Подпишись и читай
самые интересные
статьи первым!

Решение задачи линейного программирования. Расчет максимума и минимума целевой функции графоаналитическим методом

Решение : найдем максимальное и минимальное значение функции \(f (x, y)\) при следующих ограничениях $$ f(x,y)=(x-4)^2 + (y-3)^2 \rightarrow max,min \\ \begin{cases} 2x+3y\geq 6 \\ 3x-2y\leq 18\\ -x+2y\leq 8\\ x,y\geq0\end{cases} $$
Графический способ решения задачи целесообразно использовать, для задач с двумя переменными, которые записаны в симметричной форме, а также для задач со многими переменными при условии, что в их канонической записи содержится не более двух свободных переменных.


В данном случае задача с двумя переменными.


Алгоритм решения задачи "геометрическая интерпретация задачи линейного программирования":


1.Построим на плоскости xOy область допустимых решений.
2.Выделим область неотрицательных решений.

4. Построим семейство целевых функций.
5. Находим максимальное (минимальное) значение целевой функции.


1. Строим область допустимых решений задачи \(D\).


Для построения области допустимых решений:
1) Строим граничные прямые:
преобразуем неравенства к равенствам, а затем к уравнению прямой линии в отрезках на осях вида \(\frac{x}{a}+\frac{y}{b} = 1\), тогда \(x=a\) - отрезок отсекаемый на оси Ox, \(y=b\) - на оси Oy $$ \begin{cases} 2x+3y = 6 \\ 3x-2y = 18\\ -x+2y = 8 \end{cases} => \begin{cases} \frac{x}{3}+\frac{y}{2} = 1 \\ \frac{x}{8}-\frac{y}{9} = 1 \\ -\frac{x}{6}+ \frac{y}{4} = 1 \end{cases} $$ Для каждой прямой откладываем отрезки на осях и соединяем их. Получили нужные прямые.


2) Находим полуплоскости, которые удовлетворяют заданным неравенствам:
Для неравенства \(2x+3y\geq 6\) - полуплоскость, которая лежит выше прямой \(2x+3y = 6\). Прямая AC
Для неравенства \(3x-2y\leq 18 => -3x+2y \geq -18\)- полуплоскость, которая лежит выше прямой \(3x-2y = 18\). Прямая CB
Для неравенства \(-x+2y\leq 8\)- полуплоскость, которая лежит ниже прямой \(-x+2y = 8\). Прямая AB


Область допустимых решений определяется как общая часть трех полуплоскостей, соответствующих данным неравенствам. Эта область представляет собой треугольник \(ABC\)


Областью \(D\) является треугольник \(ABC\) см. рис.



2.Выделим область неотрицательных решений.


Область неотрицательных решений расположена в первой четверти и является общей частью всех пяти полуплоскостей, три их которых - область \(D\), полученная из неравенств и дополнительно два неравенства \(x \geq 0\) - верхняя полуплоскость (I и II четверти) и \(y \geq 0\) - правая полуплоскость (I и IV четверти), которые выражают условие неотрицательности переменных \(x;y\). Получили искомую область неотрицательных решений \(DEBFG\)


3.Найдем координаты вершин области.
Координаты четырех вершин уже известны (это точки пересечения прямых с осями).
Запишем эти координаты:
\(D(0;2)\), \(E(0;4)\), \(F(6;0)\), \(G(3;0)\)
Найдем координаты точки \(B\), как точки пересечения прямых \(-x+2y = 8\) и \(3x-2y = 18\). Решим систему уравнений и найдем координаты этой точки $$\begin{cases} -x+2y = 8\\ 3x-2y = 18\end{cases}=> \begin{cases} 2x = 26\\ 3x-2y = 18\end{cases}=> \begin{cases} x = 13\\ y =10.5\end{cases}$$
Получили координаты точки \(B(13;10.5)\)


4. Строим семейство целевых функций.
Уравнение \(f(x,y)=(x-4)^2 + (y-3)^2 \rightarrow max,min\) определяет на плоскости xOy семейство концентрических окружностей с центом в точке с координатами \(Q(4;3)\), каждой из которых отвечает определенное значение параметра \(f\). Как известно, для уравнения окружности параметр \(f=R^2\).


Изобразим в одной системе координат семейство концентрических окружностей \(f\) и семейство прямых. Задача определения точки максимума (минимума) точки \(f\) сведется к нахождению в допустимой области точки, через которую проходит окружность семейства \(f=const\), отвечающая за наибольшее (наименьшее) значение параметра \(f\).


5. Находим максимальное (минимальное) значение целевой функции.


Минимальное значение целевой функции : Путем постепенного увеличения радиуса окружности мы получили, что первая вершина, через которую пройдет окружность это точка \(G(3;0)\). Целевая функция в этой точке будет минимальной и равна \(f(3,0)=(3-4)^2 + (0-3)^2 = 10\)


Максимальное значение целевой функции : Путем дальнейшего увеличения радиуса окружности мы получили, что последняя вершина, через которую пройдет окружность это точка \(B(13;10.5)\). Целевая функция в этой точке будет максимальной и равна \(f(13,10.5)=(13-4)^2 + (10.5-3)^2 = 137.25\)


Можно убедиться в правильности решения путем подстановки координат оставшихся вершин в уравнение целевой функции:
в вершине \(D(0;2)\) значение целевой функции равно \(f(0,2)=(0-4)^2 + (2-3)^2 = 17\)
в вершине \(E(0;4)\) значение целевой функции равно \(f(0,4)=(0-4)^2 + (4-3)^2 = 17\)
в вершине \(F(6;0)\) значение целевой функции равно \(f(6,4)=(6-4)^2 + (0-3)^2 = 13\)
Получили, что


Ответ :
минимальное значение целевой функции \(f_{min} = 10\)
максимальное значение целевой функции \(f_{max} = 137.25\)

Федеральное агентство по образованию

Государственное бюджетное образовательное учреждение

высшего профессионального образования

«Омский государственный технический университет»

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА

по дисциплине « ТЕОРИЯ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ »

на тему « МЕТОДЫ ОПТИМИЗАЦИИ И ИССЛЕДОВАНИЕ ОПЕРАЦИЙ »

вариант 7

Выполнил:

студент заочного отделения

4-го курса группы ЗА-419

ФИО: Кужелев С. А.

Проверила:

Девятерикова М. В.

Омск – 2012 г.
^

Задание 1. Графический метод решения задач линейного программирования.


7) 7x 1 + 6x 2 → max

20x 1 + 6x 2 ≤ 15

16x 1 − 2x 2 ≤ 18

8x 1 + 4x 2 ≤ 20

13x 1 + 3x 2 ≤ 4

x 1 , x 2 ≥ 0.


Шаг 1. Построение допустимой области

Условия неотрицательности переменных и квадратов ограничивают область их допустимых значений первым квадрантом. Каждому из оставшихся четырех ограничений-неравенств модели соответствует некоторая полуплоскость. Пересечение этих полуплоскостей с первым квадрантом образует множество допустимых решений задачи.

Первое ограничение модели имеет вид . Заменив в нем знак ≤ на знак =, получаем уравнение. На рис. 1.1 оно определяет прямую (1), которая разбивает плоскость на две полуплоскости, в данном случае выше линии и ниже нее. Чтобы выбрать, какая из них удовлетворяет неравенству , подставим в него координаты любой точки, не лежащей на данной прямой (например, начало координат х 1 = 0, х 2 = 0). Так как получаем верное выражение (20 0 + 6 0 = 0 ≤15), то неравенству удовлетворяет полуплоскость, содержащая начало координат (помечена стрелкой). В противном случае другая полуплоскость.

Аналогично поступаем с остальными ограничениями задачи. Пересечение всех построенных полуплоскостей с первым квадрантом образует ABCD (см. рис. 1). Это и есть допустимая область задачи.

Шаг 2. Построение линии уровня Линия уровня целевой функции - это множество точек плоскости, в которых целевая функция принимает постоянное значение. Такое множество задается уравнением f ( x ) = const . Положим, например, const = 0 и построим линию у ровня f ( x ) = 0 , т.е. в нашем случае прямую 7x 1 + 6x 2 = 0.

Данная прямая проходит через начало координат и перпендикулярна вектору . Этот вектор является градиентом целевой функции в точке (0,0). Градиент функции - это вектор значений частных производных данной функции в рассматриваемой точке. В случае задачи ЛП частные производные целевой функции равны коэффициентам C i, j = 1 , ..., n .

Градиент показывает направление наискорейшего роста функции. Перемещая линию уровня целевой функции f ( x ) = const . перпендикулярно направлению градиента, найдем последнюю точку, в которой она пересекается с областью. В нашем случае это точка D, которая и будет точкой максимума целевой функции (см. рис. 2)

Она лежит на пересечении прямых (2 ) и (3 ) (см. рис. 1 ) и задает оптимальное решение.

^ Заметим, что если требуется найти минимальное значение целевой функции, линию уровня перемещают в направлении, противоположном направлению градиента.

^ Шаг 3. Определение координат точки максимума (минимума) и оптимального значения целевой функции

Чтобы найти координаты точки C, необходимо решить систему, состоящую из соответствующих прямым уравнений (в данном случае из уравнений 2 и 3 ):

16x 1 − 2x 2 ≤ 18

8x 1 + 4x 2 ≤ 20

Получим оптимальное решение = 1,33.

^ Оптимальное значение целевой функции f * = f (х*) = 7 * 0 + 6 * 1,33 = 7,8

Найти графическим методом максимум целевой функции

F = 2x 1 + 3x 2 ® max

При ограничениях

Решение с помощью таблиц Excel

Вначале построим на листе Excel решение системы неравенств.

Рассмотрим первое неравенство .

Построим граничную прямую по двум точкам. Прямую обозначим (L1)(или Ряд1). Координаты х 2 считаем по формулам:

Для построения выбираем точечную диаграмму

Выбираем данные для прямой

Изменяем название прямой:

Выбираем макет диаграммы. Изменяем название осей координат:

Прямая (L1) на графике:

Решение строгого неравенства можно найти с помощью единственной пробной точки, не принадлежащей прямой (L1). Например, с помощью точки (0; 0)Ï(L1).

0 + 3×0 < 18 или 0 < 18 .

Неравенство является верным, следовательно решением неравенства (1) будет та полуплоскость, в которой пробная точка расположена (на рисунке ниже прямой L1).

Затем решаем неравенство (2) .

Построим граничную прямую 2 по двум точкам. Прямую обозначим (L2).

Прямая (L2) на графике:

Решение строгого неравенства 2 можно найти с помощью единственной пробной точки, не принадлежащей прямой (L2). Например, с помощью точки (0; 0)Ï(L2).

При подстановке координат точки (0; 0), получаем неравенство

2×0 + 0 < 16 или 0 < 16 .

Неравенство является верным, следовательно решением неравенства (2) будет та полуплоскость, в которой пробная точка расположена (на рисунке ниже прямой L2).

Затем решаем неравенство (3) .

Построим граничную прямую по двум точкам. Прямую обозначим (L3).

Прямая (L3) на графике:

Решение строгого неравенства 2 можно найти с помощью единственной пробной точки, не принадлежащей прямой (L3). Например, с помощью точки (0; 0)Ï(L3).

При подстановке координат точки (0; 0), получаем неравенство

Неравенство является верным, следовательно решением неравенства (3) будет та полуплоскость, в которой пробная точка расположена (на рисунке ниже прямой L3).

Затем решаем неравенство (4) .

Построим граничную прямую по двум точкам. Прямую обозначим (L4).

На листе Excel добавляем данные

Прямая (L4) на графике:

Решение строгого неравенства 3х 1 < 21 можно найти с помощью единственной пробной точки, не принадлежащей прямой (L4). Например, с помощью точки (0; 0)Ï(L4).

При подстановке координат точки (0; 0), получаем неравенство

Неравенство является верным, следовательно, решением неравенства (4) будет та полуплоскость, в которой пробная точка расположена (на рисунке левее прямой L4).


Решением двух неравенств (5) и (6)

является 1-ая четверть, ограниченная координатными прямыми и .

Система неравенств решена. Решением системы неравенств (1) – (6) в данном примере является выпуклый многоугольник в левом нижнем углу рисунка, ограниченный прямыми L1, L2, L3, L4 и координатными прямыми и . Убедиться, что многоугольник выбран правильно, можно подстановкой пробной точки, например (1; 1) в каждое неравенство исходной системы. При подстановке точки (1; 1) получаем, что все неравенства, в том числе естественные ограничения, верные.

Рассмотрим теперь целевую функцию

F = 2x 1 + 3x 2 .

Построим линии уровня для значений функции F = 0 и F = 12 (числовые значения выбраны произвольно). На листе Excel добавляем данные

Линии уровней на графике:

Построим вектор направлений (или градиент) {2; 3}. Координаты вектора совпадают с коэффициентами целевой функции F .

Разделим третью строку на ключевой элемент, равный 5, получим третью строку новой таблицы.

Базисным столбцам соответствуют единичные столбцы.

Расчет остальных значений таблицы:

«БП – Базисный План»:

; ;

«х1»: ; ;

«х5»: ; .

Значения индексной строки неотрицательны, следовательно получаем оптимальное решение: , ; .

Ответ: максимальную прибыль от реализации изготовленной продукции, равную 160/3 ед., обеспечивает выпуск только продукции второго типа в количестве 80/9 единиц.


Задание № 2

Дана задача нелинейного программирования. Найти максимум и минимум целевой функции графоаналитическим методом. Составить функцию Лагранжа и показать, что в точках экстремума выполняются достаточные условия минимума (максимума).

Т.к. последняя цифра шифра равна 8, то А=2; В=5.

Т.к. предпоследняя цифра шифра равна 1, то следует выбрать задачу № 1.

Решение:

1) Начертим область, которую задает система неравенств.


Эта область – треугольник АВС с координатами вершин: А(0; 2); В(4; 6) и С(16/3; 14/3).

Уровни целевой функции представляют собой окружности с центром в точке (2; 5). Квадраты радиусов будут являться значениями целевой функции. Тогда по рисунку видно, что минимальное значение целевой функции достигается в точке Н, максимальное – либо в точке А, либо в точке С.

Значение целевой функции в точке А: ;

Значение целевой функции в точке С: ;

Значит, наибольшее значение функции достигается в точке А(0; 2) и равно 13.

Найдем координаты точки Н.

Для этого рассмотрим систему:

ó

ó

Прямая является касательной к окружности, если уравнение имеет единственное решение. Квадратное уравнение имеет единственное решение, если дискриминант равен 0.


Тогда ; ; - минимальное значение функции.

2) Составим функцию Лагранжа для нахождение минимального решения:

При x 1 =2.5; x 2 =4.5 получим:

ó

Система имеет решение при , т.е. достаточные условия экстремума выполняются.

Составим функцию Лагранжа для нахождение максимального решения:

Достаточные условия экстремума:

При x 1 =0; x 2 =2 получим:

ó ó

Система также имеет решение, т.е. достаточные условия экстремума выполняются.

Ответ: минимум целевой функции достигается при ; ; максимум целевой функции достигается при ; .


Задание № 3

Двум предприятиям выделяются средства в количестве d единиц. При выделении первому предприятию на год x единиц средств оно обеспечивает доход k 1 x единиц, а при выделении второму предприятию y единиц средств, оно обеспечивает доход k 1 y единиц. Остаток средств к концу года для первого предприятия равен nx , а для второго my . Как распределить все средства в течение 4-х лет, чтобы общий доход был наибольшим? Задачу решить методом динамического программирования.

i=8, k=1.

A=2200; k 1 =6; k 2 =1; n=0.2; m=0.5.

Решение:

Весь период длительностью 4 года разбиваем на 4 этапа, каждый из которых равен одному году. Пронумеруем этапы начиная с первого года. Пусть Х k и Y k – средства, выделенные соответственно предприятиям А и В на k – том этапе. Тогда сумма Х k + Y k =а k является общим количеством средств, используемых на k – том этапе и оставшиеся от предыдущего этапа k – 1. на первом этапе используются все выделенные средства и а 1 =2200 ед. доход, который будет получен на k – том этапе, при выделении Х k и Y k единиц составит 6Х k + 1Y k . пусть максимальный доход, полученный на последних этапах начиная с k – того этапа составляет f k (а k) ед. запишем функциональное уравнение Беллмана, выражающее принцип оптимальности: каково бы не было начальное состояние и начальное решение последующее решение должно быть оптимальным по отношению к состоянию, получаемому в результате начального состояния:

Для каждого этапа нужно выбрать значение Х k , а значение Y k k – х k . С учетом этого найдем доход на k – том этапе:

Функциональное уравнение Беллмана будет иметь вид:

Рассмотрим все этапы, начиная с последнего.

(т.к. максимум линейной функции достигается в конце отрезка при х 4 = а 4);

Тесты для текущего контроля знаний

1. Любая экономико – математическая модель задачи линейного программирования состоит из:

A. целевой функции и системы ограничений

B. целевой функции, системы ограничений и условия неотрицательности переменных

C. системы ограничений и условия неотрицательности переменных

D. целевой функции и условия неотрицательности переменных

A. целевая функция

B. система уравнений

C. система неравенств

D. условие неотрицательности переменных

3. Оптимальное решение задачи математического программирования – это

A. допустимое решение системы ограничений

B. любое решение системы ограничений

C. допустимое решение системы ограничений, приводящее к максимуму или минимуму целевой функции

D. максимальное или минимальное решение системы ограничений

4. Система ограничений называется стандартной, если она содержит

A. все знаки

B. все знаки

C. все знаки

D. все знаки

5. Задача линейного программирования решается графическим способом, если в задаче

A. одна переменная

B. две переменные

C. три переменные

D. четыре переменные

6. Неравенство вида описывает

B. окружность

C. полуплоскость

D. плоскость

7. Максимум или минимум целевой функции находится

A. в начале координат

B. на сторонах выпуклого многоугольника решений

C. внутри выпуклого многоугольника решений

D. в вершинах выпуклого многоугольника решений

8. Каноническим видом ЗЛП называется такой ее вид, в котором система ограничений содержит знаки

A. все знаки

B. все знаки

C. все знаки

D. все знаки

9. Если ограничение задано со знаком «>=», то дополнительная переменная вводится в это ограничение с коэффициентом

B. -1

10. В целевую функцию дополнительные переменные вводятся с коэффициентами

C. 0

A. количество ресурса с номером i, необходимого для изготовления 1 единицы продукции j – го вида

B. неиспользованные ресурсы i - го вида

C. прибыль от реализации 1 единицы продукции j – го вида

D. количество продукции j – го вида

12. Разрешающий столбец при решении ЗЛП на max целевой функции выбирается исходя из условия

A. наибольшее положительное значение коэффициента Cj целевой функции

B. наименьшее положительное значение коэффициента Cj целевой функции

C. наибольшее отрицательное значение коэффициента Cj целевой функции

D. любой столбец коэффициентов при неизвестных

13. Значение целевой функции в таблице с оптимальным планом находится

A. на пересечении строки коэффициентов целевой функции со столбцом коэффициентов при х1

B. на пересечении строки коэффициентов целевой функции со столбцом b

C. в столбце коэффициентов при хn

D. на пересечении строки коэффициентов целевой функции со столбцом первоначального базиса

14. Искусственные переменные в систему ограничений в каноническом виде вводятся с коэффициентом

A. 1

15. Оптимальность плана в симплексной таблице определяется

A. по столбцу b

B. по строке значений целевой функции

C. по разрешающей строке

D. по разрешающему столбцу

16. Дана задача линейного программирования

B. 1

17. Дана задача линейного программирования

Количество искусственных переменных для этой задачи равно

C. 2

18. Если исходная ЗЛП имеет вид

тогда ограничения двойственной задачи

A. имеют вид

B. имеют вид

C. имеют вид

D. имеют вид

19. Если исходная ЗЛП имеет вид

A. имеют вид

B. имеют вид

C. имеют вид

D. имеют вид

20. Коэффициентами при неизвестных целевой функции двойственной задачи являются

A. коэффициенты при неизвестных целевой функции исходной задачи

B. свободные члены системы ограничений исходной задачи

C. неизвестные исходной задачи

D. коэффициенты при неизвестных системы ограничений исходной задачи

21. Если исходная ЗЛП была на максимум целевой функции, то двойственная задача будет

A. тоже на максимум

B. либо на максимум, либо на минимум

C. и на максимум, и на минимум

D. на минимум

22. Связь исходной и двойственной задач заключается в том, что

A. надо решать обе задачи

B. решение одной из них получается из решения другой

C. из решения двойственной задачи нельзя получить решения исходной

D. обе имеют одинаковые решения

23. Если исходная ЗЛП имеет вид

тогда целевая функция двойственной задачи

A. имеют вид

B. имеют вид

C. имеют вид

D. имеют вид

24. Если исходная ЗЛП имеет вид

то количество переменных в двойственной задаче равно

B. 2

25. Модель транспортной задачи закрытая,

A. если

26. Цикл в транспортной задаче – это

A. замкнутая прямоугольная ломаная линия, все вершины которой находятся в занятых клетках

B. замкнутая прямоугольная ломаная линия, все вершины которых находятся свободных клетках

C. замкнутая прямоугольная ломаная линия, одна вершина которой в занятой клетке, остальные в свободных клетках

D. замкнутая прямоугольная ломаная линия, одна вершина которой в свободной клетке, а остальные в занятых клетках

27. Потенциалами транспортной задачи размерности (m*n) называются m+n чисел ui и vj, для которых выполняются условия

A. ui+vj=cij для занятых клеток

B. ui+vj=cij для свободных клеток

C. ui+vj=cij для первых двух столбцов распределительной таблицы

D. ui+vj=cij для первых двух строк распределительной таблицы

28. Оценками транспортной задачи размерности (m+n) называются числа

yij=cij-ui-vj, которые вычисляются

A. для занятых клеток

B. для свободных клеток

C. для первых двух строк распределительной таблицы

D. для первых двух столбцов распределительной таблицы

29. При решении транспортной задачи значение целевой функции должно от итерации к итерации

A. увеличиваться

B. увеличиваться или не меняться

C. увеличиваться на величину любой оценки

D. уменьшаться или не меняться

30. Число занятых клеток невырожденного плана транспортной задачи должно быть равно

C. m+n-1

31. Экономический смысл целевой функции транспортной задачи

A. суммарный объем перевозок

B. суммарная стоимость перевозок

C. суммарные поставки

D. суммарные потребности



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме