Подпишись и читай
самые интересные
статьи первым!

Техногенный риск примеры. Источники техногенных рисков

Введение

Актуальность. Увеличение количества и расширение масштабов чрезвычайных ситуаций природного и техногенного характера, влекущих значительные материальные и людские потери, - подчеркивается в Концепции национальной безопасности РФ, - делает крайне актуальной проблему обеспечения национальной безопасности в природно-техногенной и экологической сферах».

Проблемы безопасности на объектах нефтегазового комплекса имеют особое значение. Они связаны с физико-химическими свойствами углеводородных веществ, приводящими к их возгоранию или взрыву в случае аварий. Авариям на нефтеперерабатывающих предприятиях характерны большие объемы выброса взрывопожароопасных веществ, образующие облака топливно-воздушных смесей, разливы нефтепродуктов и как следствие - пожары, взрывы, разрушение соседних аппаратов и целых установок. Согласно статистике, ущерб от аварийности и травматизма достигает 5-10% от валового национального продукта промышленно развитых государств, а несовершенная техника безопасности являются причиной преждевременной смерти 10-15% мужчин и 5-10% женщин.

Практика показывает, что полностью исключить аварии и уменьшить до нуля опасность, несущую опасными производственными объектами, невозможно. Поэтому техногенные аварии необходимо предупреждать или ослаблять их вредное воздействие.

Цель данной работы: Изучить техногенные риски нефтеперерабатывающей отрасли и методы их урегулирования.

Основные задачи:

1) Изучить основные опасности предприятий нефтепереработки;

2) Проанализировать возможные аварийные ситуации на предприятии ООО «ТехМашСервис», их причины и меры безопасности.

Объектом исследования являются техногенные риски предприятий нефтепереработки.

Предмет исследования - методы урегулирования техногенных рисков и оптимизации предприятий.

Методология исследования включает в себе метод анализа и синтеза полученных данных.

Курсовая работа состоит из введения, четырех глав, четырех параграфов, заключения и списка литературы.

Техногенный риск

К настоящему времени сложилась достаточно проработанное направление в теории рисков, связанное с оценкой и управлением, так называемыми техногенными рисками. Этот вид рисков связан с опасностями, существующими при строительстве, эксплуатации технических систем различной сложности. Различают технические устройства и технические системы. Последние представляют собой системы различной сложности, состоящие из технических устройств и операторов, объединенных жесткой или гибкой структурой, правилами функционирования. В пределах технических систем осуществляется целенаправленный обмен веществом, энергией, информацией. Цель функционирования технических систем определена заранее. Функциональная схема технической системы всегда направлена на реализацию поставленной цели и сопутствующих задач. Важной особенностью современных технических систем является их «включенность» в экономику. Помимо технических целей существуют и экономические цели функционирования таких систем.

Практически все технические устройства и технические системы вписаны в окружающую среду и взаимодействуют с ней, обмениваясь веществом, энергией и информацией. Для большинства сложных и сверхсложных технических систем подобный обмен с окружающей природной средой настолько велик, что оказывает на нее существенное влияние и вызывает в ней адаптивные изменения. Эти изменения могут затрагивать и окружающие экосистемы различного масштаба. В этом случае принято говорить о техноэкосистемах. Существование техноэкосистем различного масштаба также является результатом экономической деятельности человечества.

Опасности для человека, связанные с различными техническими устройствами, появились с момента создания и использования этих устройств. Опасности связаны, в первую очередь, с неправильным функционированием этих устройств или неправильным их использованием. Последние опасности связывают с так называемыми ошибками операторов.

Роль техногенных рисков весьма велика. В первую очередь их последствия проявляются в самой технической сфере. Ущербы в этом случае связаны с разрушением технических объектов, гибелью и травмами персонала, упущенной выгодой, штрафами, необходимостью ликвидации последствий в технической сфере и восстановительными работами. Вместе с тем, очевидно, что последствия от этих рисков могут проявляться не только в самой технической сфере. Техногенные риски являются источником опасности для третьих лиц, угрожая им утратой имущества, жизни и здоровья, иными видами ущербов. Часто с ними связаны и экологические риски, поскольку техногенные опасности вызывают появление специфических экологических опасностей. Например, в результате техногенной аварии могут наблюдаться выбросы токсических химических веществ в атмосферу, гидросферу и литосферу. Можно сказать, что генерирование техногенных опасностей для природы и является отличительной чертой человечества как вида живых организмов. Только с человечеством связаны специфические экологические и риски, обусловленные его технической деятельностью в колоссальных объемах. Без оценки и управления техногенными рисками невозможно полноценное управление экологическими и рисками в различных масштабах. Эти масштабы находятся в пределах от индивидуальных до глобальных рисков, влияющих на экономическую деятельность и существование человечества в современном виде в масштабах планеты.

В свою очередь, природа также оказывает свое опасное влияние на технические системы. Природные явления являются источниками соответствующих опасностей для технических систем. Некоторые природные явления влияют на правильность функционирования технических систем и могут приводить к различным нештатным ситуациям в них. Часть этих явлений может влиять на работу операторов и приводить к появлению ошибок операторов. Например, ограничение видимости, связанное с туманом, дождем, метелью, может приводить к ошибкам операторов (водителей автомобилей, пилотов самолетов, рулевых судов и т.п.) и вызвать различные инциденты с техническими средствами и системами.

Масштаб потенциальных ущербов тесно связан с типом технической системы:

Технические системы серийного, крупносерийного и массового производства (автомобили, сельскохозяйственные машины, станки, технологические установки и т.п.);

Уникальные технические системы единичного и мелкосерийного производства (мощные энергоустановки, атомные реакторы, химические и металлургические установки, летательные аппараты, горнодобывающие комплексы, нефте- и газопроводы, плавучие буровые установки и т.п.).

Для технических систем первого рода широко используются традиционные методы проектирования и эксплуатации, большой объем ремонтно-восстановительных работ, относительно небольшие ущербы при отказе единичных экземпляров.

Для технических систем второго рода характерно отсутствие опыта предшествующей эксплуатации, большой объем конструкторских разработок, стендовых испытаний и большие материальные потери при отказах и авариях, а также значительный экологический ущерб.

Источниками техногенных рисков принято называть различные опасности, приводящие к нештатному функционированию технических систем или к ошибкам операторов. Различают внешние и внутренние источники для каждого технического устройства и каждой технической системы. Обычно при анализе техногенных рисков ограничиваются внутренними и внешними источниками, связанными непосредственно с функционированием рассматриваемой технической системы или техноэкосистемы.

К внешним источникам обычно относятся:

Природные воздействия, связанные с опасными явлениями природы;

Внешние пожары, взрывы;

Внешние техногенные воздействия (столкновения, аварии и катастрофы на других технических объектах и т.п.);

Внешние бытовые воздействия (отключение питания, водоснабжения, протесты населения);

Диверсии, акты терроризма;

Военные действия;

К внутренним источникам обычно относятся:

Ошибки собственных операторов;

Внутренний саботаж;

Отказы технических устройств в составе технической системы;

Разрушения несущих конструкций вследствие дефектов или усталости конструкционных материалов;

Внутренние аварии, вызванные отключением питания, водоснабжения, перерывом технологических процессов и т.п.;

Внутренние пожары, взрывы;

Структура технической системы, наличие узлов и цепочек инцидентов;

Для технических объектов характерно накопление определенных запасов энергии, концентрация энергии на ограниченных пространствах. Освобождение этой энергии порождает специфические опасности, называемые силами или опасностями разрушения. Накопление химической энергии приводит к возрастанию опасностей пожаров и взрывов, выбросов токсических и ксенобиотических веществ в окружающую среду. Накопление потенциальной энергии воды приводит к возрастанию гидродинамической опасности. Накопление электрической энергии приводит к увеличению опасностей взрывов, поражения током, пожаров, электромагнитных поражений. Иногда эти источники опасностей разрушения выделяют в отдельную группу при факторном анализе.

Для технических систем принято отдельно рассматривать и источники опасностей, связанные с поражающими свойствами материалов, накопленных в них. В этом случае говорят о факторах поражения. К ним относят фугасное поражение (поражение взрывной волной), осколочное поражение, термическое поражение, химическое поражение, радиоактивное поражение, гидродинамическое поражение, акустическое поражение и т.д. Естественно, что при указании опасности поражения необходимо указывать и объекты поражения: здания и оборудование, люди, животный мир, растительность и т.п. Для каждой технической системы существует свой набор источников опасности, как направленных на нее, так и исходящих от нее. По мере усложнения технической системы количество источников опасности увеличивается. Обычно источники опасности объединяются в различные группы, которые служат основой для факторного анализа техногенных рисков.

В теории и практике изучения техногенных опасностей сложилось так называемое физико-химическое направление идентификации источников техногенных опасностей при аварийных ситуациях на крупных промышленных объектах. Это направление исходит из того, что при аварии или катастрофе гибель людей вызывается физико-химическими превращениями веществ, вовлеченных в аварию. Эти физико-химические превращения проявляются в виде:

Разрушения, обрушения зданий и сооружений;

Различных форм пожара;

Разлетания осколков и фрагментов оборудования;

Удара человека о неподвижные элементы конструкции;

Воздействия токсичных продуктов (токсическое поражение);

Прямого поражения ударными волнами (фугасное поражение).

Природный риск - вероятная мера соответствующей природной опасности, установленная для определенного объекта в виде возможных потерь за определенное время или потенциальная возможность такого протекания природных процессов, которые оказывают негативное влияние на жизнедеятельность человека, общества и государства.

Техногенный риск - обобщенная характеристика возможности реализации опасности в техногенной сфере, определяемая через вероятность возникновения техногенной аварии или катастрофы и математическое ожидание негативных последствий от них.

Экологический риск – оценка на всех уровнях от точечного до глобального вероятности появления негативных изменений в ОС, вызванных антропогенным или иным воздействием.

Риск – вероятность реализации опасности и величина ожидаемого ущерба, связанная с каким-либо действием.

Общепринята следующая зависимость при оценке риска :

– вероятность i-го фактора на j-ом объекте,

Ущерб i-го фактора на j-ом объекте

Управление риском – заблаговременное предвидение риска и принятие мер по его снижению.

Управление ведется на основе оценки риска, т.е. на основе зависимости, что риск есть функция от a (подвержение объекта риску), b (чувствительности или уязвимости), с (защищенности).

Наиболее распространенными методами количественного анализа риска являются статистические, аналитические, метод экспертных оценок, метод аналогов .

Суть статистических методов оценки риска заключается в определении вероятности возникновения потерь на основе статистических данных предшествующего периода и установлении области (зоны) риска, коэффициента риска и т.д.

Аналитические методы позволяют определить вероятность возникновения потерь на основе математических моделей и используются в основном для анализа риска инвестиционных проектов.

Метод экспертных оценок представляет собой комплекс логических и математико – статистических методов и процедур по обработке результатов опроса группы экспертов, причем результаты опроса являются единственным источником информации.

Метод аналогов используется в том случае, когда применение иных методов по каким – либо причинам неприемлемо. Метод использует базу данных аналогичных объектов для выявления общих зависимостей и переноса их на исследуемый объект.

10. Основные направления снижения загрязненности гидросферы. Технологические пути минимизации образования загрязняющих веществ и методы очистки сточных вод. Регулирование пространственно-временного распределения сбросов.

Для защиты поверхностных вод от загрязнения предусматриваются следующие экозащитные мероприятия:

  • Развитие безотходных и безводных технологий, внедрение систем оборотного водоснабжения – создание замкнутого цикла использования производственных и бытовых сточных вод, когда сточные воды все время находятся в обороте, и попадание их в поверхностные водоемы исключено.
  • Очистка сточных вод.
  • Очистка и обеззараживание поверхностных вод, используемых для водоснабжения и других целей.

Главный загрязнитель поверхностных вод – сточные воды, поэтому разработка и внедрение эффективных методов очистки сточных вод является актуальной и экологически важной задачей.

Введение

Актуальность. Увеличение количества и расширение масштабов чрезвычайных ситуаций природного и техногенного характера, влекущих значительные материальные и людские потери, - подчеркивается в Концепции национальной безопасности РФ, - делает крайне актуальной проблему обеспечения национальной безопасности в природно-техногенной и экологической сферах».

Проблемы безопасности на объектах нефтегазового комплекса имеют особое значение. Они связаны с физико-химическими свойствами углеводородных веществ, приводящими к их возгоранию или взрыву в случае аварий. Авариям на нефтеперерабатывающих предприятиях характерны большие объемы выброса взрывопожароопасных веществ, образующие облака топливно-воздушных смесей, разливы нефтепродуктов и как следствие - пожары, взрывы, разрушение соседних аппаратов и целых установок. Согласно статистике, ущерб от аварийности и травматизма достигает 5-10% от валового национального продукта промышленно развитых государств, а несовершенная техника безопасности являются причиной преждевременной смерти 10-15% мужчин и 5-10% женщин.

Практика показывает, что полностью исключить аварии и уменьшить до нуля опасность, несущую опасными производственными объектами, невозможно. Поэтому техногенные аварии необходимо предупреждать или ослаблять их вредное воздействие.

Цель данной работы: Изучить техногенные риски нефтеперерабатывающей отрасли и методы их урегулирования.

Основные задачи:

1) Изучить основные опасности предприятий нефтепереработки;

) Проанализировать возможные аварийные ситуации на предприятии ООО «ТехМашСервис», их причины и меры безопасности.

Объектом исследования являются техногенные риски предприятий нефтепереработки.

Предмет исследования - методы урегулирования техногенных рисков и оптимизации предприятий.

Методология исследования включает в себе метод анализа и синтеза полученных данных.

Курсовая работа состоит из введения, четырех глав, четырех параграфов, заключения и списка литературы.

1. Техногенный риск

К настоящему времени сложилась достаточно проработанное направление в теории рисков, связанное с оценкой и управлением, так называемыми техногенными рисками. Этот вид рисков связан с опасностями, существующими при строительстве, эксплуатации технических систем различной сложности. Различают технические устройства и технические системы. Последние представляют собой системы различной сложности, состоящие из технических устройств и операторов, объединенных жесткой или гибкой структурой, правилами функционирования. В пределах технических систем осуществляется целенаправленный обмен веществом, энергией, информацией. Цель функционирования технических систем определена заранее. Функциональная схема технической системы всегда направлена на реализацию поставленной цели и сопутствующих задач. Важной особенностью современных технических систем является их «включенность» в экономику. Помимо технических целей существуют и экономические цели функционирования таких систем.

Практически все технические устройства и технические системы вписаны в окружающую среду и взаимодействуют с ней, обмениваясь веществом, энергией и информацией. Для большинства сложных и сверхсложных технических систем подобный обмен с окружающей природной средой настолько велик, что оказывает на нее существенное влияние и вызывает в ней адаптивные изменения. Эти изменения могут затрагивать и окружающие экосистемы различного масштаба. В этом случае принято говорить о техноэкосистемах. Существование техноэкосистем различного масштаба также является результатом экономической деятельности человечества.

Опасности для человека, связанные с различными техническими устройствами, появились с момента создания и использования этих устройств. Опасности связаны, в первую очередь, с неправильным функционированием этих устройств или неправильным их использованием. Последние опасности связывают с так называемыми ошибками операторов.

Роль техногенных рисков весьма велика. В первую очередь их последствия проявляются в самой технической сфере. Ущербы в этом случае связаны с разрушением технических объектов, гибелью и травмами персонала, упущенной выгодой, штрафами, необходимостью ликвидации последствий в технической сфере и восстановительными работами. Вместе с тем, очевидно, что последствия от этих рисков могут проявляться не только в самой технической сфере. Техногенные риски являются источником опасности для третьих лиц, угрожая им утратой имущества, жизни и здоровья, иными видами ущербов. Часто с ними связаны и экологические риски, поскольку техногенные опасности вызывают появление специфических экологических опасностей. Например, в результате техногенной аварии могут наблюдаться выбросы токсических химических веществ в атмосферу, гидросферу и литосферу. Можно сказать, что генерирование техногенных опасностей для природы и является отличительной чертой человечества как вида живых организмов. Только с человечеством связаны специфические экологические и риски, обусловленные его технической деятельностью в колоссальных объемах. Без оценки и управления техногенными рисками невозможно полноценное управление экологическими и рисками в различных масштабах. Эти масштабы находятся в пределах от индивидуальных до глобальных рисков, влияющих на экономическую деятельность и существование человечества в современном виде в масштабах планеты.

В свою очередь, природа также оказывает свое опасное влияние на технические системы. Природные явления являются источниками соответствующих опасностей для технических систем. Некоторые природные явления влияют на правильность функционирования технических систем и могут приводить к различным нештатным ситуациям в них. Часть этих явлений может влиять на работу операторов и приводить к появлению ошибок операторов. Например, ограничение видимости, связанное с туманом, дождем, метелью, может приводить к ошибкам операторов (водителей автомобилей, пилотов самолетов, рулевых судов и т.п.) и вызвать различные инциденты с техническими средствами и системами.

Масштаб потенциальных ущербов тесно связан с типом технической системы:

технические системы серийного, крупносерийного и массового производства (автомобили, сельскохозяйственные машины, станки, технологические установки и т.п.);

уникальные технические системы единичного и мелкосерийного производства (мощные энергоустановки, атомные реакторы, химические и металлургические установки, летательные аппараты, горнодобывающие комплексы, нефте- и газопроводы, плавучие буровые установки и т.п.).

Для технических систем первого рода широко используются традиционные методы проектирования и эксплуатации, большой объем ремонтно-восстановительных работ, относительно небольшие ущербы при отказе единичных экземпляров.

Для технических систем второго рода характерно отсутствие опыта предшествующей эксплуатации, большой объем конструкторских разработок, стендовых испытаний и большие материальные потери при отказах и авариях, а также значительный экологический ущерб.

Источниками техногенных рисков принято называть различные опасности, приводящие к нештатному функционированию технических систем или к ошибкам операторов. Различают внешние и внутренние источники для каждого технического устройства и каждой технической системы. Обычно при анализе техногенных рисков ограничиваются внутренними и внешними источниками, связанными непосредственно с функционированием рассматриваемой технической системы или техноэкосистемы.

К внешним источникам обычно относятся:

природные воздействия, связанные с опасными явлениями природы;

внешние пожары, взрывы;

внешние техногенные воздействия (столкновения, аварии и катастрофы на других технических объектах и т.п.);

внешние бытовые воздействия (отключение питания, водоснабжения, протесты населения);

диверсии, акты терроризма;

военные действия;

К внутренним источникам обычно относятся:

ошибки собственных операторов;

внутренний саботаж;

отказы технических устройств в составе технической системы;

разрушения несущих конструкций вследствие дефектов или усталости конструкционных материалов;

внутренние аварии, вызванные отключением питания, водоснабжения, перерывом технологических процессов и т.п.;

внутренние пожары, взрывы;

структура технической системы, наличие узлов и цепочек инцидентов;

Для технических объектов характерно накопление определенных запасов энергии, концентрация энергии на ограниченных пространствах. Освобождение этой энергии порождает специфические опасности, называемые силами или опасностями разрушения. Накопление химической энергии приводит к возрастанию опасностей пожаров и взрывов, выбросов токсических и ксенобиотических веществ в окружающую среду. Накопление потенциальной энергии воды приводит к возрастанию гидродинамической опасности. Накопление электрической энергии приводит к увеличению опасностей взрывов, поражения током, пожаров, электромагнитных поражений. Иногда эти источники опасностей разрушения выделяют в отдельную группу при факторном анализе.

Для технических систем принято отдельно рассматривать и источники опасностей, связанные с поражающими свойствами материалов, накопленных в них. В этом случае говорят о факторах поражения. К ним относят фугасное поражение (поражение взрывной волной), осколочное поражение, термическое поражение, химическое поражение, радиоактивное поражение, гидродинамическое поражение, акустическое поражение и т.д. Естественно, что при указании опасности поражения необходимо указывать и объекты поражения: здания и оборудование, люди, животный мир, растительность и т.п. Для каждой технической системы существует свой набор источников опасности, как направленных на нее, так и исходящих от нее. По мере усложнения технической системы количество источников опасности увеличивается. Обычно источники опасности объединяются в различные группы, которые служат основой для факторного анализа техногенных рисков.

В теории и практике изучения техногенных опасностей сложилось так называемое физико-химическое направление идентификации источников техногенных опасностей при аварийных ситуациях на крупных промышленных объектах. Это направление исходит из того, что при аварии или катастрофе гибель людей вызывается физико-химическими превращениями веществ, вовлеченных в аварию. Эти физико-химические превращения проявляются в виде:

разрушения, обрушения зданий и сооружений;

различных форм пожара;

разлетания осколков и фрагментов оборудования;

удара человека о неподвижные элементы конструкции;

воздействия токсичных продуктов (токсическое поражение);

прямого поражения ударными волнами (фугасное поражение).

2. Оценка потенциальной опасности оборудования установок нефтеперерабатывающих предприятий

риск авария опасность технологический

Основными опасностями, характерными для нефтеперерабатывающих предприятий, являются пожары, взрывы и токсическое заражение, но в большинстве случаев решение задач по повышению безопасности таких предприятий основывается лишь на рассмотрении взрывоопасности оборудования.

Поскольку действующие методики расчета последствий аварий во многом не согласованы и не позволяют однозначно судить об опасности опасных производственных объектов (ОПО), то наиболее перспективным, с точки зрения комплексной оценки, является интегральный параметр опасности . Хотя данный параметр учитывает поражающие факторы различные по физической природе, возникающие на разных стадиях развития аварий и весовые значения этих факторов с учетом компетентности специалистов, основными его недостатками являются разная размерность факторов, его составляющих, невозможность определения по его значениям степени опасности оборудования и отсутствие критических значений данного параметра.

Придать интегральному параметру потенциальной опасности значимость, определить его границы и в итоге реально оценить индивидуальную опасность оборудования нефтегазоперерабатывающего предприятия, используя существующую нормативно-методическую базу, позволит предложенная в виде алгоритма методика определения интегрального параметра потенциальной опасности, представленная на таблице 1.

В качестве поражающих факторов, входящих в состав интегрального параметра согласно выбраны следующие:

воздушная ударная волна, возникающая при разного рода взрывах (взрывоопасность);

тепловое излучение пожара пролива и «огненного шара» при окислительных процессах различных веществ (пожароопасность);

действие токсических веществ, участвующих в технологическом процессе (токсическая опасность). В качестве критических значений рассматриваемых поражающих факторов для приведения интегрального параметра к безразмерной величине были использованы данные работы, что позволило оценивать и сравнивать любые виды опасности и определять границы ее допустимого значения.

В качестве объектов моделирования аварийных ситуаций было выбрано оборудование типовой наружной абсорбционной газофракционирующей установки (АГФУ) газокаталитического производства нефтеперерабатывающих предприятий. Возникновение опасности на АГФУ возможно вследствие высокой плотности размещения технологического оборудования, наличием большого количества воспламеняющихся веществ, а также присутствием источников воспламенения (открытый огонь печей). План расположения оборудования АГФУ представлен на рисунке 2. С учетом рабочих параметров оборудования рассматриваемой установки рассчитаны параметры поражающих факторов, образование которых возможно при авариях на объектах такого типа. В таблице 2 представлены значения данных расчетов. Индексы аппаратов указаны согласно существующей технологической схеме (Т - теплообменное оборудование, Е - емкостное оборудование, К - оборудование колонного типа, П - печное оборудование).

Рисунок 1. Типовой план расположения оборудования АГФУ

Таблица 2. Значения основных поражающих факторов при авариях на АГФУ

Индекс аппаратаИнтенсивность теплового излучения пожара пролива, q, кВт/м2Интенсивность теплового излучения «огненного шара», q, кВт/м2Общий энерго - потенциал взрыво - опасности, кДжОтноси - тельный энерго - потенциал взрыво - опасностиБезраз - мерное давление, РхЭквивалентное количество вещества по первичному облаку, QЭ1, тЕ-82,44109,824,377Е+069,8911565,211354,32Т-150,92102,965,85Е+0850,585919,456466,29Т-19/17,4381,182,669Е+068,392809,119,26Т-197,4370,391,101Е+066,242277,401,67Т-212,9033,761,101Е+066,241246,570,13Т-201,79103,621,49Е+0832,066139,09129,27Т-221,79103,621,49Е+0832,066139,096,38Е-10,85101,891,363Е+0714,455588,6021,19Е-40,6087,575,623Е+0723,173423,054,60Е-100,6810,841,8Е+0834,15718,763,74Е-132,5416,341,8Е+0834,151282,022,29К-10,7788,411,49Е+0832,063511,186,78К-43,29108,8713,6Е+0867,019890,73134,64К-63,92108,742,04Е+0835,69700,321732,80К-73,92108,314,14Е+0845,089161,8016,12П-20,083,007,69Е+0855,41446,810,37Т-100,0957,818,13Е+0856,451972,437,56Т-130,271,015,72+0610,82767,500,88

Каждый фактор опасности, составляющий интегральный параметр, оценивается экспертным путем, согласно исследованиям, проводимым в работах . Для всех аппаратов АГФУ рассчитываются интегральные параметры потенциальной опасности, значения которых представлены в таблице 2.

Из таблицы 2 видно, что значения интегрального параметра потенциальной опасности для аппаратов одной установки изменяются от 0,10 (минимальное значение - для холодильника тощего абсорбента Т-13) до 0,77 (максимальное значение - для десорбера К-4). Таким образом, оценив потенциальную опасность оборудования АГФУ с помощью интегрального параметра можно сказать, что наиболее опасным является колонное оборудование.

Таблица 3. Интегральные параметры опасностиаппаратов АГФУ

Индекс аппарата установкиИнтегральный параметрЕ-80,43Т-150,56Т-19/10,37Т-190,33Т-210,17Т-200,49Т-220,48Е-10,39Е-40,38Е-100,22Е-130,27К-10,43К-40,77К-60,57К-70,64П-20,27Т-100,55Т-130,10Для оценки степени опасности для человека и окружающей среды каждого конкретного аппарата с соответствующим ему значением интегрального параметра необходимо определить границы опасности. За границы опасности берется значение интегрального параметра равное единице. Графически это можно отобразить в виде плоскости в отрезках (рисунок 3), представленной уравнением критической плоскости q1+q2+q3=1, которая будет ограничивать объем значений интегрального параметра от 0 до 1, где q1, q2, q3 - факторы пожароопасности, взрывоопасности и токсической опасности соответственно, при условии, что q1>0, q2>0, q3>0.

Рисунок 2. Графическое представление предельного значения устойчивости оборудования

Представленный в виде пространственной диаграммы интегральный параметр потенциальной опасности позволяет ранжировать оборудование технологической установки по степени его опасности. Основываясь на уравнении, описывающем критическую плоскость, и нормативно обоснованных значениях поражающих факторов в таблице 3, в которой рассчитанный для аппаратов АГФУ интегральный параметр потенциальной опасности расположен по убыванию его значений, выделим четыре области опасности. На рисунке 4 для наглядности области опасности показаны двумерной диаграммой, частично описывающей интегральный параметр потенциальной опасности. Так, значение интегрального параметра от 0 до 0,33 характеризует область низкой опасности, от 0,33 до 0,50 - приемлемой опасности, 0,50-0,70 - область высокой опасности, а значения от 0,70 до 1,00 - предельной опасности.

Аппараты АГФУИнтегральный параметрК-4 (десорбер для извлечения из деэтанизированного абсорбента пропан-пропиленовой и бутан-бутиленовой фракции)0,77К-7 бутановая колонна)0,64К-6 (пропановая колонна)0,58Т-15 (подогреватель сырья)0,56Т-10 (подогреватель сырья)0,55Т-20 (подогреватель сырья)0,49Т-22 (подогреватель сырья)0,49К-1 (абсорбер для извлечения газа пропан - пропиленовой, бутан-бутиленовой фракции) 0,43Е-8 (приемник рефлюкса)0,43Е-1 (отбойник конденсата)0,39Е-4 (емкость тощего абсорбента)0,38Т-19/1 (холодильник жирного газа)0,37Т-19 (холодильник пропановой колонны)0,33Е-13 (емкость орошения бутановой колонны)0,27П-2 (печь горячей струи)0,27Е-10 (емкость орошения пропановой колонны)0,22Т-21 (подогреватель сырья)0,17Т-13 (подогреватель сырья)0,10

Из таблицы 4 в соответствии с предложенной классификацией, видно, что в область низкой опасности попадают аппараты Т-13 (подогреватель сырья), Т-21 (подогреватель сырья) и Е-10 (емкость орошения пропановой колонны), а наиболее опасным оказался десорбер для извлечения пропан-пропиленовой и бутан - бутиленовой фракции, К-4, который находится в области предельной опасности. Подобное распределение аппаратов по областям вполне обосновано и определяется физико-химическими свойствами веществ, участвующих в процессах переработки углеводородов, их количеством, технологическими параметрами процессов, возможностью образования неконтролируемых реакций, способных привести к взрывам, возгораниям.

Так, количественно разграничив области опасности, получаем классификацию оборудования, которая позволяет оценивать опасность объекта по значению его интегрального параметра, что в последующем позволит оперировать опасностью на различных стадиях его жизненного цикла. Это ранжирование также может быть использовано при совершенствовании системы диагностирования и оценки текущего состояния оборудования установок нефтегазопереработки.

Представленный в виде пространственной диаграммы интегральный параметр потенциальной опасности может быть использован для определения границ варьирования значений факторов опасности. Наглядно это можно представить на рисунке 4, в качестве примера возьмем гипотетический аппарат с интегральным параметром 0,95, факторы опасности составляющие его равны

44; 0,31 и 0,20. Рассматриваемый аппарат попадает в область предельной опасности; наиболее весомым с точки зрения опасности является его пожароопасность.

Рисунок 3. Графическое представление потенциальной опасности аппарата в пространстве

Данная графическая интерпретация с разложением факторов, составляющих интегральный параметр опасности, позволяет создать наглядный инструмент для изменения их границ с целью уменьшения риска возникновения аварийной ситуации на ОПО.

Согласно , критерием, по которому максимально рассредоточиваются аппараты на нефтеперерабатывающих предприятиях, являются наибольшие значения их энергетических потенциалов. Энергетический потенциал взрывоопасности характеризует детонационный взрыв, реализация которого для объектов этой отрасли несвойственна. Используя расчетные данные по составлению интегральных параметров потенциальной опасности аппаратов АГФУ, можно визуально представить не только зоны полных разрушений, но и ситуационные планы таких поражающих воздействий аварий, как пожар пролива, «огненный шар», токсическое поражение и дефлаграционный взрыв. На рисунках 6-10 представлены зоны опасности оборудования АГФУ с указанием интегрального параметра опасности и места расположения оборудования, а также его индекса согласно технологической схеме.

Как видно из рисунков 6-10 большинство аппаратов попадают в зоны поражающего воздействия соседних аппаратов при реализации любого из рассмотренной сценариев аварий.

Рисунок 5. Зоны опасности оборудования АГФУ при реализации детонационного взрыва

Рисунок 6. Зоны опасности оборудования АГФУ при реализации дефлаграционного взрыва

Рисунок 7. Зоны опасности оборудования АГФУ при реализации токсического заражения

Рисунок 8. Зоны опасности оборудования АГФУ при реализации «огненного шара»

Рисунок 9. Зоны опасности оборудования АГФУ при реализации пожара пролива

Таблица 5. Интегральный и обобщающий параметр потенциальной опасности оборудования АГФУ

Аппа - раты АГФУИнтегральный параметрСумма интегральных параметров аппаратов, попадающих в зону опасностиОбобща - ющий интеграль ный параметрТоксическое воздейст виеПожар пролив аДефлагра - ционной взрывДетонаци - онный взрыв«Огнен - ному шару»К-40,770,700,273,12,775,0011,84К-70,641,950,585,74,195,7018,12К-60,582,340,645,73,36,918,88Т-150,562,71,024,54,657,1720,04Т-100,551,250,10,325,372,139,17Т-200,491,710,493,391,075,7012,36Т-220,491,710,491,821,135,7010,85К-10,431,04-0,771,041,694,54Е-80,431,910,396,03-5,7014,03Е-10,391,950,433,85-5,7011,93Е-40,382,570,87-0,875,7010,01Т-19/10,372,311,591,76-5,7011,36Т-190,331,701,621,33-5,7010,35Е-130,271,200,77-1,200,773,94П-20,27---1,04-1,04Е-100,221,581,03-2,290,665,56Т-210,173,900,38--3,687,96Т-130,102,410,77---3,18

Данный факт позволяет, установив количество оборудования, попадающего в зоны поражающего воздействия при возникновении различного рода аварий для каждого аппарата и подсчитав их суммарный интегральный параметр потенциальной опасности, рассчитать обобщающий интегральный параметр аппарата, значение которого будет отражать опасность оборудования по степени его влияния на дальнейшее развитие аварийной ситуации.

Анализ данных таблицы 4 позволяет судить о том, что один и тот же аппарат установки может обладать различного рода опасностью, так, колонна К-4, имеющая наибольший индивидуальный интегральный параметр потенциальной опасности, обладает обобщающим интегральным параметром среднего значения, а подогреватель сырья Т-15 с индивидуальным интегральным параметром области высокой опасности 0,56 максимально опасен с точки зрения влияния на продолжительность аварии и усугубления ее последствий. Расчет обобщающего интегрального параметра также отображает зависимость его значения отразмещения технологического оборудования на территории установки - аппараты Т-10, К-1, Е-13 отдалены от основного сосредоточения оборудования АГФУ, что сказывается на значении их обобщающего интегрального параметра, хотя их потенциальная опасность велика.

Использование предложенной в работе оценки потенциальной опасности технологического оборудования позволит заблаговременно снизить риск возникновения аварий уже на стадии его проектирования, а также разработать комплекс мероприятий по снижению потенциальной опасности на любом этапе его жизненного цикла.

3. Возможные аварийные ситуации и меры безопасности

.1 Перечень основных опасностей производства

Процесс переработки углеводородного сырья связан с обращением взрывопожароопасных сред при повышенных температурах и избыточном давлении.

Продуктами, определяющими взрывоопасность технологической установки, являются пары бензиновой, керосиновой, дизельной фракций, которые в смеси с кислородом воздуха образуют смеси, взрывающиеся при наличии огня или искры, а также нагретый выше температуры вспышки мазут.

Процесс ведется в герметичной системе под избыточным давлением и подсос воздуха в систему в рабочем состоянии невозможен.

Взрывоопасная ситуация возможна лишь при разрушении оборудования или трубопроводов в результате какого-либо повреждения, механического износа или коррозии.

Потенциальная опасность технологических блоков, где обращаются взрывопожароопасные продукты, заключается в возможности разгерметизации аппаратов и трубопроводов, проливе горючих жидких продуктов, выбросе парогазовой взрывоопасной среды, что является причиной наиболее часто встречающихся аварий при эксплуатации аналогичных установок.

Разгерметизацию системы может вызвать нарушение технологических параметров (температура, давление) с выходом их за критические значения, например, перегрев труб в трубчатой печи, превышение давления сверх расчетного в емкостном или колонном оборудовании. В свою очередь, нарушение норм технологического режима может произойти из-за отказа схем регулирования и защиты, а также в результате ошибок персонала.

Установка обеспечена в достаточной степени средствами контроля, управления и защиты при незначительной вероятности отказа защитных систем.

Существует вероятность механической разгерметизации технологических систем вследствие износа оборудования, поэтому главной задачей системы контроля, управления и защиты, включая контроль технологического персонала, является своевременное обнаружение повреждения и оперативная локализация предаварийных состояний.

Безопасность производства обеспечивается следующими мероприятиями: - оборудование имеет Разрешения Ростехнадзора России на его применение на опасном производственном объекте;

внедрена комплексная автоматизация технологического процесса с выносом информации о параметрах, характеризующих безопасную работу оборудования, на щит КИП в операторную. Кроме параметров технологических процессов на дисплеи операторов вынесена и информация, характеризующая работу оборудования;

для защиты аппаратуры от возможного превышения давления, предусмотрена установка предохранительных клапанов со сбросом среды на установку улавливания паров углеводородов через емкость Е21;

для защиты емкостного оборудования от возможности распространения пламени на дыхательных линиях установлены огнепреградители;

для исключения замерзания продуктов в зимнее время, что может явиться причиной разгерметизации трубопроводов, повреждения арматуры, насосного оборудования на установке выполнен обогрев трубопроводов с легкозастывающим продуктом (мазутом) при помощи пароспутника в общей изоляции с трубопроводом;

материальное исполнение всего оборудования, трубопроводов и их элементов соответствует условиям их эксплуатации;

для перекачки взрывопожароопасных жидкостей применены специальные насосы с уплотнениями, позволяющими в значительной степени снизить или исключить утечки перекачиваемой жидкости;

выполнено заземление всего оборудования и трубопроводов для защиты от статического электричества и вторичных проявлений молнии;

для изоляции печи при авариях печь оборудована «паровой завесой», которая автоматически включается после срабатывания сигнализации о загазованности на установке. Паровая завеса предотвращает проникновение облака взрывоопасной смеси в зону открытого огня печи; эксплуатация технологического оборудования, трубопроводной арматуры и трубопроводов, выработавших установленный ресурс, допускается при получении технического заключения о возможности его дальнейшей работы и получения разрешения в порядке, устанавливаемом Ростехнадзором;

в процессе эксплуатации установки должно быть обеспечено строгое соблюдение графиков осмотра, ремонта и технического освидетельствования аппаратов и трубопроводов в соответствии с Положением о планово-предупредительном ремонте, действующем на предприятии, а также нормативными документами Ростехнадзора.

.2 Возможные инциденты и аварийные ситуации, причины их возникновения и действия по их устранению

Основными причинами возможных аварийных ситуаций являются:

отказ в работе контрольно-измерительных приборов и системы противоаварийной защиты и, как следствие, выход параметров за пределы регламентных;

нарушение герметичности оборудования и трубопроводов или их полное разрушение;

нарушение требований норм техники безопасности при эксплуатации установки или проведении ремонтных работ;

несвоевременная ревизия и неправильная регулировка предохранительных клапанов;

неисправность заземления оборудования;

несоблюдение графиков осмотра и планово-предупредительных ремонтов;

преднамеренные действия физических лиц (диверсии).

При возникновении аварийной ситуации дежурный оператор оценивает степень аварии и принимает решение об аварийной остановке процесса или о продолжении работы. При этом оповещается руководящий инженерно-технический персонал, несущий ответственность за безопасную эксплуатацию производства. Аварийное состояние установки может возникнуть в следующих случаях:

прекращение подачи пара;

прекращение подачи электроэнергии;

прекращение подачи оборотной воды;

прекращение подачи топливного газа;

прогар труб в печи;

нарушение герметичности трубопроводов и аппаратов.

Прекращение подачи пара

При прекращении подачи пара на установку прекратится подача пара в нагревательные элементы резервуаров и аппаратов, на пароспутники и систему паротушения нагревательных печей.

выяснить причину прекращения подачи пара и, в случае невозможности возобновления подачи пара, приступить к остановке установки в соответствии с подразделом 6.2;

при длительной остановке (зимой более 1 часа) сдренировать конденсат из пароспутников, обогревов, открыть дренажи на паропроводах;

опорожнить трубопровод подачи мазута на сливо-наливной стояк и трубопровод мазута технологической установки в емкость Е21;

линии транспортирования мазута прокачать дизельным топливом. Некондиционный мазут от технологической установки собрать в емкость Е5 или другую свободную емкость пункта приема сырья, от участка сливо-наливных операций - в емкость Е21.

Прекращение подачи электроэнергии

В случае прекращения снабжения установки электроэнергией останавливаются насосы, прекращается электроснабжение приборов КИПиА, средств противоаварийной защиты, прекращается подача топлива к нагревательным печам. Останавливается паровой котел и прекращается подача пара на установку.

Остановка насосов оборотного водоснабжения и установки улавливания паров углеводородов приведет к залповому выбросу паров углеводородов и загазованности территории предприятия, что может привести к взрыву.

Для ликвидации аварийной ситуации необходимо:

проконтролировать отключение подачи топлива к горелкам нагревательных печей, вручную подать пар в камеры сгорания и на паровую завесу блока печей;

открыть вручную арматуру на сливе сырья из змеевика нагревательной печи и продуктов из кубовых емкостей;

при продолжительном отсутствии электроэнергии принять меры по опорожнению и продувке трубопроводов с высокозастывающими продуктами инертным газом (азотом) в заглубленные емкости.

Прекращение подачи оборотной воды

Оборотная вода подается на охлаждение в дефлегматор Дик холодильнику X. Прекращение снабжения установки оборотной водой приводит к резкому повышению температуры отходящих продуктов с установки, нарушению процесса конденсации паров углеводородов, к нарушению режима работы установки улавливания паров углеводородов.

Для ликвидации аварийного положения необходимо:

аварийно потушить горелки печей;

во избежание закоксовывания продуктов в печах насосы подачи сырья Н35 и Н54 использовать максимально возможное время, остановить его и затем несколько раз прокачать печи включением насоса на несколько минут;

при длительном отсутствии воды приступить к остановке технологической установки.

Прекращение подачи топливного газа

Прекращение снабжения печи установки топливным газом ведет к прекращению процесса нагрева сырья. Кроме того, прекращается выработка пара в котельной.

Проконтролировать закрытие запорной арматуры на линиях подачи газа к горелкам.

При продолжительном отсутствии топливного газа принять меры по остановке технологического оборудования в регламентированном режиме.

Прогар труб в печи

При прогаре труб в печи установка должна быть аварийно остановлена, для чего необходимо:

проконтролировать отсечку подачи топливного газа в соответствующую печь. Остановить насос, подающий продукт в печь. Перекрыть задвижку на нагнетании насоса, затем закрыть задвижки на входе и выходе из печи;

освободить змеевик печи по аварийному сбросу в емкость Е21. Продуть змеевик и камеру печи паром;

приступить к остановке технологического оборудования, если дальнейшая работа установки невозможна, или переключить работу установки на резервную печь.

Нарушение герметичности аппаратов и трубопроводов

При нарушении герметичности аппаратов и трубопроводов, выбросе жидких продуктов или их паров, грозящем пожаром и отравлением обслуживающего персонала, установка должна быть аварийно остановлена, для чего необходимо:

отключить поврежденный трубопровод или аппарат от остальной системы, откачать, если возможно, из него продукт или слить продукт в заглубленную емкость Е21;

если без отключенного аппарата или участка трубопровода нормальная работа установки невозможна, приступить к нормальной остановке установки. Если работа установки при этом возможна, продолжить работу при постоянном контроле содержания паров взрывоопасных продуктов в рабочей зоне. При достижении 20% НКПР на открытой площадке приступить к остановке установки;

ликвидировать последствия разлива или выброса продукта. Подготовить поврежденный участок к ремонту.

.3 Меры безопасности при эксплуатации производственного объекта

.3.1 Меры безопасности при продувке оборудования инертным газом

Для продувки горелочного устройства печи П47 и установки улавливания паров углеводородов Х29 используется азот от стационарной баллонной установки Х53. Для продувки оборудования и трубопроводов при выводе установки на рабочий режим после длительной остановке или после ремонта необходимо использовать азот из временно устанавливаемых баллонов. Возможно получение азота от арендуемой передвижной газификационной установки.

При длительной остановке производства, а также при остановке, выполняемой с целью проведения осмотра и ремонта оборудования, после освобождения оборудования и трубопроводов от продуктов выполняется продувка острым паром давлением 65 кПа. Перед проведением ремонтных работ после продувки паром выполняется продувка азотом из баллонов до получения отрицательного результата на взрываемость.

3.2 Требования к надежности электроснабжения, системе управления, сигнализации и противоаварийной автоматической защите технологического процесса

Электроснабжение установки выполнено от двух независимых источников: рабочего - от комплектной трансформаторной подстанции и аварийного - от дизельной электростанции АД-20С-Т400-2РМ со второй степенью автоматизации (с автоматическим пуском).

При аварийном режиме (отсутствии напряжения с ТП) мощность ДЭС достаточна для электроснабжения потребителей котельной и исполнительных механизмов запорной арматуры, входящей в состав системы противоаварийной защиты.

При прекращении подачи электроэнергии от основного источника срабатывает автоматическое включение резерва (АВР) и двигатели автоматически переключаются на питание от второго источника.

Электродвигатели насосов на период работы АВР могут останавливаться. Эти электродвигатели персонал обязан включать повторно.

Второй источник электроснабжения обеспечивает работу технологического процесса в режиме ожидания, а при длительном отсутствии напряжения на ТП - безаварийную остановку производства.

Кроме того, по первой категории по надежности обеспечивается электроснабжение системы контроля аварийных параметров состояния технологической системы.

Технологический процесс предусматривает:

комплексную механизацию, автоматизацию, применение дистанционного управления технологическим процессом и операциями;

автоматическую систему противоаварийной защиты ПАЗ, предупреждающую образование взрывоопасной среды, обеспечивающую возможность дистанционного отключения насосов и электрозадвижек. Система ПАЗ выдает световой и звуковой сигналы при максимально и минимально аварийных параметрах процесса на узлах. Световой сигнал сообщает о состоянии электрозадвижек (открыто, закрыто).

.3.3 Основные требования по пожарной безопасности производства

Обслуживающий персонал установки должен знать и выполнять следующие правила противопожарной безопасности:

территория предприятия должна постоянно содержаться в чистоте и порядке. Горючие отходы должны собираться в металлические контейнеры, размещаемые на площадке временного складирования отходов, и систематически вывозиться с территории предприятия;

в летнее время вся территория должна убираться от травы с последующим удалением ее с территории;

системы пожаротушения перед наступлением холодов должны проверяться на исправность и проходимость;

в зимнее время огнетушители должны находиться в отапливаемых помещениях, но вдали от отопительных приборов;

не допускать загромождения и загрязнения дорог, проездов, подъездов, подступов к противопожарному оборудованию, средствам пожаротушения, сигнализации и связи;

обслуживающий персонал должен знать правила пользования огнетушителями, помнить, что электрооборудование можно тушить только углекислотными огнетушителями;

разведение огня (костра), выжигание травы, сжигание мусора на территории установки запрещается;

для курения на территории установки отводится специально оборудованное для этой цели место с урнами и бочками с водой и песком;

отогревание застывших трубопроводов и аппаратуры при помощи огня запрещается. Отогревание разрешается проводить только паром или горячей водой на отключенных участках;

колодцы должны быть закрыты крышками и засыпаны слоем песка не менее 10 см;

запрещается въезд автомашин, тракторов и других видов транспорта на территорию предприятия без письменного разрешения начальника установки, старшего оператора с записью в вахтовом журнале;

в период ремонта огневые работы проводятся по специальному наряду-допуску, утвержденному главным инженером, только после выполнения подготовительных мероприятий и получения положительных анализов воздуха в местах проведения огневых работ. Содержание углеводородов не должно превышать допустимых концентраций по санитарным нормам. При возникновении загорания тушить его огнетушителями, песком, кошмой и другими имеющимися средствами пожаротушения;

обслуживающий персонал установки должен следить за наличием и исправностью средств пожаротушения и обязательно при приеме и сдаче смены передавать их по вахте.

Возможные пути распространения пламени и пути эвакуации персонала:

Пропитанная нефтепродуктом изоляция, розливы нефтепродукта по территории установки, пропуски нефтепродукта через уплотнения запорной арматуры, насосов, фланцевых и резьбовых соединений являются причиной распространения огня, как в закрытых помещениях, так и на открытых площадках.

При разгерметизации насоса (пропуск уплотнения, прокладки на трубопроводе и т.п.) или трубопровода (пропуск фланцевого соединения, разрыв сварного шва и т.п.) и при наличии источника огня, пламя может распространяться и на другие трубопроводы, насосы, электродвигатели, оказавшиеся в зоне высоких температур, что может привести к деформации указанного оборудования, которое может стать новым источникам огня и способствовать распространению пожара на все производственные участки.

Основным фактором распространения пламени является давление в источнике, в результате разгерметизации которого происходит поступление нефтепродукта в зону загорания. На открытых площадках определяющими факторами распространения пламени являются направление ветра и источник нефтепродукта.

При аварийной ситуации с установки удаляются все присутствующие, за исключением технологического персонала, который извещает соответствующие службы об аварии и действует в соответствии с ПЛАС (принимает меры к ликвидации аварии, пожара, встречает пожарную часть, знакомит их с создавшейся ситуацией на объекте и т.д.).

Для эвакуации людей с открытых технологических установок имеются маршевые лестницы по всей высоте оборудования.

Наличие двух подъемов и спусков на обслуживающих площадках емкостного парка обеспечивает безопасную эвакуацию людей с объекта во время аварии.

.3.4 Методы и средства защиты работающего персонала от производственных опасностей

Для предупреждения взрыва и пожара на производственных площадках установлены газосигнализаторы, реагирующие на наличие паров углеводородов в воздухе рабочей зоны. Предусмотрен непрерывный автоматический контроль и сигнализация достижения 20% НКПР паров углеводородов на открытых площадках и 10% НКПР паров углеводородов и метана в помещении 102 корпуса 15 (печное отделение).

В помещении 102 корпуса 15 выполнен контроль содержания окиси углерода с сигнализацией при достижении 1ПДК СО.

При выборе методов и средств контроля содержания токсичных веществ в воздухе рабочей зоны следует руководствоваться требованиями раздела 4 ГОСТ 12.1.005-78*.

При выборе методов и средств контроля содержания взрывоопасных веществ в воздухе рабочей зоны следует руководствоваться спецификой возможных утечек и ТУ-ГАЗ-86 «Требования к установке сигнализаторов и газоанализаторов».

Все средства контроля и измерения должны проходить метрологическую поверку в установленные сроки (не реже одного раза в год) в соответствии с методиками, установленными Федеральной службой по техническому регулированию и метрологии (Госстандартом РФ).

.3.5 Дополнительные меры безопасности при эксплуатации производства

Выброс продуктов в рабочие зоны возможен при нарушении технологического режима, неисправности оборудования, арматуры, средств контроля и автоматики, в результате разгерметизации фланцевых соединений, разрывов трубопроводов, что является аварийной ситуацией.

Для ограничения разлива продуктов в случае аварийной разгерметизации оборудования предусмотрены следующие устройства:

твердое покрытие с ограждающими бортиками высотой 200 мм и приямками на наружных установках;

твердое покрытие с ограждающими бортиками высотой 600 мм и приямком на установке гидроочистки сырья;

твердое покрытие с ограждающими стенами высотой 1000 мм и приямками в резервуарном парке;

свободные емкости для приема продуктов из рабочих емкостей в случае их разгерметизации.

При значительном разливе на наружных установках жидкость откачивается из приямка поддона при помощи переносного насоса ГНОМ в бочку или в свободную емкость резервуарного парка для последующей переработки.

Незначительный пролив нефтепродуктов дважды засыпается песком. После каждой засыпки место пролива зачищается с уборкой загрязненного песка в закрывающуюся металлическую тару и направляется на утилизацию в специализированную организацию.

Классификация видов риска

Опасности, неопределенности и возможности сопутствуют любому виду деятельности, а результат их проявления для некоторого объекта характеризуют рисками. Существующие риски разнообразны, их можно подразделить на множество групп, т. е. классифицировать по различным признакам: объекту и источнику воздействия, местоположению относительно объекта воздействия, механизму возникновения, степени влияния и др. (таблица).

В зависимости от объекта негативных воздействий можно выделить следующие виды риска: индивидуальный; социальный; технический; предпринимательский; стратегический; экологический.

Источником риска являются различные опасности. Соответственно по источнику воздействия различают риски (рисунок):

– природные (природа, включая космос);

– техногенные (техносфера);

– социальные (общество, биосфера);

– политические (государство, мировое сообщество);

– экономические (экономика, бизнес).

По местоположению источника опасности относительно объекта различают риски внешние и внутренние.

Внутренним источником риска для жизни и здоровья человека является его организм (болезни).

Таблица – Классификация и характеристика видов риска

Рисунок – Классификация рисков

По механизму возникновения различают риски:

– связанные с неблагоприятными условиями жизнедеятельности;

– обусловленные опасными явлениями (форс–мажор) в природной, техногенной, социальной и деловой среде;

– обусловленные негативными тенденциями развития, приводящими к кризисам - для организации к ухудшению ее финансового состояния и в результате к банкротству.

По степени влияния на жизнедеятельность человека, жизнеспособность (финансовое состояние) организации различают следующие виды риска:

– пренебрежимый (влияние незначимо; меры защиты принимать не требуется);

– приемлемый (влияние значимо; принимаются меры контроля и защиты на основе принципов обоснования и оптимизации);

– чрезмерный (влияние катастрофично; деятельность с указанным уровнем риска не допускается).

Терминология и методология анализа риска впервые введены в нормативный документ – Методические указания по проведению анализа риска опасных промышленных объектов (РД 08-120-96) в 1996 г.

Риск или степень риска предлагается рассматривать как сочетание частоты (вероятности) и последствий конкретного опасного события. Математическое выражение риска р – это отношение числа неблагоприятных проявлений опасности n к их возможному числу N за определённый период времени, т.е.

р = n/N.

Помимо этого используется понятие "степень риска" R, т.е. вероятность наступления нежелательного события с учётом размера возможного ущерба от события. Степень риска можно представить как математическое ожидание величины ущерба от нежелательного события:



где p i - вероятность наступления события, связанного с ущербом; m i случайная величина ущерба, причинённого экономике, здоровью и т.п.

Различают индивидуальный, техногенный, экологический, социальный и экономический риски. Каждый вид его обусловливают характерные источники и факторы риска.

Техногенный риск – комплексный показатель надежности элементов техносферы. Он выражает вероятность аварии или катастрофы при эксплуатации машин, механизмов, реализации технологических процессов и эксплуатации ТС:

где R т – технический риск; ΔТ – число аварий в единицу времени t на идентичных технических системах и объектах; Т – число идентичных технических систем и объектов, подверженных общему фактору риска f .

Источники технического риска (см. таблицу): низкий уровень научно-исследовательских и опытно-конструкторских работ; опытное производство новой техники; серийный выпуск небезопасной техники; нарушение правил безопасной эксплуатации ТС.

Наиболее распространенные факторы технического риска: ошибочный выбор по критериям безопасности направлений развития техники и технологий; выбор потенциально опасных конструктивных схем и принципов действия ТС; ошибки в определении эксплуатационных нагрузок; неправильный выбор конструкционных материалов; недостаточный запас прочности; отсутствие в проектах технических средств безопасности; некачественная доводка конструкции, технологии, документации по критериям безопасности; отклонения от заданного химического состава конструкционных материалов; недостаточная точность конструктивных размеров; нарушение режимов термической и химико-термической обработки деталей; нарушение регламентов сборки и монтажа конструкций и машин; использование техники не по назначению; нарушение паспортных (проектных) режимов эксплуатации; несвоевременные профилактические осмотры и ремонты; нарушение требований транспортирования и хранения.

Таблица – Источники и факторы техногенного риска

Это просто так, пусть будет, интересная и полезная информация!

Техногенный риск, экологический риск. Классификация рисков по источникам их возникновения и поражающим объектам. Оценка экологического риска на основе доступных данных. Особенности управления риском в экстремальных условиях.

Техногенный риск – выражает вероятность аварии или катастрофы при эксплуатации машин, механизмов, реализации технологических процессов, строительстве и эксплуатации зданий и сооружений.

Экологический риск – выражает вероятность экологического бедствия, катастрофы, нарушения дальнейшего нормального функционирования и существования экологических систем и объектов в результате антропогенного вмешательства в природную среду или стихийного бедствия. Нежелательные события экологического риска могут проявиться как в зонах вмешательства, так и за их пределами.Экологические риски классифицируются и характеризуются по следующим видам:

Индивидуальный. Объектом этого экологического риска является непосредственно человек. Он же, вернее его источники жизнедеятельности и являются источником риска. В результате этого экологического риска человеку могут быть нанесены травмы, человек может заболеть, причинена инвалидность или смерть.

Технический. Объектом такого риска являются различные технические объекты и системы. Несовершенство техники и нарушения правил эксплуатации таких объектов могут привести к авариям, взрывам и катастрофам.

Экологический. Экологические системы так же могут быть объектом экологического риска. Его источником может стать вмешательство человека в условия природной среды данной местности или региона в целом.

Социальный экологический риск имеет своим объектом устоявшуюся социальную группу. Его источником может стать чрезвычайная ситуация и снижение качества жизни. В результате в социальной группе могут произойти следующие нежелателдьные события – групповые травмы, заболевания, рост сметронсти.

Экономический . Материальные ресурсы так же могут стать объектом экологического риска. Это может произойти в результате повышенной опасности производства или неблагоприятные условия природной среды для его организации. Этот экологический риск оценивает возможность увеличения затрат на безопасность и возможный экологический ущерб от недостаточной защищенности.

Классификация рисков по источникам их возникновения и поражающим объектам :

По источникам воздействия различают риски:

1. природные (природа, включая космос);

2. техногенные (техносфера);

3. социальные (общество, биосфера);

4. политические (государство, мировое сообщество);

5. экономические (экономика, бизнес).

По поражающим объектам вид риска:

1. Индивидуальный (человек, его здоровье) - снижение работоспособности, заболевание, травма, летальный исход);

2. Социальный (общество, население) – социальные потери;

3. Технический (объекты техносферы) - повреждение, разрушение, прекращение функционирования;

4. Экономический (организации, их финансовое состояние) - потери имущества, капитала, выпускаемой продукции, ожидаемой выгоды;

5. Стратегический (государство, его стабильное функционирование) - вред жизненно важным интересам личности, общества, государства

6. Экологический (ОПС) - загрязнение воды, воздуха, почвы, разрушение экологических объектов и систем, причиняющие вред нынешнему поколению людей и подрывающие основы для развития будущих поколений.

Оценка экологического риска на основе доступных данных:

Оценка экологического риска - это научное исследование, в котором факты и научный прогноз используются для оценки потенциально вредного воздействия на окружающую среду различных загрязняющих веществ и явлений. Оценка включает в себя распознавание, измерение и характеристику угроз состоянию окружающей среды, здоровью и жизни людей. При этом выявляются факторы, значения которых превышают нормативные уровни.

Существуют 4 подхода к оценке риска:

1. Инженерный – опирается на статистику поломок и аварий, на вероятностный анализ безопасностей: построение и расчет деревьев событий и деревьев отказов. С помощью первых предсказывают, во что может развиться отказ техники, а деревья отказов, наоборот, помогают проследить все причины, способствующие вызвать какие-то нежелательные явления. Когда деревья построены, рассчитывается вероятность реализации каждого из сценариев (каждой ветви), а затем – общая вероятность аварии на объекте.

2. Модельный – построение моделей воздействия вредных факторов на человека и ОС. Эти модели могут описывать как последствия обычной работы предприятий, так и ущерб от аварий на них.

Эти 2 подхода основаны на расчетах, однако для таких расчетов не всегда хватает надежных исходных данных. В этом случае приемлем 3 и 4 подход:

3. Экспертный – вероятности различных событий, связи между ними и последствия аварий определяют не вычислениями, а опросом опытных экспертов.

4. Социологический – исследуется отношение населения к различным видам риска, например с помощью социологических опросов.

Особенности управления риском в экстремальных условиях:

Управленческая деятельность в экстремальных ситуациях предполагает преодоление ряда трудностей. Во-первых, социальная, экологическая и любая другая самоорганизующаяся система, попадая в экстремальную ситуацию, неизбежно сталкивается с дефицитом управленческого потенциала, во-вторых, для эффективного управления системой и ее компонентами в экстремальной ситуации необходимы дополнительные, зачастую весьма значительные, ресурсы – материальные, финансовые, людские и т.п., а их в таких условиях катастрофически не хватает.

Первая особенность в управлении в экстремальных условиях (ЧС): осознание и предупреждение опасности. Опасность, исходящая от крупных технических объектов, во многих случаях недооценивается, что снижает эффектив­ность предаварийной управленческой деятельности (пример - «Титаник», «ЧАЭС»). Вторая особенность : небрежность персонала (ошибки и нарушения) обслуживающего слож­ные технологические системы. Третья особенность: почти полное неведение большинства населения, попадающего в экстремальные ситуации.

Одним из существенных направлений в процессе оптимизации управленческой деятельности в экс­тремальных ситуациях становится резкое снижение пресса секретности вокруг промышленных объектов, а также связанное с этим разъяснение окружающему населению степени реального риска от их эксплуатации и обучение основным приемам по­ведения в случае возникновения опасности, поскольку только активно действующие люди способны преодолеть в возможно короткие сроки негативные послед­ствия экстремальной ситуации. Эффективное управленческое действие в экстремальных ситуациях возможно только в тех случаях, когда оно базируется на оперативной, достоверной и прав­дивой информации о масштабах, угрозах и последствиях чрезвычайных обстоятельств, в которых оказались люди в результате возникновения такой ситуации.

Методы снижения экологического риска от загрязнения окружающей среды. Размещение промышленных объектов. Методы очистки атмосферы, водных объектов. Твердые отходы и их переработка. Ресурсосбережение и комплексное использование сырья.

Размещение промышленных объектов:

Промышленные предприятия размещают на основе схем или проектов районной планировки, что позволяет обоснованно осуществлять выбор площадки для строительства с учетом населенных мест и промышленных районов. При размещении промышленных предприятий учитывают связи с другими предприятиями. Строительство промобъектов не допускается на территориях, где имеются полезные ископаемые, шахты, расположены памятники культуры и архитектуры, а также ООПТ.

Между зданиями должны соблюдаться расстояния, называемые разрывами, минимально допустимые величины которых определяются санитарными и противопожарными нормами. Для передвижения рабочих и служащих по территории промышленного предприятия создают сеть пешеходных и транспортных путей, обеспечивающую безопасность и удобство движения людей и транспорта.

Озеленение очищает воздух и имеет большое оздоровительное значение, а также защищает от ветров и городского шума. Площадь озеленения должна составлять не менее 40% территории микрорайона. В целях предотвращения загрязнения территорий жилых зон, а также для нейтрализации вредных воздействий производственных объектов устанавлива­ются санитарно-защитные зоны со специальным режимом вокруг промышлен­ных предприятий для отделения их от жилых районов (от 50 до 1000 м в зави­симости от класса вредности промышленного объекта) с обязательным поясом зеленых насаждений.

Методы очистки атмосферы:

Методы очистки отпылевых выбросов :

по способу улавливаний пыли аппараты бывают сухой (циклоны, пылеосадительные камеры – под действием инерционных сил и F т), мокрой (скрубберы – путем промывки), фильтрационной (фильтры), и электрофильтрационной очистки (электрофильтры – под действием эл./статических сил).

Существующие методы очистки можно разделить на две группы: некаталитические (абсорбционные и адсорбционные) и каталитические (с использованием катализаторов).

Очистка газов от СО 2 :

а) Абсорбция водой. Простой и дешевый способ, однако эффективность очистки мала, так как максимальная поглотительная способность воды – 8 кгСО 2 на 100 кг воды.

б) Поглощение растворами этанол-аминов (NH 2 -СН 2 -СН 2 -ОН).

в) Холодный метанол (СН 3 ОН) является хорошим поглотителем СО 2 при -35°С.

г) Очистка цеолитами - используются молекулярные сита типа СаО.

Очистка газов от СО:

а) Дожигание на Pt/Pd катализаторе: 2СО + О 2 → 2СО 2 .

б) Конверсия (адсорбционный метод): СО + Н 2 О → СО 2 + H 2 .

Очистка газов от SO 2 :

А) Метод нейтрализации:

а) известковый метод - основан на поглощении SO 2 раствором соды или извести.

б) содовый – в качестве абсорбента используют раствор соды (Na 2 CO 3).

в) магнизитовый – использование абсорбента MgO.

г) цинковый – поглощение суспензии цинком (ZnO).

д) аммиачные методы - основаны на взаимодействии SO 2 с водным раствором сульфита аммония. Образовавшийся бисульфит легко разлагается кислотой.

Б) Каталитические методы: основаны на химических превращениях токсичных компонентов в нетоксичные на поверхности катализаторов: пиролюзитный метод - окисление SO 2 кислородом в жидкой фазе в присутствии катализатора - пиролюзита (МnО 2); метод может использоваться для получения серной кислоты.

Очистка от соединений азота:

NH 3 и амины поглощаются водой, но т.к. на раствор сильно влияет температура, на практике используется 2-х стадийная очистка газов. На 1-й стадии газы охлаждаются до t 0 =30-50 0 C, затем промывают в водяном скруббере. Следы аминов эффективно удаляются активир.углем.

Выделяют окислительные методы:

а) Окисление озоном в жидкой фазе: NO+O 3 +Н 2 О=НNО 3 .

б) Окисление кислородом при высокой температуре: NO+О 2 =NО 2 .

Очистка от хлора:

Применение щелочного раствора Cа(ОН) 2 +Сl 2 =СаСl 2 +Са(СlО) 2 +Н 2 О

НСl поглощают водой, либо каталитически превращают в хлор.

Дезодорация:

Чаще для нее применяется адсорбция активир. углем . Если в газах присутствуют ароматические углеводороды, то во избежание образования копоти в систему вводят пар или О 2 .

Методы очистки водных объектов:

Делят на деструктивные – сводятся к разрушению загрязняющих веществ путем их окисления или восстановления. Образующиеся при этом продукты распада удаляются из воды виде осадков или остаются в форме растворимых минеральных солей (парофазное, каталитическое окисление, электрохимическая очистка и др.) Регенеративные – позволяют извлекать из воды загрязняющие вещества, иногда ценные.

А) Очистка от взвешенных частиц:

Крупные частицы, размером более 15-20 мм задерживают методом процеживания. На пути движения сточных вод устанавливают разнообразные решетки, сетки, сита. После процеживания сточная вода попадает в песколовки для отделения более мелких примесей под действием силы тяжести или центробежной силы. Осадок с помощью скребков смещается в бункеры. Для выделения более мелких взвесей используется метод отстаивания (удаляет до 80-90% взвеш-х веществ).

Б) Физико-химические м/ды:

Для удаления из сточных вод тонкодисперстных нерастворимых взвесей применяют флотацию: основан на различной смачиваемости частиц. В резервуар с очищаемой водой снизу подают воздух, пузырьки которого адсорбируются на поверхности частиц извлекаемого в-ва и выносят его на поверхность. Для усиления флотационного эффекта добавляют ПАВы. Степень очистки до 98%.

Метод адсорбции:

Очищаемую воду пропускают через фильтр, загруженный сорбентом, или добавляют в нее измельченный фильтр (гранулированный или порошкообразный активированный уголь). Эффективность очистки до 95%.

Ионно-обменная очистка :

Использование ионитов – глиняные породы, обладающие развитой структурой с микропорами различных размеров. Используют при обесцвечивании воды, удалении неорганических примесей, хлор-органики, пестицидов и ПАВ.

Метод экстракции:

Очистка сточных вод от фенолов, масел, органических кислот. В качестве экстрагентов применяется бензол, сероуглерод, 4-х хлористый углерод.

В) Химические методы очистки:

Коагуляция:

Процесс укрупнения дисперсных частиц и объединение их в агрегаты под влиянием физ. или хим. процессов, протекающих в растворе или под влиянием внесенных в раствор в-вв коагулянтов (соли Fe, Al). Для коагулянтов применяются в-ва, обладающие высокими адсорбционными свойствами (глина, зола).

Флокулция:

Процесс агрегации взвешенных в-вв при добавлении в сточные воды ВМС. Он позволяет снизить дозы коагулянтов и ускорить процесс сточных вод. Флокуляцию проводят для интенсификации процесса образования хлопьев Al(OH) 3 и Fe(OH) 3 . И увеличивают скорость их осаждения.

Г) Биологические методы очистки:

Применяются для обработки стоков, содержащих органические в-ва в растворенном и тонкодисперсном виде.

Аэробный метод:

Основан на использовании аэробных групп микроорганизмов, для жизнедеятельности которых необходим постоянный приток кислорода и темп-ра 20-40 0 . Аэробные процессы протекают в аэротенках (наполненных активным илом) и биофильтрах (сооружения с сыпучим материалом, на котором перед пуском вод создается активная биопленка, состоящая из микроорганизмов, водорослей, личинок насекомых). Эффективность очистки до 80%.

Биохимическая очистка вод в естественных условиях:

Протекает в почве или воде с участием естественных процессов. Почвенная очистка протекает на земледельных полях орошения, совмещенная с возделыванием с/х культур или без них (последнее- поля фильтрации). Биопруды – в них аэробная оксидация является процессом минерализации органики под действием бактерий, живущих в воде.

Твердые отходы и их переработка:

Отходы производства и потребления – остатки сырья, материалов и полуфабрикатов, иных изделий или продуктов, образовавшихся в процессе производства и потребления, а также продукция, которая утратила свои потребительские свойства.

Переработка отходов – технологическая операция или их совокупность, в результате которых из отходов производства 1 или несколько видов товарной продукции.

Методы переработки отходов разделяют на 2 группы: ликвидационные (свалки, полигоны) и методы, позволяющие полностью или частично использовать вторичные ресурсы .

Для переработки ТБО (твердые бытовые отходы) применяют:

1) Сжигание в печах при высокой температуре:

При сжигании образуется большое количество золы и газообразных соединений, в т.ч. токсичных, поэтому мусоросжигательные печи должны быть оснащены системой газопылевой очистки. Такие заводы рентабельны, если они попутно вырабатывают пар и электроэнергию.

2) Компостирование – получение органических удобрений при разложении растительных и животных остатков микроорганизмами. Для их приготовления используют навоз, помет птиц и ТБО. Наиболее совершенным считается процесс непрерывного компостирования во вращающемся барабане. Процесс протекает с выделением тепла, вследствие чего ТБО измельчивается до частиц 1-2-мм.

3) Пиролиз – процесс термического разложения отходов при их частичном сжигании или непосредственном контакте с продуктами сгорания топлива как с участием кислорода, так и без него.

Ресурсосбережение и комплексное использование сырья:

Речь пойдет о малоотходном и безотходном производстве (БОТ). БОТ – это такое производство, результаты которого при воздействии на ОС не превышают уровня допустимого сан-гиг. нормами. При этом по техническим, экономическим и организационным причинам часть сырья и материалов может переходить в отходы и направляться на длительное хранение или захоронение.

Безотходные технологии затрагивают не только производственный процесс, но и конечную продукцию, которая должна характеризоваться:

а) долгим сроком службы изделия и возможностью многократного использования;

б) простотой ремонта;

в) легкостью возвращения в производственный цикл или переведене в экологически безвредную форму.

Схема БОТ: спрос готовый продукт сырье.

Препятствия для организации БОТ: затраты энергии, износ материалов, их рассеивание в ОС.

Радикальны средства уменьшения количества отходов:

1. Создание новых и совершенно действующих технологий и схем (исп-е энергосбер. ламп);

2. Создание замкнутых газо- и водооборотных циклов;

3. Кооперирование предприятий, создание территориально производственных комплексов (ТПК), когда отходы одного предприятие являются сырьем для другого.

1.Цель, задачи, структура и содержание курса «Техногенные системы и экологический риск»

Понятие «Техногенный» означает возникший в результате технической и технологической деятельности людей, которая по смыслу не может быть бесцельной и бессистемной. В то же время техногенные системы представляют опасность для человека. Мера опасности выражается в степени риска. Слово «риск» обозначает возможную опасность либо действие наугад в надежде на удачный исход. В настоящее время, в большинстве случаев, под риском понимается - возможная опасность потерь, связанных со спецификой тех или иных явлений природы и видов деятельности человеческого общества. Бесчисленному множеству техногенных систем соответствует бесчисленное множество разновидностей риска. На урбанизированных территориях противоречия между потребностями человеческого общества и природной средой особенно обостряются, что приводит к возникновению и увеличению экологического риска, обусловленного как хроническим ухудшением состояния и качества окружающей среды, так и острыми разрушительными для

нее последствиями. Экологический риск может быть связан с любой технической системой и служит количественной мерой экологической безопасности жизненно важных интересов людей, поэтому задача оценки и управления таким риском во всем мире рассматривается как одна из

наиболее важных составляющих проблемы устойчивого развития.

Потенциальную опасность для человека представляют все природно-антропогенные системы, где циркулируют потоки энергии и перераспределяются активные химические и биологические компоненты, а также возникают такие изменения в составе и строении окружающей среды, которые способны угрожать жизни и здоровью людей. Поэтому любые виды хозяйственной деятельности должны иметь установленные федеральными и региональными законами

экологические обоснования, цель которых - доказать допустимость воздействий в рамках действующих нормативных экологических ограничений для качества основных компонентов окружающей среды, обеспечить предупреждение ЧС и минимизацию их последствий, создать условия для безопасного функционирования технических систем и сохранения здоровья людей. Теоретические основы курса «Техногенные системы и экологический риск» опираются на положения теории экологической безопасности, фундаментальными составляющими которой являются, наряду с теорией риска, устойчивость экосистем различного уровня иерархической организации, их индикаторный отклик на природно-климатические и антропогенные воздействия и закономерности восстановления биоты при компенсации угнетающих факторов или при снятии нагрузок. Немалое место занимают идентификация вредных воздействий, вопросы мониторинга и экологического нормирования.

Цель курса - формирование представлений о принципах создания, функционирования и безопасного развития главных разновидностей техногенных систем, их взаимодействия с природными геосистемами, величине и последствиях антропогенного воздействия на окружающую среду, усвоение приемов и методов количественного риск- анализа возможных негативных последствий как от систематических воздействий техногенных систем, так и воздействий, связанных с аварийными ситуациями.

В курсе дается представление об окружающей среде, изменяющейся под влиянием природных и антропогенных факторов, как систематического характера, так и при аварийных и катастрофических экстремальных их проявлениях. Оценка экологического риска раскрывается как методология количественного определения разнородных опасностей и основа прогнозирования опасного развития и принятия решений. Рассматриваются нормативно-организационные,

технологические и экономические методы обеспечения безопасности человека и окружающей среды.

Задачами освоения дисциплины являются:

 понимание о том, что мир техногенных опасностей познаваем и что у человека есть достаточно средств и способов защиты от них;

 ознакомление с уровнями допустимых воздействий, негативных факторов на человека и окружающую среду, научить оценивать негативные воздействия и последствия, возникающие при нарушении нормативных требований;

 понимание того, что анализ экологического риска должен охватывать все этапы – от создания до «захоронения» исчерпавшей себя технологии вплоть до устранения вредных последствий ее использования;

 обучение методам идентификации опасности антропогенного происхождения, методам качественного и количественного оценивания экологического риска, приемам анализа всей доступной и достоверной информации и сопоставления различных точек зрения в процессе принятия решений;

 ознакомление с методами прогнозирования развития и оценки последствий аварийных и чрезвычайных ситуаций;

 вооружение знаниями для принятия мер по ликвидации последствий аварий, катастроф.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме