился реактор, зараженную радиоактивными выбросами, пришлось навсегда замуровать. В том же году произошла авария во Франции: на АЭС «Святой Лаврентий» взорвался запущенный реактор мощностью 500 мВт. Оказалось, что во время ночной смены оператор по невнимательности неправильно загрузил топливный канал. В результате часть элементов перегрелась и расплавилась, вытекло около 50 кг жидкого ядерного топлива.

18 января 1970 года произошла радиационная катастрофа на заводе «Красное Сормово» (Нижний Новгород). При строительстве атомной подводной лодки К 320 произошел неразрешенный запуск реактора, который отработал на запредельной мощности около 15 секунд. При этом произошло радиоактивное заражение зоны цеха, в котором строилось судно.

В цехе находилось около 1000 рабочих. Радиоактивного заражения местности удалось избежать из-за закрытости цеха. В тот день многие ушли домой, не получив необходимой дезактивационной обработки и медицинской помощи. Шестерых пострадавших доставили в московскую больницу, трое из них скончались через неделю с диагнозом острая лучевая болезнь, с остальных взяли подписку о неразглашении произошедшего на 25 лет.

Основные работы по ликвидации аварии продолжались до 24 апреля 1970 года. В них приняло участие более тысячи человек. К январю 2005 года в живых из них осталось 380 человек.

Семичасовой пожар 22 марта 1975 года на реакторе АЭС «Браунс Ферри» в США (штат Алабама) обошелся в 10 млн долларов. Все случилось после того, как рабочий с зажженной свечой в руке полез заделать протечку воздуха в бетонной стене. Огонь был подхвачен сквозняком и распространился через кабельный канал. АЭС на год была выведена из строя.

Самым серьезным инцидентом в атомной энергетике США стала авария на АЭС Тримайл-Айленд в штате Пенсильвания, произошедшая 28 марта 1979 года . В результате серии сбоев в работе оборудования и грубых ошибок операторов на втором энергоблоке АЭС произошло расплавление 53% активной зоны реактора. Произошел выброс в атмосферу инертных радиоактивных газов - ксенона и йода Кроме того, в реку Сукуахана было сброшено 185 кубических метров слаборадиоактивной воды. Из района, подвергшегося радиационному воздействию, было эвакуировано 200 тысяч человек.

В ночь с 25 на 26 апреля 1986 года на четвертом блоке Чернобыльской АЭС (Украина) произошла крупнейшая ядерная авария в мире, с частичным разрушением активной зоны реактора и выходом осколков деления за пределы зоны. По свидетельству специалистов, авария произошла из-за попытки проделать эксперимент по снятию дополнительной энергии во время работы основного атомного реактора. В атмосферу было выброшено 190 тонн радиоактивных веществ. 8 из 140 тонн радиоактивного топлива реактора оказались в воздухе. Другие опасные вещества продолжали покидать реактор в результате пожара, длившегося почти две недели. Люди в Чернобыле подверглись облучению в 90 раз большему, чем при падении бомбы на Хиросиму. В результате аварии произошло радиоактивное заражение в радиусе 30 км. Загрязнена территория площадью 160 тысяч квадратных километров. Пострадали северная часть Украины, Беларусь и запад России. Радиационному загрязнению подверглись 19 российских регионов с территорией почти 60 тысяч квадратных километров и с населением 2,6 миллиона человек.

30 сентября 1999 года произошла крупнейшая авария в истории атомной энергетики Японии. На заводе по изготовлению топлива для АЭС в научном городке Токаймура (префектура Ибараки) из-за ошибки персонала началась неуправляемая цепная реакция, которая продолжалась в течение 17 часов. Облучению подверглись 439 человек, 119 из них получили дозу, превышающую ежегодно допустимый уровень. Трое рабочих получили критические дозы облучения. Двое из них скончались.

9 августа 2004 года произошла авария на АЭС «Михама», расположенной в 320 километрах к западу от Токио на о.Хонсю. В турбине третьего реактора произошел мощный выброс пара температурой около 200 градусов по Цельсию. Находившиеся рядом сотрудники АЭС получили серьезные ожоги. В момент аварии в здании, где расположен третий реактор, находились около 200 человек. Утечки радиоактивных материалов в результате аварии не обнаружено. Четыре человека погибли, 18 - серьезно пострадали. Авария стала самой серьезной по числу жертв на АЭС в Японии.

В самом конце 18 века было открыто радиоактивное излучение, после чего началось активное исследование этого явления. Уже в 1901 году впервые применили облучение в медицинских целях. Спустя 30 лет стали задумываться о разработке ядерного оружия. Первые заводы по производству плутония заработали в 1944 году. Отработанный материал поначалу просто сбрасывали в окружающую среду, как обычный мусор. Прилегающей местности был нанесен значительный урон. Так зародилась статистика радиационных аварий в мире. Началась эра радиоактивного загрязнения окружающей среды человеком.

Мирный «атом»

С середины 20 века начались разработки двигателя, для применения его в транспортной отрасли. По мере развития этого направления пробовали разрабатывать атомолет, атомовоз, атомоход. Самой удачной оказалась идея создать суда на атомном ходу. В гражданской сфере это атомные ледоколы, .

В медицине радиация стала служить во благо почти сразу после открытия. Сегодня радиоактивное излучение эффективно используется в области неврологии, онкологии, кардиологии, а также комплексной диагностики.

Статистика радиационных аварий в мире в сфере народного хозяйства:


Годы

Тип выброса, условное * кол-во

Неорганизованный сброс ядерных отходов Аварии на производстве и другие утечки Гражданские инциденты
1944–1949 2 4
1950–1959 1 15
1960–1969 1 11
1970–1979 1 10
1980–1989 1 28 1
1990–1999 2 31 15
2000–2009 2 10 9

* – в таблице приведены условные количественные значения. Так, к примеру, только на предприятии «Маяк» (Челябинская обл., Россия) за все время работы известно порядка 32 происшествий разной степени тяжести, а в сводную статистику попали лишь 15 из них.

Из таблицы можно заметить, что с 90 годов начали происходить инциденты среди граждан. Участились случаи кражи ядерных материалов, попытки их сбыта (виновники в большинстве случаев вскоре от полученного облучения). В частности, наблюдалось хищение медицинских радиоактивных источников, которые разбирали и продавали в качестве металлолома. Вообще, на предприятия по переплавке металлолома не раз попадал различный «зараженный» радиацией материал.

Ядерные катастрофы


После открытия цепной реакции распада в 1941 году задумались о применении ядерного ресурса для выработки электроэнергии. В 1954 году была завершена первая в мире АЭС (г. Обнинск, СССР). В наше время на планете насчитывается около 200 электростанций. Однако обеспечить безаварийную работу таких объектов удается с трудом.

Для оценки степени опасности данных статистики радиационных аварий в мире в 1990 году была разработана INES (ИНЕС) – международная классификация ядерных событий в гражданской сфере. Согласно этой шкале крупными радиационными авариями в мире считаются происшествия, оцененные выше 4 баллов. За всю историю ядерной энергетики насчитывается около 20 таких случаев.

INES 4. События, приводящие к выбросу в окружающую среду незначительных доз радиации, эквивалентных 10–100 ТБк 131 I. В таких авариях фиксируются единичные смертельные случаи от облучения. В зоне происшествий требуется только контроль продуктов питания. Примеры аварий:

  1. Флерюс, Бельгия (2006).
  2. Токаймура, Япония (1999).
  3. Северск, Россия (1993).
  4. Сен-Лоран, Франция (1980 и 1969).
  5. Богунице, Чехословакия (1977).

INES 5. Происшествия, в результате которых выброс радиации эквивалентен 100–1000 ТБк 131 I и служит причиной нескольких смертей. В таких зонах может потребоваться локальная эвакуация. Примеры:

  1. Гояния, Бразилия (1987). Был найден некий бесхозный объект, который оказался разрушенным высокорадиоактивным источником Цезия-137. Сильные дозы облучения получили 10 человек, 4 из них погибли.
  2. Бухта Чажма, СССР (1985).
  3. Три-Майл-Айленд, США (1979).
  4. Айдахо, США (1961).
  5. Санта-Сюзана, США (1959).
  6. Виндскейл-Пайл, Великобритания (1957).
  7. Чок-Ривер, Канада (1952).

INES 6. Аварии, в которых выброс радиоактивного материала в окружающую среду эквивалентен 1000–10000 ТБк 131 I. Требуется эвакуация населения или укрытие его в убежищах. Пример известен один. Это самая первая радиационная авария в мире подобного масштаба – Кыштымская, СССР (1957).

«Маяк» – предприятие по хранению и переработке ядерного топлива в Челябинской области. В 1957 году произошел взрыв емкости содержащей 70–80 тонн ядерных отходов. Образовалось радиоактивное облако, которое разнесло опасные вещества по территории более 23 тыс. км 2 на головы 272 тыс. человек. Впервые 10 суток от облучения погибло порядка 200 чел.

INES 7. Этот балл присваивается крупнейшим радиационным авариям и катастрофам в мире. Они характеризуются обширным радиационным воздействием на людей и окружающую среду, эквивалентны выбросу в 10 000 ТБк 131 I и более. Несут в себе колоссальные последствия для здоровья человека и состояния природы. Требуется срочное осуществление запланированных и длительных контрмер, разработанных для подобных случаев. Этот рейтинг присвоен двум самым крупным радиационным авариям в мире:

  1. Фукусима (2011) . Череда трагических событий обрушилась на Японию в тот год. Не устояла перед ними и АЭС Фукусима-1. и последующее за ним оставили 3 реактора без электроснабжения, а значит и без системы охлаждения. Взрыв был неизбежен. Заражены радиацией, оказались обширные территории, больше всего в аварии пострадали воды океана. Зоной отчуждения стала 30-километровая территория вокруг АЭС. За первый год от лучевой болезни скончались приблизительно 1 тыс. чел.
  2. Чернобыль (1986) . Катастрофа на Чернобыльской АЭС произошла 26 апреля. В четвертом энергоблоке, где находилось порядка 190 тонн ядерного топлива, прогремел взрыв. Начавшаяся из-за ошибочных действий персонала авария приобрела неадекватные масштабы вследствие (как позже выяснилось) нарушений, допущенных при строительстве реактора.

В результате около 50 тыс. км 2 сельскохозяйственных земель стали непригодны для возделывания. В 30-километровую зону отчуждения попал город Припять, население которого на тот момент составляло 50 тыс. чел. А также другие населенные пункты.

Статистика радиационных аварий показывает, что в последующие двадцать лет от облучения погибло около 4 тыс. чел.

Военный «атом»

О разработке ядерного оружия стали задумываться еще с 1938 года. В 1945 г. США впервые в мире испытали ядерную бомбу на своей территории, и следом еще две сбросили на города Японии: Хиросиму и Нагасаки. Было убито более 210 тыс. человек, .

Согласно данным Википедии город Хиросима был полностью восстановлен в 1960 году. За период с 1945 по 2009 год известно о 62 испытаниях ядерного оружия и 33 авариях военной техники, использующей ядерные силовые установки в качестве двигателя или с ядерным оружием на борту.

Годы

Тип выброса, кол-во шт .

Испытание оружия Аварии

военной техники

1945–1949 2
1950–1959 13 1
1960–1969 28 9
1970–1979 12 3
1980–1989 7 7
1990–1999 2
2000–2009 11

С 90 годов тестирование оружия прекратилось. Так как в 1996 году большинство стран подписало договор о запрете ядерных испытаний.

Статистика радиационных аварий в мире: мнение экспертов

Существуют два мнения о вреде радиации. Одни ученые проводят скрупулезные расчеты, и утверждают, что на долю техногенных радиационных аварий в мире и испытаний ядерного оружия приходится всего 1% от общего радиационного фона. Что ядерная промышленность – это неисчерпаемый ресурс, за которым будущее.

По мнению других статистика радиационных аварий в мире показывает, что в экономическом плане от ядерной энергии нет никаких плюсов. Поэтому эксперты призывают отказаться от ядерной промышленности, оставить ее в прошлом. Технологии имеют высокую стоимость на стадии разработки и строительства, а ущерб в случае аварии перекрывает собой всю возможную выгоду. Не говоря уже о человеческих жертвах и негативном воздействии радиации на здоровье многих поколений вперед.

Расширяющееся внедрение источников ионизирующих излучений в промыш­ленность, в медицину и научные исследования, наличие на вооружении армий ядерного оружия, а также работа человека в космическом пространстве увеличивают чис­ло людей, подвергающихся воздействию ионизирующих излучений.

Несмотря на достаточно совершенные технические системы по обеспечению радиационной безопасности персонала и населения, разработанные в последние годы, сохраня­ется определенная вероятность повторения крупномасштабных радиационных аварий.

На территории Российской Федерации в настоящее время функционирует по­рядка 400 «стационарных» радиационноопасных объектов (атомные электростанции, заводы по переработке ядерного топлива, хранилища радиоактивных отходов, ядер­ные объекты Министерства обороны России и др.). Не исключена возможность транспортных радиационных аварий (в том числе с ядерным оружием), локальных аварий, связанных с хищением и утерей различных приборов, работающих на основе радионуклидных источников, а также в результате использования радиоактивных ве­ществ в диверсионных целях.

Радиационная авария - событие, которое могло привести или привело к незапланированному облучению людей или к радиоактивному загрязнению окружающей среды с превышением величин, регламентированных норматив­ными документами для контролируемых условий, происшедшее в результате потери управления источником ионизирующего излучения, вызванное неис­правностью оборудования, неправильными действиями персонала, стихийны­ми бедствиями или иными причинами.

Различают очаг аварии и зоны радиоактивного загрязнения местности.

Очаг аварии - территория разброса конструкционных материалов ава­рийных объектов и действия α -, β - и γ-излучений.

Зона радиоактивного загрязнения – местность, на которой произошло выпадение радиоактивных веществ.

Типы радиационных аварий определяются используемыми в народном хозяй­стве источниками ионизирующего излучения, которые можно условно разделить на следующие группы: ядерные, радиоизотопные и создающие ионизирующее излуче­ние за счет ускорения (замедления) заряженных частиц в электромагнитном поле (электрофизические). Такое деление достаточно условно, поскольку, например, атом­ные электростанции (АЭС) одновременно являются и ядерными, и радиоизотопными объектами.

К чисто радиоизотопным объектам можно отнести, например, пункты за­хоронения радиоактивных отходов или радиоизотопные технологические медицин­ские установки для облучения.

Имеются также специальные технологии, связанные с уничтожением ядерных боеприпасов, снятием с эксплуатации исчерпавших эксплуатационный ресурс реак­торов, проводящимися в интересах народного хозяйства ядерными взрывами и др.


На ядерных энергетических установках в результате аварийного выброса воз­можны следующие факторы радиационного воздействия на население:

Внешнее облучение от радиоактивного облака и от радиоактивно загрязнен­ных поверхностей земли, зданий, сооружений и др.;

Внутреннее облучение при вдыхании находящихся в воздухе радиоактивных веществ и при потреблении загрязненных радионуклидами продуктов пита­ния и воды;

Контактное облучение за счет загрязнения радиоактивными веществами кож­ных покровов,

В зависимости от состава выброса может преобладать, то есть приводить к наи­большим дозовым нагрузкам тот или иной из вышеперечисленных путей воздейст­вия. Радионуклидами, вносящими существенный вклад в облучение организма и его отдельных органов (щитовидной железы и легких) при авариях на ядерных энергетических установках, являются: иод 131-135, теллур 132, ксенон 133, 135, цезий 134, 137, стронций 90, криптон 88, рутений 106, церий 144, плутоний 238 и 239 (аэрозоль).

Особенностью аварии с радиоактивным источником является сложность установления факта аварии. К сожалению, часто подобная авария устанавливается после регистрации тяжелого радиационного поражения.

При аварии с ядерными боеприпасами в случае диспергирования делящегося материала (механическое разрушение, пожар) основным фактором радиационного воздействия являются изотопы плутония 239 и америция 241 с преобладанием внутреннего облучения за счет ингаляции. При пожаре возможен сценарий, когда основным поражающим фактором будет выделение оксида трития (молекулярного трития).

Возможность радиационной аварии на космических аппаратах обусловлена на­личием на их борту:

Радиоактивных изотопов в генераторах электрической и тепловой энергии, в различных контрольно-измерительных приборах и системах;

Ядерных бортовых электроэнергетических установок;

Ядерных установок в качестве двигательных систем.

Аварии при перевозке радиоактивных материалов также возможны, несмотря на то, что практика транспортировки радиоактивных материалов базируется на норма­тивно-правовых документах, регламентирующих ее безопасность.

Классы радиационных аварий связаны, прежде всего, с их масштабами. По границам распространения радиоактивных веществ и по возможным последствиям радиационные аварии подразделяются на локальные, местные, общие.

Локальная авария - это авария с выходом радиоактивных продуктов или ионизирующего излучения за предусмотренные границы оборудования, техно­логических систем, зданий и сооружений в количествах, превышающих регла­ментированные для нормальной эксплуатации значения, при котором возмож­но облучение персонала, находящегося в данном здании или сооружении, в до­зах, превышающих допустимые.

Местная авария - это авария с выходом радиоактивных продуктов в пре­делах санитарно-защитной зоны в количествах, превышающих регламентиро­ванные для нормальной эксплуатации значения, при котором возможно облу­чение персонала в дозах, превышающих допустимые.

Общая авария - это авария с выходом радиоактивных продуктов за гра­ницу санитарно-защитной зоны в количествах, превышающих регламентиро­ванные для нормальной эксплуатации значения, при котором возможно облу­чение населения и загрязнение окружающей среды выше установленных норм.

По техническим последствиям выделяются следующие виды радиационных аварий.

1. Проектная авария . Это предвиденные ситуации, то есть возможность воз­никновения такой аварии заложена в техническом проекте ядерной уста­новки. Она относительно легко устранима.

2. Запроектная авария - возможность такой аварии в техническом проекте не предусмотрена, однако она может произойти.

3. Гипотетическая ядерная авария - авария, последствия которой трудно предугадать.

4. Реальная авария - это состоявшаяся как проектная, так и запроектная ава­рия. Практика показала, что реальной может стать и гипотетическая авария (в частности, на Чернобыльской АЭС).

Аварии могут быть без разрушения и с разрушением ядерного реактора.

Отдельно следует указать на возможность возникновения аварии реактора с раз­витием цепной ядерной реакции - активного аварийного взрыва, сопровождающего­ся не только выбросом радиоактивных веществ, но и мгновенным гамма-нейтронным излучением, подобного взрыву атомной бомбы. Данный взрыв может возникнуть только при аварии реакторов на быстрых нейтронах.

При решении вопросов организации медицинской помощи населению в услови­ях крупномасштабной радиационной аварии необходим анализ путей и факторов ра­диационного воздействия в различные временные периоды развития аварийной си­туации, формирующих медико-санитарные последствия. С этой целью рассматрива­ют три временные фазы: раннюю, промежуточную и позднюю (восстановительную).

Ранняя фаза - это период от начала аварии до момента прекращения выброса радиоактивных веществ в атмосферу и окончания формирования радиоактивного следа на местности. Продолжительность этой фазы в зависимости от характера, мас­штаба аварии и метеоусловий может быть от нескольких часов до нескольких суток.

На ранней фазе доза внешнего облучения формируется гамма- и бета-излучени­ем радиоактивных веществ, содержащихся в облаке. Возможно также контактное об­лучение за счет излучения радионуклидов, осевших на кожу и слизистые. Внутрен­нее облучение обусловлено ингаляционным поступлением в организм человека ра­диоактивных продуктов из облака.

Промежуточная фаза аварии начинается от момента завершения формирова­ния радиоактивного следа и продолжается до принятия всех необходимых мер защи­ты населения, проведения необходимого объема санитарно-гигиенических и лечебно-профилактических мероприятий. В зависимости от характера и масштаба аварии дли­тельность промежуточной фазы может быть от нескольких дней до нескольких меся­цев после возникновения аварии.

Во время промежуточной фазы основными причинами поражающего действия являются внешнее облучение от радиоактивных веществ, осевших из облака на по­верхность земли, зданий, сооружений и т.п. и сформировавших радиоактивный след, и внутреннее облучение за счет поступления радионуклидов в организм человека с питьевой водой и пищевыми продуктами. Значение ингаляционного фактора опреде­ляется возможностью вдыхания загрязненных мелкодисперсных частиц почвы, пыль­цы растений и т.п., поднятых в воздух в результате вторичного ветрового переноса.

Поздняя (восстановительная) фаза может продолжаться от нескольких недель до нескольких лет после аварии (до момента, когда отпадает необходимость выпол­нения мер по защите населения) в зависимости от характера и масштабов радиоак­тивного загрязнения. Фаза заканчивается одновременно с отменой всех ограничений на жизнедеятельность населения на загрязненной территории и переходом к обычно­му санитарно-дозиметрическому контролю радиационной обстановки, характерной для условий «контролируемого облучения». На поздней фазе источники и пути внешнего и внутреннего облучения те же, что и на промежуточной фазе.

Особенно важная роль по предотвращению и снижению радиационных пораже­ний отводится следующим мероприятиям по защите персонала АЭС и населения.

1. Использование защищающих от ионизирующего излучения материалов с учетом их коэффициента ослабления, позволяющего определить, в какой степени уменьшится воздействие ионизирующего излучения на чело­века. Использование коллективных средств защиты (герметизированных помещений, укрытий).

2. Увеличение расстояния от источника ионизирующего излучения, при необ­ходимости - эвакуация населения из зон загрязнения.

3. Сокращение времени облучения и соблюдение правил поведения персона­ла, населения, детей, сельскохозяйственных работников и других контин­гентов в зоне возможного радиоактивного загрязнения.

4. Проведение частичной или полной дезактивации одежды, обуви, имущест­ва, местности и др.

5. Повышение морально-психологической устойчивости спасателей, персона­ла и населения.

6. Организация санитарно-просветительной работы, проведение занятий, вы­пуск памяток и др.

7. Установление временных и постоянных предельно допустимых доз (уров­ней концентрации) загрязнения радионуклидами пищевых продуктов и во­ды; исключение или ограничение потребления с пищей загрязненных ра­диоактивными веществами продуктов питания и воды.

8. Эвакуация и переселение населения.

9. Простейшая обработка продуктов питания, поверхностно загрязненных ра­диоактивными веществами (обмыв, удаление поверхностного слоя и т.п.), использование незагрязненных продуктов.

10. Использование средств индивидуальной защиты (костюмы, респираторы).

11. Использование средств медикаментозной защиты (фармакологическая про­тиволучевая защита) - фармакологических препаратов или рецептур для повышения радиорезистентности организма, стимуляции иммунитета и кроветворения.

12. Санитарная обработка людей.

Основы медико-санитарного обеспечения при ликвида­ции последствий радиационных аварий

Успех ликвидации медико-санитарных последствий радиационных аварий обеспечивается:

Своевременным оповещением работников объекта и населения прилегающих зон о радиационной опасности и необходимости принятия мер по ограниче­нию возможного облучения;

Способностью медицинского персонала медико-санитарной части объекта и учреждений здравоохранения района обеспечить диагностику радиационного поражения и оказание первой врачебной помощи пострадавшим;

Своевременным (в первые часы и сутки) прибытием в зону поражения специализированных радиологических бригад гигиенического и терапевтиче­ского профилей;

Наличием четкого плана эвакуации пораженных в специализированный ра­диологический стационар;

Готовностью специализированного радиологического стационара к приему и лечению пострадавших;

Готовностью системы здравоохранения (в том числе службы медицины ката­строф) местного и территориального уровня к медико-санитарному обеспе­чению населения.

Одним из основных государственных учреждений в службе медицины катаст­роф, предназначенных для предупреждения и ликвидации последствий радиацион­ных аварий, является федеральное управление «Медбиоэкстрем» при Минздраве России. Оно осуществля­ет медико-санитарное обеспечение работников отдельных отраслей промышленности с особо опасными условиями труда, государственный санитарно-эпидемиологиче­ский надзор, а также медицинские мероприятия по предупреждению и ликвидации последствий ЧС, связанных с радиационными и другими авариями, в районах распо­ложения обслуживаемых организаций, учреждений и предприятий и проживающего там населения. Для решения этих задач создана «Специализированная служба экс­тренной медицинской помощи при радиационных, химических и других авариях», которая представлена штатными и внештатными формированиями на базе учрежде­ний ФУ «Медбиоэкстрем» федерального и территориального (объектового) уровней.

На территориальном (объектовом) уровне на базе медсанчастей стационарных радиационно опасных объектов имеются штатные (отделение скорой помощи, здрав­пункт, специальное приемное отделение, специализированное отделение, промышленно-санитарная лаборатория, биофизическая лаборатория центра Госсанэпиднадзора) и нештатные (специализированные бригады быстрого реагирования) формирования,

При центрах Госсанэпиднадзора территориального уровня функционируют радиологические лаборатории. В составе ВЦМК «Защита» имеются отдел организации медицинской помощи при радиационных авариях и специализированная радиологи­ческая бригада. Их состав и оснащение позволяют в случае радиационной аварии оценить радиационную обстановку, дать прогноз ее развития и рекомендации по про­ведению защитных мероприятий, реально оказать медицинскую помощь поражен­ным. Бригада оснащена передвижной лабораторией радиационного контроля, имеет запас медикаментов на случай радиационной аварии.

Организация медико-санитарного обеспечения при радиационной аварии включает:

Оказание до врачебной и первой врачебной медицинской помощи пораженным;

Квалифицированное и специализированное лечение пораженных в специализированных лечебных учреждениях;

Амбулаторное наблюдение и обследование населения, находящегося в зонах радиационного загрязнения местности.

В очаге поражения сразу же после возникновения аварии до врачебная и первая врачебная помощь пораженным оказывается медицинским персоналом аварийного объекта и прибывающими уже в первые 1-2 ч бригадами скорой медицинской помо­щи медсанчасти. Основной задачей в этом периоде является вывод (вывоз) поражен­ных из зоны аварии, проведение необходимой специальной обработки, размещение в зависимости от условий в медико-санитарной части или других помещениях и оказа­ние первой врачебной помощи.

Первый этап медицинской помощи включает медицинскую сортировку, сани­тарную обработку, первую врачебную помощь и подготовку к эвакуации. Для выпол­нения первого этапа необходим сортировочный пост, отделение санитарной обработ­ки, сортировочно-эвакуационное отделение с рабочими местами для врача-гематоло­га, терапевта-радиолога и эвакуационное отделение.

На 100 человек, оказавшихся в зоне аварии, необходимы 2-3 бригады для оказа­ния первой врачебной помощи в течение 2 часов.

Неотложные мероприятия первой врачебной помощи включают:

1. Купирование первичной реакции на облучение:

2. При поступлении радионуклидов в желудок. Мероприятия по сниже­нию резорбции и ускорению выведения радионуклидов из организма.

3. При интенсивном загрязнении кожных покровов для их дезактивации приме­няется табельное средство «Защита» или обильное промывание кожных по­кровов водой с мылом.

4. В случае ингаляционного поступления аэрозоля плутония - ингаляция 5 мл 10% раствора пентацина в течение 30 мин.

5. В случае ранений при загрязнении кожи радионуклидами - наложение веноз­ного жгута, обработка раны 2% раствором питьевой соды; при наличии за­грязнения α-излучателями - обработка раны 5% раствором пентацина, в дальнейшем (при возможности) первичная хирургическая обработка раны с иссечением ее краев.

6. При сердечно-сосудистой недостаточности – сердечно-сосудистые аналептики.

7. При появлении первичной эритемы - ранняя терапия места поражения кожи.

8. Снижение психомоторного возбуждения.

При необходимости медицинская служба пострадавшего объекта усиливается соответствующей медицинской группой из центра медицины катастроф. Эта группа усиления организует и проводит сортировку пораженных и оказание неотложной квалифицированной медицинской помощи по жизненным показаниям. В результате сортировки выделяются группы людей, подлежащих направлению в лечебные учреж­дения с определением очередности эвакуации и остающихся на амбулаторном на­блюдении по месту проживания..

Важным разделом медико-санитарного обеспечения ликвидации последствий аварии является организация медицинского наблюдения за людьми, вынужденными находиться различное время в зонах радиоактивного загрязнения местности. К этой категории относятся:

Призванные для ликвидации аварии на втором (промежуточном) и третьем (восстановительном) этапах ее развития - ликвидаторы;

Население, остающееся в зонах радиоактивного загрязнения до эвакуации или до завершения эффективной дезактивации района проживания.

Через 10 мин - 2 ч после облучения большинство пораженных, получивших об­лучение в дозе свыше 1 Гр, будет нуждаться в мероприятиях по купированию пер­вичной реакции ОЛБ; эти мероприятия целесообразно проводить во врачебных меди­цинских учреждениях (подразделениях).

При небольшом числе пораженных все они подлежат эвакуации в ближайшие после аварии сроки в специализированные (радиологические) лечебные учреждения для диагностики и последующего стационарного лечения.

При значительном числе поражений действует следующая схема:

Лица с ОЛБ I степени, не имеющие клинических проявлений болезни (облу­чение в дозе до 2 Гр), после купированных симптомов первичной реакции могут быть оставлены на амбулаторном лечении; это же относится и к полу­чившим легкие местные поражения (доза местного облучения до 12 Гр);

Лица, получившие облучение в дозе свыше 2 Гр, подлежат эвакуации в специализированные лечебные учреждения не позднее исхода первых суток после облучения;

В специализированных лечебных учреждениях при большом числе поступив­ших пораженных с крайне тяжелой и острейшей формами ОЛБ пациенты мо­гут получать лишь симптоматическое лечение.

При организации медицинской помощи пораженным важное место занимает ор­ганизация четкого взаимодействия сил и средств, участвующих в ликвидации послед­ствий радиационной аварии.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

Чтобы человек жил полноценной жизнью и имел блага современности, требуется энергия. Во многом за ее выработку отвечают крупные станции, используя различные источники. Однако подобные установки несут не только благо, но и существенный вред для цивилизации и здоровья населения. Речь идет о таких проблемах, как аварии с выбросом радиоактивных веществ.

За время своего существования АЭС, представляющих собой опасные объекты, катастрофы наблюдались в Канаде, США, России, Украине, Японии и некоторых других стран. Некоторые ошибочно считают, что радиоактивность связана исключительно с возведением АЭС или созданием ядерного оружия. Излучение и радиоактивность существовали с момента образования планеты, когда на ней только начинала зарождаться жизнь.

Открытие радиации в качестве явления совершил физик А. Беккерель из Франции более века назад во время изучения урана. В настоящее время она применяется повсеместно, включая развитие ядерной энергетики. Радиоактивные вещества могут стать источником огромных возможностей, а могут стать причиной катастроф – примеров в истории немало.

Понятие и особенности радиационной катастрофы

Само понятие катастрофы в сфере радиации предполагает под собой аварию на важном предприятии с радиационной опасностью. Как результат, происходит выброс веществ радиации в природу, а также излучение в количествах, которые превышают допустимые нормы. К зонам риска относят такие объекты:

  • АЭС или атомные энергетические установки, а также электростанции.
  • Места, где проводились ядерные взрывы, имеющие обычно испытательный характер или важные в промышленной сфере.
  • Производства ядерно-топливного характера.
  • Зоны монтажа, нахождения и хранения ядерных боевых припасов.
  • Космические средства и разнообразные транспортные средства, на борту которых имеется радиоактивный груз.
  • Средства транспорта, которые имеют такое оснащение, как ядерная установка.

Радиационные аварии и их основная классификация

Чтобы понять опасность от возможных катастроф, необходимо знать разницу между различными радиационными авариями. Разновидности представлены исходя из объемов катастрофы. Можно выделить следующие варианты:

  1. Локальные катастрофы. Это аварии, которые нарушают работу предприятия или реактора, но уровень загрязнения при этом не превышает нормы.
  2. Местные аварии. Катастрофа касается самого объекта, а также охватывает санитарно-защитную зону. Выбросы превышают норму, которая была установлена для реактора.
  3. Общие катастрофы. Здесь проблема касается функционирования предприятия, загрязнение выходит за границы санитарно-защитной зоны, уровень выбросов выше нормального. Возможно не только загрязнение окружающих территорий, но также облучение населения.

Также катастрофы можно разделить по техническим последствиям. К ним относят такие аварии:

  1. Гипотетическая катастрофа. Ее последствия предугадать невозможно или очень сложно.
  2. Запроектная катастрофа. Это возможная авария, которая происходит внезапно, а ее возникновение не было прописано в техническом проекте.
  3. Проектная катастрофа. Эта авария была заложена в проекте установки, она предусмотренная, поэтому ее устранение быстрое и простое.
  4. Реальная авария. Это катастрофа, которая уже произошла.

Также все катастрофы могут происходить с разрушением ядерного реактора или без разрушения.

Причинные факторы и течение радиационных катастроф

Причин аварии выделяют множество. Для удобства их условно разделяют на три основные группы:

  1. Внешние факторы – поражения оружием, стихийные проблемы любого характера, диверсии и многое другое.
  2. Отказ функционирования оборудования. Это происходит из-за некачественной или неполной конструкции, неправильного монтажа, ошибок в использовании или первоначального неправильного создания.
  3. Ошибка в работе людей, нарушение установленных правил.

При этом аварии с выбросом и угрозой выброса радиоактивных веществ разделяют на четыре основных фазы в зависимости от их протекания.

  1. Начальная или первая фаза отличается быстротечностью. Здесь обычно нет выброса вредных компонентов. Зачастую обнаруживают возможность облучения людей, которые проживают рядом с санитарно-защищенной зоной опасного объекта.
  2. Вторая зона получила название ранняя. Время ее протекания занимает от нескольких минут до пары суток. Первоначально на протяжении пары часов происходит разовый выброс. Далее до окончания фазы происходит длительный выброс. Проблема охватывает и природу, и людей.
  3. Средняя фаза – третий этап катастрофы, занимающий от пары дней до одного года. Его особенностью становится отсутствие выброса веществ.
  4. Поздняя фаза – четвертый этап, именуемый восстановительным. Здесь люди могут вести жизнь, к которой привыкли, но полностью от загрязнения пока еще избавиться не удалось. Фаза может длиться, как пару дней, так и несколько веков. Конкретный период напрямую зависит от силы загрязнения и характера проблемы. Началом поздней фазы можно считать отсутствие нужды в использовании защитных мер.

Самые масштабные катастрофы в мировой истории

За время существования человечества произошло немало техногенных катастроф.

США

Одна из значительных случилась в 1944 году в США. Тогда в Ок-Риджской национальной лаборатории взорвалось устройство по обогащению урана. Наблюдался выброс гидрофтористой кислоты из-за чего пострадали 5 человек, получив ожоги, для двоих людей они оказались несовместимыми с жизнью.

В 1979 году катастрофа наблюдалась в США, считающаяся одной из самых крупных за всю историю радиации. 53% активной зоны реактора превратилось в расплавленный материал из-за ошибок в работе персонала. Помимо этого, в реку Сукуахана сбросили около 185 кубометров воды со слабой радиацией. Из области заражения пришлось эвакуировать свыше 200 тысяч человек.

Неправильная работа персонала на реакторе EBR в США — случилось саморазрушение реактора, было стерто с лица земли около 40% его активной зоны.

СССР

В СССР первая масштабная катастрофа была в 1948 году. 19 июня атомный реактор, специализирующийся на наработке плутония, начал работать на проектной мощности. Причиной катастрофы называют недостаток в охлаждении блоков материала, что привело к сплавлению урана и графита. Ликвидацией занимались 9 суток, от облучения пострадал мужской персонал предприятия и солдаты, помогавшие с ликвидационными работами.

Через год комбинат Маяк создал еще одну аварийную ситуацию – массовый выброс радиоактивных веществ в реку Течу. В результате этого 124 тысячи населения пострадали от облучения. Около 28 тысяч человек были облучены очень сильно, так как проживали ближе других к реактору по течению реки.

1957 год связан с «Кыштымской» катастрофой. В ПО «Маяк», который находится в Челябинской области, произошел взрыв емкости с компонентами радиации. Его мощность составила 70-100 тонн, если говорить о тротиловом эквиваленте. Выбросы оставили после себя Восточно-Уральский радиоактивный след, площадь которого составила более 20 тысяч км². Облучению в среднем до 100 Рентген были подвержены свыше 5 тысяч человек, а ликвидировать последствия пришлось 25-30 тысячам военных.

В 1967 году на ПО «Маяк» вновь случилась катастрофа. Ввиду того, что обмелело озеро Карачай, куда сбрасывались отходы, радиоактивную пыль вынесло на местность вокруг реактора. В среднем было поражено свыше 40 тысяч человек, проживающих на 800 км².

1970 год стал фатальным для «Красное Сормово», который находится в Нижнем Новгороде. В процессе возведения атомной подводной лодки случайно был выполнен непредполагаемый запуск реактора. Как результат, была заражена зона цеха, пострадала 1000 человек экипажа, 3 умерли от лучевой болезни.

Канада

В 1952 году в Канаде на атомной станции произошла авария огромных масштабов. Причиной назвали неправильную работу сотрудников – активная зона нагрелась и начала расплавляться. В землю, воду было выброшено свыше 3800 м³ продуктов радиации. В 1955 году причиной трагедии также стал «человеческий фактор».

Украина

В 1986 году произошла катастрофа, которая осталась в памяти жителей Украины и соседних стран. Авария случилась на Чернобыльской АЭС. Произошло частичное расплавление активной зоны реактора. Заражение коснулось областей Украины, Беларуси, а также отголоски наблюдались и в России, охватив 19 регионов, население которых превышало 2,6 миллиона человек. Пришлось эвакуировать город Припять, который приобрел славу города смерти.

Япония

В 1999 году в Токаймуре в Японии случилась трагедия, приведшая к цепной реакции катастрофических событий. Причиной назвали человеческий фактор. Катастрофа была абсолютно неуправляемой и длилась 17 часов. Следствием стало облучение 439 человек, смерть двоих людей.

2004 год также стал трагичным, авария произошла на АЭС «Михама» возле Токио. В реакторной турбине были утечки материалов, в частности пара, персонал получил серьезные ожоги.

Также масштабная авария наблюдалась и в Великобритании из-за эксплуатационной ошибки. Пожар на реакторе продолжался 4 часа, загрязнение коснулось Ирландии и Англии, а радиационное облако приблизилось к границам Норвегии, Германии, Бельгии и Дании.

В 1969 году в Швейцарии на подземном реакторе также случилась трагедия. Чтобы минимизировать нанесенный вред, пещеру, где находился реактор замуровали. В 1967 году на АЭС «Святой Лаврентий» во Франции произошел взрыв из-за этого, загрузка топливного канала была выполнена неправильно.

Каковы последствия радиационной катастрофы

Последствия проблемы могут быть значительными. Они могут коснуться загрязнения окружающей среды, включая атмосферу и гидросферу. Вещества попадают в продукты питания, приводя к инфицированию, отравлениям или развитию лучевой болезни у животных и людей. Радиационное воздействие на живых существ может носить внешний, внутренний или контактный характер.

Важно понять, что подготовиться к радиационным авариям невозможно. Катастрофа всегда происходит внезапно. Требуются оперативные действия профессионалов, чтобы предотвратить или минимизировать серьезный вред. Ядерные технологии – это бомба замедленного действия, которая способна, как обеспечить нескончаемым потоком энергии, так и уничтожить человечество в целом.

радиационные и ЯДЕРНЫЕ АВАРИИ

Презентацию подготовила Саркисян Лидия, 8 «А» класс


ПОНЯТИЕ РАДИАЦИОННОЙ АВАРИИ

Радиационная авария - это авария на радиационно опасном объекте, приводящая к выбросу радиоактивных продуктов или ионизирующих излучений за предусмотренные проектом для нормальной эксплуатации объекта границы в количествах, превышающих установленные пределы эксплуатации объекта.

Ядерная авария: авария, связанная с повреждением тепловыделяющих элементов, превышающим установленные пределы безопасной эксплуатации, и облучением персонала, превышающим допустимое для нормальной эксплуатации, вызванная:

Нарушением контроля и управления цепной ядерной реакцией в активной зоне реактора;

Реактивностная). Авария происходит вследствие разгона реактора на мгновенных нейтронах.

Образованием локальной критичности при перегрузке, транспортировке и хранении ядерного топлива;

Нарушением теплоотвода от ТВЭЛов.

Радиационные аварии подразделяют на три типа: локальные, местные и общие.






«Кыштымская авария» - первая в СССР радиационная чрезвычайная ситуация техногенного характера, возникшая 29 сентября 1957 года на химкомбинате «Маяк», расположенном в закрытом городе Челябинск-40 (ныне Озёрск). Название города в советское время употреблялось только в секретной переписке, поэтому авария и получила название «кыштымской» по ближайшему к Озёрску городу Кыштыму, который был обозначен на картах.

Причины Кыштымской катастрофы

Основная причина аварии на ПО «Маяк» - выход из строя системы охлаждения емкости для хранения высокоактивных ядерных отходов. Из-за перегрева произошел взрыв, который привел к выбросу в атмосферу большого количества (порядка 70 - 80 тонн) радиоактивных веществ.

Однако истинные причины катастрофы лежат несколько глубже – они чисто химические. Отказ системы охлаждения вызван коррозией ее компонентов, а взрыв произошел в результате бурной химической реакции.


Последствия аварии

Облако радиоактивных отходов, выброшенных взрывом в атмосферу, накрыло территорию площадью порядка 23 000 кв.км. На этой территории находилось 217 населенных пунктов (включая город Каменск-Уральский) с общей численностью населения около 272 000 человек.

После аварии из наиболее загрязненных районов было эвакуировано порядка 10 – 12 тысяч человек. Опустевшие после выселения людей деревни (их было 23) были фактически стерты с лица земли – под гусеницами бульдозеров погибло всё. Также был забит и захоронен весь скот, вспаханы поля и уничтожено вообще все, что могут взять и использовать люди. Все это предотвратило распространение радиационного заражения. а также уберегло от опасности людей, которые могли тайком вернуться в свои дома.

Уже в 1959 году на наиболее загрязненной территории была создана санитарно-защитная зона, которая в 1968 году была преобразована в Восточно-Уральский государственный заповедник. На этой территории была полностью запрещена хозяйственная деятельность, и посещали ее только ученые.

авария на заводе «Красное Сормово»

Радиационная авария на заводе «Красное Сормово» произошла 18 января 1970 года на заводе «Красное Сормово» (Нижний Новгород) при строительстве К-320, седьмой по счёту атомной подводной лодки проекта 670 «Скат». При проведении гидравлических испытаний произошёл несанкционированный запуск реактора ВМ. Проработав на запредельной мощности около 10-15 секунд, он частично разрушился. Непосредственно в помещении находилось 150-200 рабочих. Двенадцать монтажников погибли сразу, остальные попали под радиоактивный выброс. Заражения местности удалось избежать из-за закрытости цеха, однако был произведён сброс радиоактивной воды в Волгу.

В тот день многие ушли домой, не получив необходимой медицинской помощи. Шестерых пострадавших доставили в больницу в Москву, трое из них скончались через неделю с диагнозом «острая лучевая болезнь». Только на следующий день рабочих начали отмывать специальными растворами, их одежду и обувь - собирать и сжигать. Со всех без исключения взяли подписку о неразглашении на 25 лет. В тот же день 450 человек, узнав о произошедшем, уволились с завода. Остальным пришлось принять участие в работах по ликвидации последствий аварии, которые продолжались до 24 апреля 1970 года. В них приняло участие более тысячи человек.



Чернобыльская катастрофа, 7 уровень - разрушение 26 апреля 1986 года четвёртого энергоблока Чернобыльской атомной электростанции, расположенной на территории Украинской ССР (ныне - Украина). Разрушение носило взрывной характер, реактор был полностью разрушен, и в окружающую среду было выброшено большое количество радиоактивных веществ. Авария расценивается как крупнейшая в своём роде за всю историю атомной энергетики, как по предполагаемому количеству погибших и пострадавших от её последствий людей, так и по экономическому ущербу. В течение первых трёх месяцев после аварии погиб 31 человек; отдалённые последствия облучения, выявленные за последующие 15 лет, стали причиной гибели от 60 до 80 человек. 134 человека перенесли лучевую болезнь той или иной степени тяжести. Более 115 тыс. человек из 30-километровой зоны были эвакуированы. Для ликвидации последствий были мобилизованы значительные ресурсы, более 600 тыс. человек участвовали в ликвидации последствий аварии.


Краткая сводка событий

Практически 30 лет назад, а именно 26 апреля 1986 г., на территории нынешней Украины случилась самая крупная атомная авария в мире, последствия которой ощущает планета и до нашего времени. На электростанции в городе Чернобыле взорвался атомный реактор четвертого энергоблока. В воздух одновременно было выброшено огромное количество смертельно опасных радиоактивных веществ. Сейчас уже подсчитано, что только за три первых месяца, начиная с 26 апреля 1986 года, от радиационного излучения буквально на месте погиб 31 человек. Позже 134 человека были направлены в специализированные клиники для интенсивного лечения от лучевой болезни, а еще 80 в муках умерли от заражения кожных покровов, крови и дыхательных путей.


Ареал распространения

После аварии вокруг ЧАЭС пришлось обозначить так называемую «мертвую» зону в 30 км. Сотни населенных пунктов были уничтожены практически до основания или погребены под тоннами земли при помощи тяжелой техники. Если рассматривать сферу сельского хозяйства, с уверенностью можно заявить, что Украина на тот момент лишилась пяти миллионов гектаров плодородной почвы. В реакторе четвертого энергоблока перед аварией находилось почти 190 т топлива, 30 % которого во время взрыва выбросилось в окружающую среду. Кроме того, на то время в активной фазе пребывали разнообразные радиоактивные изотопы, накопившееся за время работы. Именно они, по мнению специалистов, и представляли наибольшую опасность.


ПРИПЯТЬ ДО И ПОСЛЕ АВАРИИ НА ЧАЭС


После аварии на расстоянии 8 километров к Украине от места аварии радиационный фон составил 90000000 микрорентген в час.

В результате аварии подверглись радиоактивному облучению 1946 человек, из которых 160 человек находились во время аварии в непосредственной близости от места аварии, 20 человек принимали участие в тушении пожара и 1920 человек выполняли работы по ликвидации последствий аварии.

Индекс по международной шкале

ядерных событий INES - 4.


Заключение

Несмотря на трагические события, связанные с чернобыльской аварией 1986 г., и получившее в связи с этим широкий размах движение против развития ядерной энергетики и строительства АЭС, результаты исследований последних лет в различных областях инженерных дисциплин и физики высоких энергий, а также заключения авторитетных международных комиссий, убедительно свидетельствуют в пользу дальнейшего развития ядерной энергетики в самых широких масштабах. Уже сегодня существуют и одобрены экспертами из ведущих ядерных стран проекты по созданию ядерных энергетических установок на качественно новом уровне безопасности для различных географических зон с отличающимися климатическими условиями.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме