Подпишись и читай
самые интересные
статьи первым!

Закон сохранения массы химия определение. Закон сохранения массы веществ

Закон сохранения массы является основой для расчета физических процессов во всех сферах человеческой деятельности. Его справедливость не оспаривается ни физиками, ни химиками, ни представителями других наук. Этот закон, как строгий бухгалтер, следит за соблюдением точной массы вещества до и после его взаимодействия с другими веществами. Честь открытия этого закона принадлежит русскому ученому М. В. Ломоносову.

Первоначальные представления о составе веществ

Строение вещества на протяжении многих веков оставалось тайной для любого человека. Различные гипотезы будоражили ученые умы и подвигали мудрецов на длительные и бессмысленные споры. Один утверждал, что все состоит из огня, другой отстаивал совершенно иную точку зрения. В массе теорий промелькнула и была незаслуженно забыта теория древнегреческого мудреца Демокрита о том, что все вещества состоят из крошечных, невидимых глазу мельчайших частиц вещества. Демокрит назвал их «атомами», что значит «неделимые». К сожалению, в течение целых 23 веков его предположение было забыто.

Алхимия

В основном научные данные средних веков базировались на предрассудках и различных домыслах. Возникает и широко распространяется алхимия, которая представляла собой свод скромных практических познаний, тесно сдобренных самыми фантастическими теориями. Например, известные умы того времени старались превратить свинец в золото и найти неведомый философский камень, исцеляющий от всех болезней. В процессе поисков постепенно накапливался научный опыт, состоящий из многих необъясненных реакций химических элементов. Например, было выяснено, что многие вещества, названные впоследствии простыми, не распадаются. Таким образом возродилась древняя теория о неделимых частичках материи. Понадобился великий ум, чтобы превратить этот склад информации в стройную и логичную теорию.

Теория Ломоносова

Точным количественным методом исследования химия обязана русскому ученому М. В. Ломоносову. За блестящие способности и упорный труд он получил звание профессора химии и стал членом Российской академии наук. При нем была организованна первая в стране современная химическая лаборатория, в которой и был открыт знаменитый закон сохранения массы веществ.

В процессе изучения течения химических реакций Ломоносов взвешивал исходные химические вещества и продукты, появившиеся после проведения реакции. При этом он открыл и сформулировал закон сохранения массы вещества. В 17 веке понятие массы часто путали с термином «вес». Поэтому массы веществ часто называли «весами». Ломоносов определил, что строение вещества находится в прямой зависимости от частичек, из которых оно построено. Если содержит частички одного сорта, то такое вещество ученый называл простым. При разнородном составе корпускул получается сложное вещество. Эти теоретические данные позволили Ломоносову сформулировать закон сохранения массы.

Определение закона

После многочисленных экспериментов М. В. Ломоносов установил закон, суть которого сводилась к следующему: вес веществ, которые вступили в реакцию, равен весу веществ, которые получились в итоге реакции.

В русской науке данный постулат носит название «Закон сохранения массы веществ Ломоносова».

Это закон был сформулирован в 1748 году, а самые точные эксперименты с реакцией обжига металлов в запаянных сосудах были проведены в 1756 году.

Опыты Лавуазье

Европейская наука открыла закон сохранения массы после публикации описания работ великого французского химика Антуана Лавуазье.

Этот ученый смело применял в своих экспериментах теоретические представления и физические методы того времени, что позволило ему разработать химическую номенклатуру и создать реестр всех известных на то время химических веществ.

Своими экспериментами Лавуазье доказал, что в процессе любой химической реакции соблюдается закон сохранения массы веществ, вступающих в соединение. Кроме этого, он расширил распространение закона сохранения на массу каждого из элементов, которые принимали участие в реакции в составе сложных веществ.

Таким образом, на вопрос, кто открыл закон сохранения массы веществ, можно ответить двояко. М. В. Ломоносов первым провел эксперименты, наглядно демонстрирующие закон сохранения, и подвел его под теоретическую базу. А. Лавуазье в 1789 году независимо от русского ученого самостоятельно открывает закон сохранения масс и распространяет его принцип на все элементы, участвующие в химической реакции.

Масса и энергия

В 1905 году великий А. Эйнштейн показал связь между массой вещества и его энергией. Она выражалась формулой:

Уравнение Эйнштейна подтверждает закон сохранения массы и энергии. Данная теория утверждает, что всякая энергия имеет массу и изменение этой энергии несет изменение массы тела. Потенциальная энергия любого тела очень велика, и высвободиться она может лишь в особых условиях.

Закон сохранения массы справедлив для любых тел микро- и макромира. Любая химическая реакция принимает участие в преобразовании внутренней энергии вещества. Поэтому при расчете массы веществ, участвующих в химических реакциях, нужно было бы учитывать прирост или убыль массы, вызванных выделением или поглощением энергии в данной реакции. На самом деле в макромире этот эффект настолько незначителен, что такие изменения можно не принимать во внимание.

ЗАКОН СОХРАНЕНИЯ МАССЫ ВЕЩЕСТВ М.В.ЛОМОНОСОВА

Я учусь в 8 классе и только начала изучать новый предмет – химию. На уроке химии мы проходили химические и физические явления. Учитель химии показала нам опыт с горящей свечой. Меня этот опыт заинтересовал. Я решила поглубже узнать об этом опыте и попробовать проделать его. Занимаясь дома, я узнала, что этот опыт проводил великий русский ученый М.В.Ломоносов. Я решила попробовать повторить его опыты и больше узнать о самом ученом и его работах.

ЦЕЛИ ИССЛЕДОВАНИЯ:

    Проанализировать работы М.В.Ломоносова в области химических наук;

    Изучить работы М.В.Ломоносова по созданию закона сохранения массы веществ;

    Познакомиться с работами других ученых в области закона сохранения массы веществ;

    Рассмотреть эксперименты, проводимые М.В.Ломоносовым и другими учеными по количественному доказательству закона сохранения массы веществ;

    Провести эксперимент, доказывающий, что масса веществ, вступившая в химическую реакцию, равна массе, получившейся в результате реакции

ЗАДАЧИ ИССЛЕДОВАНИЯ:

Изучить печатную литературу во исследуемому вопросу закон сохранения массы веществ;

Проанализировать сайты Интернета, посвященные 300-летию со дня рождения М.В.Ломоносова;

Провести эксперимент, подтверждающий выводы М.В.Ломоносова по доказательству закона сохранения массы веществ;

Подвести итоги и сделать выводы о проделанной работе.

Много славных имен вписал наш народ в историю мировой науки. Но имя Ломоносова связано с развитием сразу нескольких наук. Он величайший физик, химик, геолог и одновременно историк, исследователь языков и даже поэт. Открытия М.В.Ломоносова необыкновенно обогатили русскую науку. Он описал строение Земли, объяснил происхождение многих полезных ископаемых, оборудовал первую химическую лабораторию, написал первый учебник по российской грамматике на современном ему русском языке, разработал проект освоения Северного морского пути, провел опыты с электричеством, установил, что на планете Венера есть атмосфера. Благодаря этому ученому в России появился первый университет, который существует и в наши дни. Сын крестьянина северной окраины России стал величайшим русским ученым, признанным всей Европой.

В школе мы относимся к М.Ломоносову, как к чему-то среднему между историком и филологом. В нашем представлении это – человек, с поэтическим талантом, человек, пользующийся славой «первого русского ученого». О естественно - научных, взглядах Ломоносова в школе иногда совсем умалчивается. То, в чем он неизмеримо велик– отодвигается на второй план и остается в тени.

К каким наукам более всего лежало сердце Ломоносова, – нам судить трудно. Более близкий к его времени, величайший поэт наш Пушкин, выдвигает на первый план его естественнонаучные изыскания. Вот как он характеризует деятельность Ломоносова: «Соединяя необыкновенную силу воли с необыкновенною силою понятия, Ломоносов обнял все отрасли просвещения. Жажда науки была сильнейшею страстью этой души, исполненной страстей. Он все испытал и все проник... Первый углубляется в историю Отечества, утверждает правила общественного языка его, дает законы и образцы классического красноречия; предугадывает открытия Франклина, учреждает фабрику, сам сооружает машины, дарит художества мозаичными произведениями и, наконец, открывает нам истинные источники нашего поэтического языка».

Как химик-теоретик и как химик-исследователь М. В. Ломоносов стоял на голову выше своих современников. Одним из конкретных проявлений всеобщего закона природы был открытый и экспериментально подтвержденный Ломоносовым закон сохранения вещества при химических превращениях, установление которого долгое время совершенно несправедливо приписывалось французскому химику Антуану Лорану Лавуазье. Предложенный М.Ломоносовым всеобщий закон природы включает в себя и закон сохранения энергии, вошедший в науку лишь в середине XIX века: “Но как все перемены, в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимется, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте».

М. В. Ломоносов руководствовался законом сохранения вещества и движения не только при построении атомно-молекулярной теории, но и в экспериментальных исследованиях. Он придавал большое значение измерению массы исходных веществ и веществ, получающихся в результате химических операций, считая, что только путем количественных измерений можно проникнуть в тайны химических превращений.

Некоторыми из своих классических опытов Ломоносов надолго опередил некоторых европейских ученых. Так, накаливая свинец и олово в запаянных стеклянных трубках, Ломоносов убедился, что вес металлов при этом не меняется; отсюда он заключил, что обычное приращение в весе зависело вовсе не от мифического «флогистона», а от соприкосновения накаленных металлов с воздухом, который проникал в реторты вследствие недостаточной закупорки.

В 1673 г. вышла книга Р. Бойля «Новые эксперименты о том, как сделать огонь и пламя стойкими и весомыми», в которой английский химик описал опыты с прокаливанием металлов. Ученый помещал металл в реторту, запаивал ее, взвешивал, прокаливал до образования из металла «извести», после чего вскрывал реторту и вновь взвешивал, получая, естественно, прибавку в «весе». Несмотря на то, что Р. Бойль был хорошо знаком с работами Р. Гука и Д. Майова, он объяснил увеличение массы металлов при обжиге присоединением к ним тончайшей «огненной материи», проникающей сквозь поры стекла.

В 1756 г. М. В. Ломоносов повторил опыты Бойля с тем изменением, что он не вскрывал реторты с «известью» перед их взвешиванием. Результат получился именно такой, какого и ожидал ученый, исходя из своих теоретических представлений: «огненной материи» не существует. Краткая запись опытов была такова: «...между разными химическими опытами... деланы опыты в заплавленных накрепко стеклянных сосудах, чтобы исследовать, прибывает ли вес металлов».

17 лет спустя, в 1773 г., опыты Р. Бойля повторил А. Лавуазье с совершенно такими же результатами, как и М.Ломоносов. Но он сделал новое, очень важное, наблюдение, а именно, что только часть воздуха запаянной реторты соединилась с металлом и что увеличение веса металла, перешедшего в окалину, равно уменьшению веса воздуха в реторте.

Но увы! Эти опыты Ломоносова прошли незамеченными. И когда, восемнадцать лет спустя, их повторил Лавуазье, он пожал лавры, по справедливости принадлежавшие М.Ломоносову.

Я под руководством учителя химии проделала опыты, подтверждающие выводы М.В.Ломоносова. Для этого я взяла сосуды Ландольта, в одном из которых находилась соляная кислота и цинк, а в другом - гидроксид натрия и сульфат меди (фото 1 ). Весы уравновесила. После сливания растворов (фото 2 ) произошла химическая реакция. Я увидела, что в одном сосуде выпал осадок голубого цвета, а в другом сосуде выделяется газ (фото 3 ). Стрелка весов после химической реакции осталась на прежнем уровне. Таким образом, я убедилась, что масса веществ, вступивших в химическую реакцию равна массе веществ, образовавшихся после реакции.

2

3

Для проведения второго опыта мне понадобилась герметично закрытая колба, внутрь которой мы поместили горящую свечу. Весы уравновесили (фото 4 ). Свечу зажгли и опустили её в колбу, плотно прикрыв пробкой (фото 5 ). Свеча при горении, израсходовав весь кислород из колбы, погасла. Произошло химическое явление. Весы после реакции остались уравновешенными. Из этого следует, что масса веществ, вступивших в химическую реакцию, осталась неизменной после её окончания.

4

5

Вывод : итак, задачи, которые я ставила перед собой, выполнены. Много нового я узнала о великом русском ученом М.В.Ломоносове, о его достижениях в разных областях наук. Один из его законов – закон сохранения массы веществ, подтвердила экспериментально.

Такова всеобъемлющая деятельность русского гения, сумевшего – не только в своих научных откровениях, но даже и в неизбежных ошибках – оставить неизгладимые следы великой, неустанной мысли и работы на пользу науки, о расцвете которой в родной стране он так горячо и так бескорыстно ратовал.

Основные понятия химии.

Химия - наука о веществах, закономерностях их превращений (физических и химических свойствах) и применении. В настоящее время известно более 100 тыс. неорганических и более 4 млн. органических соединений.

Химические явления: одни вещества превращаются в другие, отличающиеся от исходных составом и свойствами, при этом состав ядер атомов не изменяется.

Физические явления: меняется физическое состояние веществ (парообразование, плавление, электропроводность, выделение тепла и света, ковкость и др.) или образуются новые вещества с изменением состава ядер атомов.

1. Все вещества состоят из молекул. Молекула - наименьшая частица вещества, обладающая его химическими свойствами.

2. Молекулы состоят из атомов. Атом - наименьшая частица химического элемента, сохраняющая все его химические свойства. Различным элементам соответствуют различные атомы.

3. Молекулы и атомы находятся в непрерывном движении; между ними существуют силы притяжения и отталкивания.

Химический элемент - это вид атомов, характеризующийся определенными зарядами ядер и строением электронных оболочек. В настоящее время известно 110 элементов: 89 из них найдены в природе (на Земле), остальные получены искусственным путем. Атомы существуют в свободном состоянии, в соединениях с атомами того же или других элементов, образуя молекулы. Способность атомов вступать во взаимодействие с другими атомами и образовывать химические соединения определяется его строением. Атомы состоят из положительно заряженного ядра и отрицательно заряженных электронов, движущихся вокруг него, образуя электронейтральную систему, которая подчиняется законам, характерным для микросистем.

Атомное ядро - центральная часть атома, состоящая из Z протонов и N нейтронов, в которой сосредоточена основная масса атомов.

Заряд ядра - положительный, по величине равен количеству протонов в ядре или электронов в нейтральном атоме и совпадает с порядковым номером элемента в периодической системе. Сумма протонов и нейтронов атомного ядра называется массовым числом A = Z + N.



Изотопы - химические элементы с одинаковыми зарядами ядер, но различными массовыми числами за счет разного числа нейтронов в ядре.

Химические реакции.Типы химических реакций.

Химическая реакция - это превращение одних веществ в другие. Реагенты - вещества, вступающие в химическую реакцию Продукты реакции - вещества, полученные после химической реакции. Химические реакции бывают эндотермическими (с поглощением энергии) иэкзотермические (с выделением энергии). Горение метана - типичный пример экзотермической реакции.

Типы химических реакций-явление, при котором одни вещества превращаются в другие, называют химической реакцией.

СОЕДИНЕНИЯ
A + B = AB
Из нескольких простых или сложных веществ образуется одно сложное: CaO+H 2 O=Ca(OH) 2
PbO+SiO 2 =PbSiO 3

РАЗЛОЖЕНИЯ
AB = A + B
Из сложного вещества образуется несколько простых или сложных веществ:Cu(OH) 2 =CuO+H 2 O;CaCO 3 =CaO+CO 2

ЗАМЕЩЕНИЯ
A + BC =AC + B
Атом простого вещества замещает один из атомов сложного: CuSO 4 +Fe=FeSO 4 +Cu;2KBr+Cl 2 =2KCl+Br 2

ОБМЕНА
AB + CD = AD + CB
Сложные вещества обмениваются своими составными частями: AgNO3+KBr=AgBr ;NaOH+HCl=NaCl+H 2 O

Закон сохранения массы веществ

М.В.Ломоносов (1748г.) Массы веществ в ступивших в реакцию=массе веществ образующихся в результате реакции.

Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение- это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи.

В начале 20 века формулировка закона сохранения массы подверглась пересмотру в связи с появлением теории относительности (А.Эйнштейн, 1905 г.), согласно которой масса тела зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Полученная телом энергия E связана с увеличением его массы m соотношением E = m c 2 , где с - скорость света. Это соотношение не используется в химических реакциях, т.к. 1 кДж энергии соответствует изменению массы на ~10 -11 г и m практически не может быть измерено. В ядерных реакциях, где Е в ~10 6 раз больше, чем в химических реакциях, m следует учитывать.

Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Он является основой количественного химического анализа.

Закон постоянства состава

Пруст (1799-1803гг.) Каждое чистое вещество независимо от места нахождения и способа получения имеет постоянный количественный и качественный состав.

Закон постоянства состава впервые сформулировал французский ученый-химик Ж.Пруст в 1808 г. Он писал: "От одного полюса Земли до другого соединения имеют одинаковый состав и одинаковые свойства. Никакой разницы нет между оксидом железа из Южного полушария и Северного. Малахит из Сибири имеет тот же состав, как и малахит из Испании. Во всем мире есть лишь одна киноварь".

Закон сохранения энергии

Майер. Энергия в произвольной замкнутой системе при любых процессах, происходящих в системе остается величиной постоянной и лишь переходят из одной формы в другую.

СОХРАНЕНИЯ ЭНЕРГИИ ЗАКОН : в изолир. системе энергия системы остается постоянной, возможны лишь переходы одного вида энергии в другой. В термодинамике сохранения энергии закону соответствует первое начало термодинамики, к-рое выражается ур-нием Q = U + W, где Q-кол-во сообщенной системе теплоты,U-изменениевнутр. энергии системы, W - совершенная системой работа. Частный случай сохранения энергии закона-Гесса закон.Понятие энергии подверглось пересмотру в связи с появлением теории относительности (А. Эйнштейн, 1905): полная энергия E пропорциональна массе т и связана с ней соотношением Е = тс 2 , где с-скорость света. Поэтому массу можно выражать в единицах энергии и сформулировать более общий закон сохранения массы и энергии: в изо-лир. системе сумма масс и энергии постоянна и возможны лишь превращения в строго эквивалентных соотношениях одних форм энергии в другие и эквивалентно связанные друг с другом изменения массы и энергии.

Закон сохранения мех. энергии впервые сформулировал Г. Лейбниц в 1686, затем Ю. Майер в 1841, Дж. Джоуль в 1843 и Г. Гельмгольц в 1847 экспериментально открыли сохранения энергии закон в немеханических явлениях.

Продукты любой химической реакции состоят из тех же самых атомов, из которых состояли исходные вещества. При химических реакциях атомы сохраняются, значит должна сохраняться и масса всех атомов. В таком случае продукты любой химической реакции должны иметь такую же массу, как и исходные вещества.

После проведения некоторых опытов, может показаться, что утверждение о массе веществ неверно. Например, при прокаливании металлы превращаются в хрупкие окалины, масса которых всегда больше массы металлов до опыта. Но почему? Может быть, какие-либо частицы из воздуха присоединяются к металлу? М.В.Ломоносов нашёл ответ на этот вопрос: он прокаливал металлы в закрытых сосудах. Металл превращался в окалину, и масса сосуда с окалиной оставалась такой же, как и масса сосуда с металлом. Получается, масса, которая содержится в сосуде воздуха, уменьшилась на столько, на сколько увеличилась масса металла.

Масса веществ, вступивших в химическую реакцию, всегда равна массе образовавшихся веществ.

Этот один из основных законов химии называется законом сохранения массы вещества. Впервые этот закон был сформулирован М.В. Ломоносовым так:

«Все перемены, в натуре случающиеся, такого суть состояния, что, сколько чего у одного тела отнимется, столько присовокупится к другому, так ежели где убудет несколько материи, то умножится в другом месте».

Из закона сохранения массы вещества следует, что вещества не могут возникать из ниоткуда и из ничего или превращаться в ничто. Даже, если нам кажется, что при химической реакции получается лишнее количество вещества или же масса вещества после химической реакции стала меньше, то это значит, что мы не учли всех участвующих в реакции или получающихся веществ.

Например, когда горит древесина нам кажется, что вещества, из которых она образована исчезают без следа. Но при тщательном изучении реакции можно увидеть, что это не так: масса веществ, затраченных при сгорании древесины (древесина + кислород), равна массе воды, золы и углекислого газа, которые получились при горении.

Пользуясь законом сохранения массы можно вычислить массу или одного вступившего в реакцию вещества или одного из полученных веществ, если известны массы всех остальных. Так, если необходимо узнать массу кислорода, получившегося при разложении определённого количества оксида ртути, то для этого нам не нужно собирать кислород для взвешивания. Достаточно определить массу участвующего в реакции оксида ртути и массу ртути, которая выделилась в результате реакции. Согласно закону сохранения массы сумма масс ртути и кислорода равняется массе разложившегося оксида ртути. Следовательно, вычитая из массы оксида ртути массу полученной ртути, мы получим массу выделившегося кислорода.

Например, решим такую задачу: мы взяли 2,56 г. оксида ртути, а после реакции получили 1,95 г. ртути. Какова масса образовавшегося в результате реакции кислорода?

Оксид ртути = ртуть + кислород

2, 56 = 1,95 + х

х = 2,56 – 1,95

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

М. В. Ломоносов впервые сформулировал закон сохранения массы вещества в 1748г., а экспериментально подтвердил его на примере обжига металлов в запаянных сосудах в 1756г. Современная формулировка закона такова:

Независимо от Ломоносова это закон был установлен в 1789г. французским химиком Лавуазье, который показал, что при химических реакциях сохраняется не только общая масса веществ, но и масса каждого из элементов, входящих в состав взаимодействующих веществ.

Закон сохранения массы веществ М. В. Ломоносов связывал с законом сохранения энергии (количества движения). Он рассматривал эти законы в единстве как все общий закон природы. Ломоносов писал:

«Все перемены в натуре случающиеся такого суть состояния, что, сколько чего у одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте. Сей всеобщий естественный закон простирается и в самые правила движения: ибо тело, движущее своей силою другое, столько же оные у себя теряет, сколько сообщает другому, которое от него движение получает».

Взгляды Ломоносова были подтверждены современной наукой. В 1905г. А. Эйнштейн показал, что между массой тела (m

) и его энергией (E

) существует связь, выражаемая уравнением:

– скорость света в вакууме.

Закон сохранения массы дает материальную основу для составления уравнений химических реакций.

Свойства элементов VA и VIA.
Цель работы: изучение химических свойств элементов - азота, фосфора, кислорода и серы. Азот и фосфор являются элементами VA группы периодической системы. На внешнем энергетическом уровне атомов...



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме