Подпишись и читай
самые интересные
статьи первым!

Основные понятия технологического процесса машиностроении. Федераьное агентство по образованию

Изготовление изделий на машиностроительных предприятиях осуществляется в результате производственного процесса.

Производственный процесс – это совокупность всех действий людей и орудий производства, необходимых на данном предприятии для изготовления или ремонта выпускаемых изделий. Производственный процесс в машиностроении охватывает подготовку средств производства и организацию обслуживания рабочих мест; получение и хранение материалов и полуфабрикатов; все стадии изготовления деталей машин; сборку изделий; транспортирование материалов, заготовок, деталей, готовых изделий и их элементов; технический контроль на всех стадиях производства; упаковку готовой продукции и другие действия, связанные с изготовлением выпускаемых изделий.

Важнейшим этапом производственного процесса является технологи ческая подготовка производства (ТПП), основным элементом которой является технологический процесс (ТП).

Технологический процесс – это часть производственного процесса, содержащая целенаправленные действия по изменению и/или определению состояния предмета труда (заготовки или изделия). Различают ТП изготовления исходных заготовок, термической обработки, механической (и другой) обработки заготовок, сборки изделий.

В ТП изготовления заготовок происходит превращение материала в исходные заготовки деталей машин заданных размеров и конфигурации различными методами. В процессе термической обработки происходят структурные превращения материала заготовок, изменяющие его свойства. При механической обработке происходит последовательное изменение состояния исходной заготовки (ее геометрических форм, размеров и количества поверхностей) до получения готовой детали. ТП сборки связан с образованием разъемных и неразъемных соединений составных частей изделий.

Для осуществления любого ТП необходимо применение совокупности орудий производства, называемых средствами технологического оснаще ния (СТО) – это технологическое оборудование (литейные машины, прессы, металлорежущие станки, печи, испытательные стенды и т. д.) и тех нологическая оснастка (режущие инструменты, приспособления, штампы, мерители и т. д.).

ТП выполняют на рабочих местах. Рабочее место – участок производственной площади, оборудованный в соответствии с выполняемой нанем работой.

Технологической операцией называют законченную часть ТП, выполняемую на одном рабочем месте. Операция охватывает все действия СТО и рабочих над одним или несколькими совместно обрабатываемыми или собираемыми объектами производства. При обработке на станках операция включает все действия рабочего, а также автоматические действия станка до момента снятия заготовки со станка и перехода к обработке другой заготовки.

Кроме технологических различают и вспомогательные операции: транспортирование, контроль, маркирование и др.

При выполнении ТП на предприятии заготовка или сборочная единица последовательно проходит по цехам и производственным участкам в соответствии с выполняемыми операциями. Указанную последовательность называют технологическим маршрутом, который может быть внутрицеховым и межцеховым.

Технологический переход – законченная часть технологической операции, выполняемая одними и теми же СТО при постоянных технологических режимах (t , s , п и др.). Технологические переходы могут быть простыми (обработка одним инструментом) или сложными (в работе одновременно участвуют несколько инструментов).

При обработке заготовок на станках с ЧПУ несколько поверхностей могут последовательно обрабатываться одним инструментом. В этом случае говорят, что указанная совокупность поверхностей обрабатывается в результате выполнения инструментального перехода.

Вспомогательный переход – это законченная часть технологической операции, состоящая из действий человека и/или оборудования, которые не сопровождаются изменением свойств предметов труда, но необходимы для выполнения технологического перехода (установка и закрепление заготовки, смена инструмента, изменение режимов обработки и др.).

Рабочий ход – законченная часть технологического перехода, состоящая из однократного перемещения инструмента относительно заготовки, сопровождаемого изменением формы, размеров, качества поверхности или свойств заготовки.

Установ – часть технологической операции, выполняемая при неизменном закреплении обрабатываемой заготовки или сборочной единицы.

Позиция – фиксированное положение, занимаемое неизменно закрепленной обрабатываемой заготовкой или собираемой сборочной единицей совместно с приспособлением относительно инструмента или неподвижных частей оборудования для выполнения определенной части операции. Смена позиций, выполняемая с помощью поворотных устройств и устройств линейных перемещений возможна, например, в технологических операциях, осуществляемых на оборудовании револьверного типа, агрегатных станках, автоматических линиях и т. д.

Рабочий прием – ручное действие рабочего по обслуживанию станка или агрегата, обеспечивающего выполнение технологического перехода или его части. Так, при выполнении вспомогательного перехода установки заготовки в приспособление необходимо последовательно выполнить следующие приемы: взять заготовку из тары, установить в приспособление и закрепить в нем.

Изготовление изделий машиностроения может быть осуществлено на основе единичного, типового или группового ТП. Единичный ТП проектируется и применяется для изготовления деталей одного наименования, типоразмера и исполнения, независимо от типа производства.

Типовой ТП характеризуется единством содержания и последовательности большинства технологических операций и переходов для группы изделий с общими конструктивными признаками. Типовой ТП используется либо как информационная основа при разработке рабочего ТП, либо как рабочий ТП при наличии всей необходимой информации для изготовления детали.

Групповой ТП используется для совместного изготовления или ремонта группы изделий различной конфигурации в конкретных условиях производства на специализированных рабочих местах. Принципиальное различие между типовыми и групповыми процессами заключается в следующем: типовая технология характеризуется общностью технологического маршрута, а групповая – общностью оборудования и оснастки, необходимых для выполнения определенной операции или полного изготовления детали.

По степени детализации ТП подразделяются на маршрутные, операционные и маршрутно-операционные.

В маршрутном ТП содержание операций излагается без указания переходов и режимов обработки.

Операционный ТП – это технологический процесс, выполняемый по документации, в которой содержание операций излагается с указанием переходов и режимов обработки.

Маршрутно-операционный ТП – это технологический процесс, выполняемый по документации, в которой содержание отдельных операций излагается без указания переходов и режимов обработки.

Анализ существующих и проектирование новых ТП должны выполняться с учетом типа организации производства, в которых они осуществляются. Различают три основных типа машиностроительного производства: массовое, серийное и единичное. В некоторых случаях серийное производство подразделяют на крупносерийное, среднесерийное и мелкосерийное. Основными факторами, определяющими тип организации производства в цехе, на участке, являются номенклатура изделий, программа выпуска и трудоемкость изготовления деталей.

Тип действующего производства определяется коэффициентом закреп ления операций

где О – число различных операций за один месяц;

Р – число рабочих мест, на которых выполняются различные операции.

Для массового производства
. Для крупносерийного производства
, для среднесерийного
, для мелкосерийного
. Для единичного производства
не регламентируется.

При проектировании процессов изготовления изделий серийность производства определяется по коэффициенту серийности

, (1.2)

где –такт выпуска изделий;

– среднее штучное время по операциям.

Такт выпуска – интервал времени, через который периодически производится выпуск изделий определенного наименования, типоразмера и исполнения, рассчитывается по формуле

, (1.3)

где действительный годовой фонд времени работы оборудо­вания за одну смену в часах;

т количество смен работы оборудования за сутки;

N годовая программа выпуска изделий, шт.

Для нахождения t ш.ср . необходимо либо выполнить нормирование по укрупненным нормам, либо использовать данные по трудоемкости существующей на производстве аналогичной детали.

Среднее штучное время рассчитывается по формуле

, (1.4)

где t ш. i штучное время i -й операции изготовления детали;

п число основных операций в маршруте.

По значению К с , рассчитанному по формуле (1.2), можно принять решение о типе производства. При К с ≤ 1 – массовое производство, 1 < К с ≤ 10 – крупносерийное, 10 < К с ≤ 20 – среднесерийное, 20 < К с ≤ 50 – мелкосерийное, К с > 50 – единичное производство.

Серийность производства оказывает существенное влияние на технологическую подготовку выпуска изделий.

В машиностроении применяют два метода работы: поточный и непоточный. Поточное производство характеризуется расположением СТО в последовательности выполнения операций ТП и определенным интервалом выпуска изделий (такта выпуска). В общем случае условием организации потока является кратность времени выполнения каждой операции такту выпуска, т.е. t ш. i / τ в = К (К = 1,2,3,...). Приведение длительности операций к указанному условию называют синхронизацией.

Производительность труда, соответствующая выделенному производственному участку (линии, цеху), определяется ритмом выпуска. Ритм выпуска – количество изделий определенного наименования, типоразмера и исполнения, выпускаемое в единицу времени. Обеспечение заданного ритма выпуска изделий при поточном методе работы в массовом и крупносерийном производстве является важнейшей задачей при проектировании ТП.

Организация производства по поточному методу обеспечивает повышение производительности труда, уменьшение производственного цикла и объема незавершенного производства, предусматривает применение высокопроизводительного оборудования и комплексной автоматизации изготовления деталей, включая термическую обработку, нанесение покрытий, мойку, контроль и т. п.

В серийном производстве заготовки перемещаются по рабочим местам партиями. Партией называют количество заготовок или деталей одного наименования и типоразмера, которые запускаются в производство или подаются на сборку.

Величина оптимальной партии рассчитывается по формуле

n = N К/Ф , (1.5)

где N годовая программа с запчастями, шт;

К число дней, на которые необходимо иметь запас деталей наскладе (2...10 дней);

Ф – число рабочих дней в году.

Станок, закончивший обработку партии заготовок переналаживают на другую операцию. Величина партии деталей зависит от номенклатуры изделий, от годовой программы, от срока заказа, длительности обработки и сборки, сложности, наличия материалов и других факторов. С учетом этих факторов расчетная величина партии может быть принята другой.

В серийном производстве для повышения загрузки оборудования применяют переменно-поточные (серийно-поточные) игрупповые линии. При переменно-поточной обработке за каждым станком линии закреплено выполнение нескольких операций для технологично и конструктивно однотипных деталей, которые обрабатывают попеременно. Приспособления переменно-поточных линий конструируют так, чтобы в них можно былоустанавливать всю закрепленную группу заготовок.

В групповых поточных линиях каждый станок выполняет операции разных технологических маршрутов. При переходе к обработке следующих деталей производится подналадка станка (смена цанги, фиксатора, сверла и т. п.), что дает возможность обрабатывать однотипные поверхности у группы заготовок.

Возможность использования поточного метода работы определяют ко эффициентом поточности К П сопоставлением среднего штучного времени t ш.ср. для основных операций с тактом выпуска деталей τ в :

. (1.6)

При коэффициенте поточности К П > 0,6 принимают поточный метод работы.

Непоточный метод производства характеризуется изготовлением деталей партиями на каждой операции; обрабатывающее оборудование устанавливается в цехе группами по типам станков (токарные, фрезерные, шлифовальные и т. д.); изделия собирают на стационарных приспособлениях. При непоточном методе производства требуется создание заделов, что удлиняет цикл производства.

Цикл производства – это период времени от начала до конца выполнения какого-либо повторяющегося технологического или производственного процесса. Сокращение цикла производства уменьшает межоперационные заделы, незавершенное производство и оборотные фонды, а оборачиваемость вложенных в производство средств значительно повышается.

Понятие «серия» касается количества машин, которые запускаются в производство одновременно или непрерывно в течение определенного интервала времени.

Важным принципом разработки технологического маршрута прохождения деталей по цехам завода служит принцип возможно большего сокращения технологического маршрута при наименьшем пробеге деталей между цехами.

Схема связей цехов завода средней величины показана на рис. 1.1 .

Как видно из схемы (рис. 1.1), по пути в сборочный цех заготовки и детали могут делать двойные пробеги между цехами. Проектируя последовательность обработки отдельных деталей внутри цеха, следует позаботиться о наименьшем пробеге деталей между операциями.

Структура механосборочного производства зависит от конструктивных и технологических особенностей изделий, типа производства и ряда других факторов. Изделия, выпускаемые заводами, распределяют по цехам по предметному, технологическому или смешанному признаку.

При организации цехов по предметному признаку за каждым из них закрепляют все детали определенного узла или изделия и их сборку. В этом случае все цеха являются механосборочными и включают механические и сборочные отделения (участки). При наличии нескольких механосборочных цехов, изготавливающих отдельные узлы, на заводе предусматривают цех общей сборки выпускаемых машин. Такая организация цехов характерна, как правило, для массового и крупносерийного типов производства.

При организации цехов по технологическому признаку детали разныхмашин и узлов группируют по сходному ТП. Такая форма организации характерна для единичного и серийного типов производства, так как здесь обычно не удается загрузить полностью оборудование деталями одного изделия. В цехах обрабатывают сходные детали независимо от того, к какому узлу или машине они относятся. Механообрабатывающее производство в этом случае разделяют на цехи по типу деталей и однородности ТП (например, цехи корпусных деталей, валов, зубчатых колес, метизов и т. д.). Сборочный цех выделяют в самостоятельный цех, в который поступают детали из различных цехов.

Организация цехов по смешанному признаку обычно встречается в серийном производстве при большой номенклатуре изделий. В этом случае для изготовления некоторых изделий цехи организуют по предметному признаку (например, цехи редукторов, электродвигателей, пылесосов и т. д.), а для остальной части изделий – по технологическому признаку.

Изготовление стандартных деталей обычно выделяют в отдельные цехи независимо от принятой схемы организации производства.

Унификация и стандартизация изделий машиностроения способствует специализации производства, сужению номенклатуры изделий и увеличению их выпуска, а это в свою очередь позволяет шире применять поточные методы и автоматизацию производства.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВОЛГОГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

КАМЫШИНСКИЙ ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

Кафедра «Технология машиностроения»

Технологические процессы в машиностроении

Методические указания

Волгоград

УДК 621.9(07)

Технологические процессы в машиностроении: методические указания. Часть I / Сост. , ; Волгоград. гос. техн. ун-т. – Волгоград, 2009. – 34 с.

Излагается содержание дисциплины, даются краткие теоретические сведения по темам курса.

Предназначены студентам ВПО специальности 151001 «Технология машиностроения» заочной формы обучения.

Библиогр.: 11 назв.

Рецензент: к. т. н.

Печатается по решению редакционно-издательского совета

Волгоградского государственного технического университета

Ó Волгоградский

государственный

DIV_ADBLOCK163">


1.2. Задачи изучения дисциплины

Задачами изучения дисциплины являются:

§ изучение физической сущности основных технологических процессов получения заготовок;

§ изучение механических основ технологических методов формообразования;

§ изучение возможностей, назначения, преимуществ и недостатков основных технологических процессов;

§ изучение принципов и схем работы основного технологического оборудования;

§ изучение конструкций основных инструментов, приспособлений и оснастки.

1.3. Связь с другими дисциплинами учебного плана

Изучение дисциплины «Технологические процессы в машиностроении» базируется на знаниях, полученных студентами при изучении курсов физики, математики, химии, инженерной графики, материаловедения.

В свою очередь, данная дисциплина обеспечивает успешное изучение следующих дисциплин: «Сопротивление материалов», «Детали машин», «Технология машиностроения», «Основы машиностроительного производства», «Процессы формообразования и инструменты», «Технологическое оборудование» и «Оборудование машиностроительного производства».

2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ.

Тема 1. Введение в технологию.

1. Основные понятия и определения.

2. Типы машиностроительных производств.

3. Понятие технологического процесса.

4. Структура технологического процесса.

1. Оборудование и сырье металлургического производства.

2. Доменный процесс производства чугуна.

3. Кислородно-конвертерное производство стали.

5. Производство стали в электропечах.

1. Литье в песчано-глинистые формы. Литье в кокиль. Литье по выплавляемым моделям. Центробежное литье. Литье под давлением. Литье в оболочковые формы.

2. Изготовление отливок в оболочковых формах

3. Изготовление отливок литьем по выплавляемым моделям

4. Изготовление отливок литьем в кокиль

5. Изготовление отливок литьем под давлением

6. Изготовление отливок литьем под низким давлением

7. Изготовление отливок центробежным литьем

8. Специальные способы литья.

1. Прокатка и волочение.

2.Свободная ковка и ковка в подкладных штампах. Горячая и холодная объемная штамповка. Листовая штамповка.

3. Термообработка кованых и штампованных поковок.

1. Сварка плавлением, давлением и трением.

1. Физические основы процесса резания.

2. Обработка поверхностей заготовок лезвийным (точение, сверление, строгание, фрезерование, протягивание) и абразивным инструментом (шлифование, притирка, хонингование).

3. Лабораторный практикум.

4. тема 1. Введение в технологию.


Машиностроительные детали изготавливают литьем, обработкой давлением, резанием. Заготовки получают чаще давлением, литьем или сваркой, рациональный выбор заготовки обусловлен необходимостью экономии металла.

Одним из основных технологических процессов машиностроительного производства является резание. Резанием можно получить детали высокой точности. Как правило, невозможно создать механизмы и машины из деталей, не прошедших обработку резанием. Литье ранее использовали для производства изделий из меди, бронзы , затем из чугуна и позже из стали и других сплавов.

Основные процессы литейного производства – это плавка металла, изготовление литейных форм, заливка металла, выбивка, обработка отливок и их контроль.

Обработку давлением также применяют давно для изготовления оружия, в кораблестроении. Давлением обрабатывают заготовки из стали, цветных металлов и сплавов, пластмасс. Методы обработки давлением обеспечивают изготовление сложных фасонных профилей с малой шероховатостью.

Процессы сварки впервые осуществлены в России в конце ХIХ в. Сварку применяют для получения неразъемных соединений. Заготовки полученные сваркой можно затем обрабатывать резанием.

Кроме этих процессов обработки металлов в настоящее время разработаны более высокоэффективные технологические процессы на базе новых физических явлений позволяющих изменять форму и качество поверхности деталей. Это электрофизические и электрохимические методы обработки, которые обеспечивают непрерывность процессов при одновременном деформировании всей обрабатываемой поверхности.

Производство изделий подразделяют на единичное, серийное и массовое.

Машиностроительные заводы состоят из отдельных производственных единиц и служб – это: 1) заготовительные цехи (чугунолитейные, сталелитейные, кузнечные, прессовые, штамповочные); 2) обрабатывающие цехи (механические, сборные, окрасочные); 3) вспомогательные цехи (инструментальные, ремонтные); 4) складские устройства; 5) энергетические службы; 6) транспортные службы; 7) санитарно-технические; 8) общезаводские учреждения и службы.

Процесс создания машины подразделяется на два этапа: конструирование и изготовление. Первый этап завершается разработкой конструкции машины и представлением ее в чертежах. Второй этап заканчивается реализацией изделия в металле. Конструирование осуществляется в несколько стадий: 1) проектирование; 2) изготовление экспериментальных деталей и узлов; 3) испытания; 4) детализация технических решений; 5) выпуск конструкторской документации.

Изготовление делится на стадии тех. подготовки и собственно изготовления.

5. Тема 2. Основы металлургического производства черных и цветных металлов.

5.1. Оборудование и сырье металлургического производства.

Металлургия - это наука о способах извлечения металлов и природных соединений и отрасль промышленности, производящая металлы и сплавы.

Современная металлургия - это шахты по добыче руд и каменных углей, горно-обогатительные комбинаты, коксохимические и энергетические предприятия, доменные цехи, заводы ферросплавов, сталеплавильные и прокатные цехи.


Для производства черных и цветных металлов используют металлические руды, флюсы, топливо и огнеупорные материалы.

Руда - горная порода или минеральное вещество, из которого при данном уровне развития техники экономически целесообразно извлекать металлы или их соединения. При изучении темы обратите внимание на виды руды, применяемые при выплавке чугуна, их химический состав и процентное содержание производимого металла,

В доменном производстве используют железорудное сырье с содержанием железа 63-07%, Для получения сырья с высоким содержанием железа руды предварительно обогащают. Рассматривая процессы обогащения руд, обратите внимание на агломерацию и окатывайте железорудных концентратов.

Для образования легкоплавких соединений (шлаков) пустой породы руды и золы топлива применяют различные флюсы. Ознакомьтесь с материалами, используемыми в качестве флюсов при производстве чугуна и стали. Обратите внимание на выбор флюса п зависимости от применяемых плавильных печей (кислых или основных) и на возможность управления процессами удаления вредных примесей из расплава.

В качестве источника теплоты при производстве металлов и сплавов используют различные виды топлива. Изучая виды топлива, обратите особое внимание на основной вид металлургического топлива – кокс. Необходимо знать способ её получения, химический состав, свойства и теплотворную способность. Из других видов топлива обратите внимание на природный и доменный газы, которые также широко используют в металлургии.

Процессы извлечения металлов в металлургических агрегатах происходят при высоких температурах. Поэтому внутреннюю облицовку (футеровку) металлургических печей и ковшей для разливки металла делают из специальных огнеупорных материалов. Знакомясь с огнеупорными материалами, обратите внимание на их химический состав, огнеупорность и области применения.

5.2. Доменный процесс производства чугуна.

Чугун выплавляют в печах шахтного типа - домнах. Современная доменная печь - мощный высокопроизводительный агрегат. Ознакомьтесь с устройством доменной печи и принципом ее работы, а также устройством воздухонагревателей и механизмов загрузки шихты. При сгорании кокса – в доменной печи выделяется теплота и образуется газовый поток, содержащий СО, СО2 и другие газы, которые, поднимаясь вверх, отдают теплоту шихтовым материалам. При этом в шихте происходит ряд превращений: удаляется влага, разлагаются углекислые соединения, а при прогреве шихты до температуры 570°С начинается процесс восстановления окислов железа. Поэтому, рассматривая процессы доменной плавки, изучите химические реакции горения топлива, процессы восстановления окислов железа, кремния, марганца, фосфора и серы, процессов образования чугуна (науглероживание железа) и шлака. Кроме того, обратите внимание на выпуск чугуна и шлака из доменной печи, а также продукты доменной плавки: передельный и литейный чугуны, ферросплавы, шлак и доменный газ. Рассмотрите области использования этих продуктов в народном хозяйстве,

* Важнейшими технико-экономическими показателями доменного производства являются коэффициент использования полезного объема домны (КИПО) и удельный расход кокса. Следует знать, как определяют КИПО доменной печи, и иметь представление о его величине на передовых металлургических предприятиях страны, а также о коэффициенте расхода кокса на 1 т выплавленного чугуна. Особое внимание обратите на вопросы механизации и автоматизации работы доменной печи и пути интенсификации доменного процесса.

5.3. Кислородно-конвертерное производство стали.

Основными исходными материалами для производства стали являются передельный чугун и стальной лом. Процесс получения стали основан на окислении примесей. Поэтому при изучении темы уделите внимание избирательному окислению примесей и переводу их в шлак и газы в процессе плавки в различных плавильных агрегатах; мартеновских печах, кислородных конверторах, дуговых электропечах и др.

Одним из прогрессивных способов производства стали является кислородно-конверторный способ, которым выплавляют около 40% »сей стали, Кислородно-конверторный процесс характеризуется высокой производительностью, сравнительно низкими капитальными затратами и простотой автоматизации управления ходом плавки. В кислородных конверторах выплавляют углеродистые и низколегированные стали. При изучении кислородно-конверторного производства стали ознакомьтесь с устройством современных кислородных конверторов я принципом их работы. Рассмотрите шихтовые материалы конверторного производства и технологию плавки, обратив внимание на окислительный период плавки и раскисление стали. Сделайте сравнительную оценку работы мартеновских печей и кислородно-конверторного производства.

В мартеновских печах выплавляют углеродистые конструкционные, инструментальные и легированные стали. Ознакомьтесь с устройством современных мартеновских печей и принципом их работы. Подробно рассмотрите процесс производства стали в основных мартеновских печах. Особое внимание уделите производству стали скрап-рудным процессом как наиболее экономичному. Изучите характерные периоды плавки этого процесса и их значение. В заключение рассмотрите особенности процесса плавки стали в кислых мартеновских печах и пути интенсификации мартеновского процесса.

5.5. Производство стали в электропечах.

Высококачественные, инструментальные и высоколегированные стали выплавляют в дуговых и индукционных электрических печах. В них можно быстро нагревать, плавить и точно регулировать температуру металла, создавать окислительную, восстановительную и нейтральную атмосферу или вакуум . Кроме того, в этих печах можно более полно раскислять металл. Изучая производство стали и дуговой электрической печи, ознакомьтесь с ее устройством и принципом работы. Рассматривая процесс плавки в дуговой печи, обратите внимание на то, что в такой печи применяют две технологии плавки: переплавом - на шихте из легированных отходов и окислением примесей на углеродистой шихте. Необходимо усвоить особенности того и другого процессов и знать их технико-экономические показатели.

Изучая производство стали в индукционных электрических печах, ознакомьтесь с их устройством и принципом работы. Учтите, что в индукционных печах сталь получают переплавом или оплавлением шихтовых материалов. Следует уяснить особенности этих процессов.

Сравните технико-экономические показатели различных способов получения стали.

6. Тема 3. Основы технологии производства отливок из черных и цветных металлов.

6.1. Литье в песчано-глинистые формы. Литье в кокиль. Литье по выплавляемым моделям. Центробежное литье. Литье под давлением. Литье в оболочковые формы.

Основной продукцией литейного производства являются сложные (фасонные) заготовки деталей, называемые отливками. Отливки получают заливкой расплавленного металла в специальную литейную форму, внутренняя рабочая полость которой имеет конфигурацию отливки. После затвердевания и охлаждения отливку извлекают, разрушая литейную форму (разовая форма) или разбирая ее на части (многократная форма).

Отливки получают различными способами литья, которые, имея одинаковую сущность, отличаются материалом, используемым для формы, технологией се изготовления, условиями заливки металла и формирования отливки (заливка свободная, под давлением, кристаллизация под действием центробежных сил и т. д.) и другими технологическими особенностями. Выбор способа изготовления отливок определяется его технологическими возможностями и экономичностью.

Около 80% отливок изготавливают наиболее универсальным, но менее точным способом - литьем в песчаные формы. Специальными методами литья получают отливки повышенной точности и чистоты поверхности с минимальным объемом последующей механической обработки.

Характеризуя в целом литейное производство, следует выделить основное достоинство, которое выгодно отличает его от других методов формообразования заготовок,- это возможность получения разнообразных по массе заготовок практически любой сложности непосредственно из жидкого металла.

Основную массу отливок изготавливают из чугуна (72 %) и стали (23 %).

6.2. Литье в песчано-глинистые формы .

Изучение темы начните с рассмотрения последовательности изготовления отливки в песчаной форме. Для изготовления песчаной формы используют модельный комплект, опочную оснастку и формовочные материалы.

В модельный комплект входят модель отливки (модельные плиты), стержневые ящики (если отливку изготавливают с применением стержней), модели литниково-питающей системы. Следует хорошо усвоить основы конструирования модельных комплектов, Так, например, модель по конфигурации соответствует наружной конфигурации отливки и знаковым частям стержней.

Конструкция модели должна обеспечивать возможность уплотнения формовочной смеси и удаления модели из формы. Поэтому модель чаще всего делают разъемной, на вертикальных стенках предусматривают формовочные уклоны, в местах перехода стенок – галтели. Размеры модели выполняют с учетом припусков па механическую обработку и линейной усадки сплава отливки.

Модельные комплекты изготавливают из древесины и металлов (чаще всего из алюминиевых сплавов и чугуна). Изучите примеры конструкций моделей, модельных плит и стержневых ящиков. Обратите внимание на то, в каких случаях целесообразнее применять деревянные модельные комплекты, а в каких – металлические.

При изучении формовочных и стержневых смесей обратите внимание на их теплофизические, механические и технологические свойства, так как они в значительной степени влияют на качество отливок. Рассмотрите облицовочные, наполнительные и единые формовочные смеси, а также быстротвердеющие и самотвердеющие смеси. Обратите внимание на различие составов формовочных смесей для стали, чугуна и цветных сплавов.

К стержневым смесям предъявляются повышенные требования, так как стержень находится в более тяжелых условиях, чем форма. Рассмотрите смеси, затвердевающие в контакте со стержневым ящиком в горячем и холодном состоянии.

Формы и стержни изготавливают вручную и на машинах. Изучите способы ручного изготовления форм в парных опоках, по шаблону, изготовление крупных форм в кессонах и различные способы машинной формовки. Рассмотрите схемы уплотнения смеси прессованием, встряхиванием и пескометом. Обратите внимание на способы улучшения качества уплотнения диафрагменным и дифференциальным прессованием многоплунжерной головкой, а также допрессовкой при уплотнении форм встряхиванием.

Разберите способы изготовления стержней вручную и на машинах. Обратите внимание на технологические меры по обеспечению более высоких требований к ним (применение каркасов, вентиляционных каналов и т. п.). Прогрессивным процессом является изготовление стержней по горячим ящикам. В нагретый до 250–280°С металлический ящик вдувают песчано-смоляную смесь.

Под действием тепла смола расплавляется, обволакивает зерна песка, а при охлаждении идет процесс затвердевания смолы. В результате получается стержень обладающий высокой прочностью.

Трудоемкая операция уплотнения смеси значительно упрощается при использовании жидких самотвердеющих смесей (ЖСС), которые заливают в опоки и стержневые ящики, а через 30-60 мин формы и стержни приобретают необходимую прочность. При хранении на воздухе прочность их увеличивается. Высокая пластичность смесей и затвердение их в контакте с моделью обеспечивают изготовление отливок более высокой размерной точности. Формы и стержни из ЖСС обладают хорошей газопроницаемостью и легкой выбиваемостью.

Новым технологическим процессом является изготовление отливок по газифицируемым моделям, которые изготавливают из пенополистирола и не извлекают из формы, а газифицируют при заливке формы металлом.

Заливку собранных форм производят на конвейерах, где они охлаждаются до температуры «выбивки. Выбивку отливок из форм и стержней из отливок производят на вибрационных решетках. Следует уделить особое внимание вопросам механизации трудоемких операций и разобраться в принципах работы автоматизированных формовочно-заливочиых конвейеров, поточных линий для изготовления отливок, выбивки форм и дальнейшего охлаждения отливок до нормальных температур.

6.3. Изготовление отливок в оболочковых формах.

Сущность процесса заключается в свободной заливке расплавленного металла в формы, изготовленные из специальной смеси с термореактивными связующими материалами формовкой по горячей модельной оснастке. Изучая данную тему, рассмотрите схему процесса формирования оболочек, последовательность операций изготовления оболочек бункерным способом, сборку форм и подготовку их к заливке расплавленным металлом. Обратите внимание на состав и свойства формовочной смеси и особенности литейной оснастки, применяемой при изготовлении форм и стержней.

Отметьте основные достоинства изготовления отливок в оболочковых формах; высокую точность геометрических размеров отливок, низкую шероховатость поверхностей отливок, сокращение количества формовочных материалов, экономию производственных площадей, облегчение операций выбивки и очистки литья, возможность полной автоматизации производственного процесса за счет использования многопозиционных карусельных автоматических машин и автоматических линий. Наряду с преимуществами рассмотрите и недостатки способа: высокую стоимость термореактивных связующих и применение нагреваемой литейной оснастки. Кроме того, обратите внимание на технологические возможности способа и области применения отливок,

6.4. Изготовление отливок литьем по выплавляемым моделям. Сущность процесса заключается в свободной заливке расплавленного металла в формы, изготовленные из специальной огнеупорной смеси по разовым моделям, которые после изготовления формы выплавляются, выжигаются или растворяются. Изучая тему, рассмотрите последовательность изготовления моделей из легкоплавкого состава в пресс-формах, сборку моделей в блок, изготовление литейной формы, подготовку ее к заливке, заливку расплавленным металлом, выбивку и очистку отливок. Обратите внимание на следующие особенности этого спо­соба: разовая модель, изготовленная из легкоплавкого модельного состава, не имеет разъема и знаковых частей, а ее контуры повторяют форму отливки; форма, полученная по выплавляемым моделям, представляет собой тонкостенную, не имеющую разъема оболочку; форма изготавливается из специальной огнеупорной смеси, состоящей из пылевидного кварца и гидролизованного раствора этилсиликата; для обеспечения высокой прочности и удаления остатков модельного состава литейные формы прокаливают при температуре 850–900° С, после чего заливают расплавленным металлом. Кроме того, отметьте основные преимущества литья по выплавляемым моделям, обратив внимание на то, что этим способом наиболее экономично изготовлять мелкие, но сложные и ответственные отливки с высокими требованиями по точности геометрических размеров и шероховатости поверхности, а также детали из специальных сплавов с. низкими литейными сплавами. Рассмотрите также недостатки способа. Обратите внимание на технологические возможности и области. применения способа.

6.5. Изготовление отливок литьем в кокиль.

Сущность процесса заключается в свободной заливке расплавленного металла в металлические формы - кокили, Рассмотрите типы кокилей, последовательность изготовлении отливок и особенности изготовления отливок.

Рассматривая последовательность изготовления отливок, обратите внимание на назначение предварительного подогрева форм, теплозащитных покрытий, наносимых на рабочие поверхности форм, на последовательность сборки кокилей. Для получения внутренних полостей отливок широко применяют металлические стержни.

Изучая особенности литья в кокили, обратите внимание на повышенные скорости затвердевания и охлаждения отливок, что в одних случаях способствует получению мелкозернистой структуры и повышению механических свойств, а в других случаях вызывает отбрел.

Рассматривая конструкции кокилей, обратите внимание на устройство каналов для отвода газов из полостей форм и эта устройства, используемые для удаления отливок, а также на конструкции металлических стержней.

Для изготовления отливок литьем в кокили широко используют однопозиционные и многопозиционные кокильные машины и автоматические линии, Рассмотрите принцип работы однопозиционной кокильной машины,

Отметьте основные достоинства литья в кокили: высокую точность геометрических размеров, и низкую шероховатость поверхностей отливок, повышение механических свойств отливок, увеличение производительности, экономит производственных площадей и т, д. Обратите внимание на недостатки способа: сложность изготовления кокилей и низкую стойкость их.

Уясните технологические возможности способа и области его применения.

6.6. Изготовление отливок литьем под давлением.

Сущность процесса заключается в заливке расплавленного металла и формировании отливки под давлением.

Изучая тему, рассмотрите устройство машины литья под давлением с горизонтальной холодной камерой прессования и последовательность операций изготовления отливок, устройство пресс-форм и приспособлений для удаления отливок,

Изучая особенности литья под давлением, обратите внимание на то, что скорость впуска расплавленного металла в пресс-форму составляет 0,5–120м/с, а конечное давление может составлять 100 МПа; следовательно, форма заполняется за десятые, а для особотонкостениых отливок – за сотые доли секунды. Сочетание особенностей процесса – металлической формы и внешнего давления на металл – позволяет получать отливки высокого качества.

Отметьте основные достоинства литья под давлением: высокую точность геометрических размеров и низкую шероховатость поверхностей отливок, возможность изготовления сложных, тонкостенных отливок из алюминиевых, магниевых и других сплавов, высокую производительность способа. Обратите внимание также на недостатки способа: сложность изготовления пресс-форм, ограниченный срок их службы. Обратите внимание на технологические возможности способа и области его применения.

6.7. Изготовление отливок литьем под низким давлением.

Сущность процесса заключается в заливке расплавленного металла и формировании отливки под, давление ОД–0,8 МПа. Изучая тему, рассмотрите устройство установки для литья под низким давлением и последовательность операций изготовления отливок. Обратите внимание на то, что способ позволяет автоматизировать операции заливки формы, создает избыточное давление на металл при кристаллизации, что способствует повышению плотности отливок и уменьшению расхода расплавленного металла на литниковую систему. Недостатком способа является низкая стойкость металлопровода, что затрудняет применение литья под низким давлением для получения отливок из чугуна и стали. Обратите внимание па особенности конструирования отливок, а также на технологические возможности и области его применения.

6.8. Изготовление отливок центробежным литьем.

Сущность процесса заключается в свободной заливке расплавленного металла во вращающуюся форму, формирование отливки в которой осуществляется под действием центробежных сил. Изучая тему, рассмотрите устройство машин с горизонтальной и вертикальной осями вращения и последовательность операций изготовления отливок. Обратите внимание на достоинства центробежного литья, технологические возможности способа и области применения. Наряду с преимуществами обратите внимание на недостатки центробежного литья.

6.9. Специальные способы литья.

К специализированным способам литья относят: непрерывное литье, литье вакуумным всасыванием, литье выжиманием, жидкую штамповку и др. Изучая эти темы, обратите внимание на сущность способов, схемы процессов и технологическую последовательность операций. Рассмотрите достоинства и недостатки, технологические возможности и области применении специализированных способов литья.

7. Тема 4. Основы технологии обработки металлов давлением.

7.1. Прокатка и волочение

Обработка давлением занимает очень большое место в современной металлообрабатывающей промышленности, Обработке давлением подвер­гают более 90 % выплавляемой стали и 60 % цветных металлов и сплавов. При этом получают изделия различные по назначению, массе, сложности, причем не только в виде промежуточных заготовок для окончательной обработки их резанием, но и готовые детали с высокой точностью и низкой шероховатостью Процессы обработки давлением очень разнообразны и их обычно делят на шесть основных видов: прокатку, прессование, волочение, ковку объемную и листовую штамповку. Изучая эти виды, особое внимание нужно уделить их технологическим возможностям и областям применения в машиностроении. В целом применение процессов обработки давлением определяется возможностью формообразования изделий с высокой производительностью и малыми отходами, а также возможностью повышения механических свойств металла в результате пластического деформирования.

Прокатка – одни из самых распространенных видов обработки металлов давлением. При прокатке металл деформируется в горячем или холодном со­стоянии вращающимися валками, конфигурация и взаимное расположение кото­рых может быть различным. Различают три схемы прокатки: продольную, по­перечную и поперечно-винтовую.

При наиболее распространенной продольной прокатке в очаге деформации происходит обжатие металла по высоте, уширение и вытяжка. Величина деформации за проход ограничивается условием захвата металла валками, которое обеспечивается наличием трении между валками и прокатываемой заготовкой.

Инструмент прокатки – гладкие и калиброванные валки; оборудование – прокатные станы, устройство которых определяется прокатываемой па них продукцией.

Исходной заготовкой при прокатке являются слитки.

Продукцию прокатки (прокат) обычно подразделяют на четыре основные группы, Наибольшая доли приходится на группу листового проката. Группу сортового проката составляют профили простой и сложной – фасонной формы. Прокатанные трубы разделяют на бесшовные и сварные, К специальным видам проката относят прокат, поперечное сечение которого по длине периодически меняется, а также изделия законченной формы (колеса, кольца и т, д.).

Прокат используют в качестве заготовок в кузнечно-штамповочном производстве, при изготовлении деталей механической обработкой и при создании сварных конструкций. Поэтому сортаменту основных групп проката следует уделить особое внимание.

Для получения из проката профилей небольших размеров (до тысячных долей миллиметра), с высокой точностью и малой шероховатостью применяют волочение, осуществляемое, как правило, в холодном состоянии. Рассматривая схему деформирования металла при волочении, надо отметить, что в очаге деформации металл испытывает значительные растягивающие напряжения, тем большие, чем больше усиление волочении. Чтобы это усилие не превысило допустимой величины, ведущей к обрыву изделия, ограничивают обжатия за один проход, принимают меры для уменьшения трений между металлом и инструментом и вводят промежуточный отжиг, поскольку при холодном волочении металл упрочняется.

Процесс прессования, осуществляемый в горячем или холодном состоянии, позволяет получать профили более сложной формы, чем при прокатке, и с более высокой точностью, Заготовками являются слитки, а также прокат.

Рассматривай схему деформирования металла при прессовании, надо отметить, что в очаге деформации метала находится в состоянии всестороннего неравномерного сжатия. Эта особенность дает возможность прессовать металлы и сплавы, обладающие пониженной пластичностью, что является одним из преимуществ этого процесса. Прессованием более экономично изготавливать небольшие партии. профилей, поскольку переход от изготовления одного профиля к другому осуществляется.легче, чем при прокатке. Однако при прессовании значителен износ инструмента и велики отходы металла,

Прессование производят на специализированных гидравлических прессах. Знакомясь с устройством инструмента, обратите внимание на расположение и взаимодействие его частей при прессовании сплошных и полых профилей.

7.2. Свободная ковка и ковка в подкладных штампах. Горячая и холодная объемная штамповка. Листовая штамповка.

Ковка применяется при получении небольшого количества одинаковых заготовок и является единственно возможным способом получения массивных поковок (до 250 т).

Процесс ковки, осуществляемый только в горячем состоянии, состоит из чередования в определенной последовательности основных операций ковки. Прежде чем перейти к рассмотрению последовательности изготовления поковок, следует изучить основные операции ковки, их особенности и назначение. Разработка процесса ковки начинается с составления чертежа поковки по чертежу готовой детали. Ковкой получают поковки относительно простой формы, требующие значительной обработки резанием. Припуски и допуски на все размеры, а также напуски (упрощающие конфигурацию поковки) назначают в соответствии с ГОСТ 7062–67 (для стальных поковок, изготавливаемых на прессах) или ГОСТ 7829–70 (для стальных поковок, изготавливаемых па молотах).

В качестве исходной заготовки при ковке используют для мелких и средних по массе поковок сортовой прокат и блюмы; для крупных поковок – слитки. Массу заготовки определяют, исходя из ее объема, который подсчитывают как сумму объемов поковки и отходов по формулам, приводимым в справочной литературе .

Поперечное сечение заготовки выбирают с учетом обеспечения необходимой уковки, которая показывает, во сколько раз изменилось поперечное сечение заготовки в процессе копки. Чем больше уковка, тем лучше прокован металл, тем выше его механические свойства.

Последовательность операций ковки устанавливается в зависимости от конфигурации поковки и технических требований на нее, от вида заготовки.

С разнообразным универсальным кузнечным инструментом, применяемым для выполнения основных операций ковки, нужно ознакомиться при изучении этих операций. Изучая принципиальное устройство машин для колки (пневматического и паровоздушного молотов, гидравлического пресса), обратите внимание, что применение того или иного типа оборудования обусловливается массой поковки.

В результате изучения процесса ковки необходимо иметь четкое представление о требованиях к конструкции деталей, получаемых из кованых поковок.

7.3. Горячая объемная штамповка.

При объемной штамповке пластическое течение металла ограничивается полостью специального инструмента - штампа, который служит для получения поковки только данной конфигурации. Горячая объемная штамповка по сравнению с ковкой позволяет изготовить поковку, по конфигурации очень близкую к готовой детали, с большей точностью и высокой производительностью. Однако необходимость использования специального дорогостоящего инструмента для каждой поковки делает штамповку рентабельной лишь при достаточно больших партиях поковок. Штамповкой получают поковки с массой до 100-200 кг, а в отдельных случаях – до 3 т. Исходные заготовки для объемной штамповки, как правило, получают отрезкой сортового проката разнообразного профиля: круглого, квадратного, прямоугольного и т. д. В большинстве случаев для штамповки поковок более или менее сложной конфигурации нужно получить фасонную заготовку, т, е. приблизить ее форму к форме поковки. С этой целью исходную заготовку обычно предварительно деформируют в заготовительных ручьях многоручьевых штампов, в ковочных вальцах или другими способами. При штамповке больших партий поковок применяют прокат периодического профиля.

Наличие большого разнообразия форм и размеров поковок, сплавов, из которых они штампуются, привело к возникновению различных способов горячей объемной штамповки. При классификации этих способов в качестве основного признака принимают тип штампа, которым определяется характер деформирования металла в процессе штамповки. В зависимости от типа штампа выделяют штамповку в открытых штампах и штамповку в закрытых штампах (или безоблойную штамповку). Изучая эти способы штамповки, нужно обратить внимание на их преимущества, недостатки и области рационального использования,

Для штамповки в открытых штампах характерно образование заусенца в зазоре между частями штампа, Заусенец при деформировании закрывает выход из полости штампа для основной массы металла; в то же время в конечный момент деформирования в заусенец вытесняются излишки металла,

При штамповке в закрытых штампах их полость в процессе деформирования металла остается закрытой. Существенным преимуществом способа является значительное уменьшение расхода металла, поскольку нет отхода в заусенец. Но трудность применения штамповки в закрытых штампах заключается в необходимости строгого соблюдения равенства объемов заготовки и поковки.

Кроме различия по типу инструмента-штампа штамповку различают по виду оборудования, на котором она производится. Горячая объемная штамповка осуществляется на паровоздушных молотах, на кривошипных горячештамповочных прессах, горизонтально-ковочных машинах, гидравлических прессах. Штамповка на каждой из этих машин имеет свои особенности, преимущества и недостатки, которые необходимо четко представлять. Рассмотрев схемы машин объемной штамповки и принципы их действия, необходимо уяснить, для какого типа деталей наиболее рационально использовать то или иное оборудование с учетом его технологических возможностей. Большое внимание следует уделить особенностям конструкции поковок, штампуемых на каждом типе машин,

Разработка процесса объемной штамповки так же, как при ковке, начинается с составления чертежа поковки по чертежу готовой детали с учетом вида оборудования, на котором будет производиться штамповка. Большое значение при этом имеет правильный выбор расположения плоскости разъема штампов, На поковку, получаемую штамповкой, устанавливают припуски, допуски, напуски, штамповочные уклоны, радиусы закругления и размеры наметок под прошивку в соответствии с ГОСТ 7505–74 (для стальных поковок).

Массу заготовки под штамповку определяют, исходя из закона постоянства объема при пластическом деформировании, подсчитывая объем поковки и объем технологических отходов по формулам, приводимым в справочной литературе, Размеры заготовки и форму ее поперечного сечения определяют в зависимости от формы поковки и способа ее штамповки.

После штамповки поковки подвергают отделочным операциям, которые являются завершающей частью процесса горячей объемной штамповки и способствуют получению поковок с необходимыми механическими свойствами точностью и шероховатостью поверхностей. От этих операций зависит трудоемкость последующей механической обработки.

7.4. Холодная штамповка.

Холодную штамповку делят на объемную и листовую. При объемной штамповке-холодном выдавливании, высадке и формовке – заготовкой служит сортовой прокат. При этом получают изделия с высокими точностью и качеством поверхности. Однако из-за того, что удельные усилия при холодной объемной штамповке значительно больше, чем при горячей, ее возможности ограничены из-за недостаточной стойкости инструмента,

К листовой штамповке относят процессы деформирования заготовок в виде листов, полотен, лент и труб,

Процессы листовой штамповки можно разделить на операции, поочередное применение которых позволяет придать исходной заготовке форму и размеры детали, Все операции листовой штамповки можно объединить в две группы: разделительные и формоизменяющие. При выполнении разделительных операций деформирование заготовки происходит вплоть до ее разрушения. При выполнении формоизменяющих операций, наоборот, стремятся создать условия, при которых может быть получено наибольшее формоизменение заготовки без ее разрушения.

Изучая разделительные операции, обратите внимание на то, как влияют на качество получаемых изделий технологические параметры процесса (например, величина зазора между режущими кромками). Большое значение при разработке процессов вырубки изделий имеет правильное расположение вырубаемых деталей па листовой заготовке (раскрой материала). Правильный раскрой должен обеспечивать минимальные отходы при вырубке и достаточную величину перемычек между деталями, так как от их величины зависит качество получаемых деталей. Основным показателем экономичности раскроя можно принять коэффициент использования металла, равный отношению площади деталей к площади листа, полосы или ленты, из которых эти детали вырубают. При этом следует отметить, что вырубка деталей из рулонной полосы или ленты экономичнее.

Рассматривая формоизменяющие операции, обратите внимание на то, что при операциях гибки и вытяжки без уточнения стенки изменения толщины заготовки практически не происходит.

При гибке в каждом сечении по толщине заготовки одновременно действуют сжимающие и растягивающие напряжения, вследствие чего упругая деформация может быть относительно большой. Поэтому при гибке необходимо учитывать угол, на который «отпружинивает» изделие. Значение углов пружинения для каждого конкретного случая находят из справочников.

Величина растягивающих напряжений в изгибаемой заготовке зависит от отношения R/5 (R–радиус гибки, 5 – толщина материала) и может превысить допустимую при слишком малом относительном радиусе. В справочной литература даются минимальные значения радиуса гибки для различных мате­риалов.

При вытяжке полых изделий из плоской заготовки дно изделия, находящееся под пуансоном, практически не деформируется, а остальная часть заготовки (фланец) растягивается в радиальном направлении и сжимается в тангенциальном. При сжатии фланца иногда происходит образование складок; для предотвращения этого явления необходим прижим фланца к торцу матрицы.

Усилие, действующее со стороны пуансона на заготовку, увеличивается е увеличением отношения диаметра заготовки к диаметру вытягиваемого изделия и может достигать величины, превышающей прочность стенки вытягиваемого изделия. При этом происходит отрыв дна.

Инструмент листовой штамповки – штампы – отличается большим разнообразием. Жесткие штампы, обычно применяемые для листовой штамповки, состоят из рабочих элементов (пуансона и матрицы) и ряда вспомогательных деталей. Такие штампы делят на простые (для выполнения одной операции) и сложные (для выполнения нескольких операций).

Оборудование листовой штамповки – механические прессы различной конструкции.

При изготовлении небольших партий изделий, когда изготовление сложных штампов неэкономично, применяют упрощенные способы обработки давлением листовых заготовок: штамповку эластичными средами, давильные работы и импульсную штамповку,

При штамповке эластичной средой (например, резиной) только один из двух рабочих элементов изготавливают из металла, роль другого выполняет эластичная среда, В качестве оборудования при этом применяют гидравлические и механические прессы, а также молоты.

Давильные работы предназначены для получения деталей в форме тел вращения и выполняются на токарно-давильных станках .

При беспрессовой штамповке жидкостной, газовой средой или магнитным полем применяют специальные установки, в которых энергию, необходимую для деформирования, получают за счет электрического разряда в жидкости, взрыва взрывчатого вещества или горючих смесей, мощного электромагнитного импульса, В этих случаях нагрузка заготовку носит кратковременный (импульсный) характер. Это дает возможность штамповать сложные детали из труднодеформируемых сплавов, штамповка которых в обычных условиях затруднительна,

Изучая принципиальные схемы этих видов штамповки, обратите внимание на их преимущества и недостатки.

7.5. Термообработка кованых и штампованных поковок .

Нагрев металла перед пластическим деформированием является одним из важнейших вспомогательных процессов при обработке давлением и производится с целью повышения пластичности и уменьшения сопротивления деформированию. Любой металл или сплав должен обрабатываться давлением во вполне определенном интервале температур. Например, сталь 10 может подвергаться горячему деформированию при температурах не выше 1260° С и не ниже 800° С, Нарушение температурного интервала обработки приводит к отрицательным явлениям, происходящим в металле (перегреву, пережогу) и в конечном итоге к браку. При нагреве необходимо обеспечить равномерную температуру по сечению заготовки и минимальное окисление ее поверхности. Для качества металла большое значение имеет скорость нагрева: при медленном нагреве снижается производительность и увеличивается окисление (окалино-образование), при слишком быстром нагреве в заготовке могут появиться трещины. Склонность к образованию трещин тем больше, чем больше размеры заготовки и меньше теплопроводность металла (у высоколегированных сталей, например, теплопроводность ниже, чем у углеродистых сталей, и меньше скорость нагревания).

Знакомясь с принципом работы и конструкцией печей и электронагревательных устройств, обратите внимание на их технологические возможности и область применения, которая характеризуется типоразмером и величиной партии заготовок.

8. Тема 5. Основы технологии производства сварных изделий.

8.1. Сварка плавлением, давлением и трением.

Изучение раздела следует начинать с рассмотрения физической сущности сварки, для понимания которой необходимо использовать сведения о строении металла и металлической связи между атомами вещества.

Металл состоит из множества положительно заряженных ионов, упорядочение расположенных в пространстве и связанных в единое целое облаком коллективизированных электронов. При соприкосновении двух металлических тел обычно не происходит их объединения в единое целое; этому препятствуют неровности на поверхности и пленки окислов, гидридов и нитридов, дезактивирующих ее. Если активировать поверхности заготовок и сблизить вес поверхностные ионы на расстояния 2-3А (на таком расстоянии располагаются ионы в твердом металле), то происходит сварка, т, е. неразъемное соединение заготовок за счет реализации межатомных сил связи. На практике это достигают тепловым или силовым воздействием или их сочетанием.

При сварке плавлением имеет место только тепловое воздействие - нагрев до расплавления кромок заготовок с образованием единой жидкой металлической ванны. Ее кристаллизация происходит путем последовательного единичного или группового оседания атомов жидкой фазы во впадинах кристаллической. решетки твердой фазы, при котором устанавливаются межатомные связи. В результате кристаллизации в зоне сварки образуются зерна, принадлежащие как основному металлу, так и металлу шва. В зоне сварки устанавливается такое же атомно-кристаллическое строение металла.

Следует обратить внимание на принцип выбора типа и марки электрода для сварки, а также его диаметра и допустимого режима сварки. Важно понять, что ток при ручной дуговой сварке подводится к одному концу стержня электрода, а дуга горит у противоположного; расстояние между ними достигает 300–400 мм. При чрезмерной силе тока возникает перегрев верхней части электрода джоулевым теплом, что вызывает отслаивание покрытия и брак при сварке, Чтобы не допустить перегрела, диаметр электрода выбирают в зависимости от толщины свариваемого металла, а силу сварочного тока – по диаметру электрода. Следует изучить области применения этого способа сварки (материалы, толщины, типы конструкций). Он эффективен при сварке коротких, прерывистых швов со сложной траекторией, и труднодоступных местах, в различных пространственных положениях в условиях ремонта, опытного производства, монтажа и строительства. При ручной сварке объем жидкого металла сварочной ванны незначителен, так что он может удерживаться па вертикальной стене или в потолочном положении за счет сил поверхностного натяжения, К недостаткам способа относится тяжелый ручной труд и малая производительность, препятствующие его использованию и серийном производстве.

При изучении этого процесса важно понять, как обеспечивается начало процесса, поддержание его на заданных режимах, защита от окисления и роль сварщика. Настройку автомата по заданной толщине металла производит наладчик, определяя необходимую величину силы тока, скорости сварки и напряжения на дуге, и задает скорость подачи электродной проволоки, равную скорости се плавления на заданном режиме, Случайные отклонения режима (пробуксовка подающих роликов) устраняются автоматически по двум вариантам, В автоматах с регулируемой скоростью подачи электродной проволоки, зависящей от напряжения на дуге, колируются действия сварщика. Автомат непрерывно сравнивает заданное напряжение и скорость подачи электрода. Более простые автоматы с постоянной скоростью подачи электродной проволоки основаны на саморегулировании дуги, за счет которого при случайном увеличении длины дуги снижается сварочный ток. Это снижает скорость плавления электрода до восстановления первоначального режима. Следует учесть, что саморегулирование дуги эффективно для большой плотности тока (большой ток или малый диаметр электрода). Качество процесса автоматической сварки обеспечивается правильным выбором марок проволоки для сварки (они имеют пониженное содержание примесей и обозначаются индексом «Св»), а также флюса. Общие требования к флюсу; при взаимодействии с металлом он должен давать шлак с меньшей, чем у металла, плотностью, не образующей с ним промежуточных соединений, и с большей усадкой. Этим исключаются шлаковые включения в шве и достигается самопроизвольное отделение шлаковой корки от шва при остывании.

Необходимо изучить особенности технологии сварки, уяснив, что при автоматической сварке токопровод близко расположен к дуге и можно использовать, не опасаясь перегрева электрода, большие токи (до 1600 А) и тем самым достичь максимальной производительности, Но большая масса жидкой ванны позволяет выполнять сварку только в нижнем положении, а при сварке корневого шва требуются мероприятия по удержанию жидкой ванны (подкладки, флюсовые подушки). Необходимо понять, что автоматическую сварку под флюсом рационально применять для получения однотипных узлов, имеющих протяженные прямолинейные и кольцевые швы – для листовых заготовок повышенной толщины (более 3 мм) из различных сталей, меди, никеля, титана, алюминия и их сплавов.

8.2. Плазменная обработка металлов.

Необходимо понять, что источником теплоты служит струя газа, ионизированного в дуге, которая при соударении о менее нагретое тело деионизируется с выделением большого количества теплоты, позволяющим считать се самостоятельным источником. Температура плазменной струи зависит от степени ионизации газа. Для этого используют столб сжатой дуги, т, е. дуги, горящей в узком канале, через который под давлением продувают газ (аргон, азот , водород и др.), увеличивающий степень ее сжатия. В этих условиях температура газа в столбе дуги достигают° С, что по сравнению со свободно горящей дугой резко увеличивает степень ионизации и температуру газа, выходящего из канала с большой скоростью в виде струи. Этот источник теплоты имеет высокую температуру, концентрацию и защитные свойства. Струя плазмы используется по двум вариантам: в совмещении с другой (в основном при термической резке) и обособленно от дуги (при сварке, наплавке и напылении). Последний вариант пригоден и дли обработки неэлектропроводных материалов.

8.3. Сварка электронным лучом.

Процесс относится к сварке плавлением, но в отличие от дуговых мето­дов сварки выполняется в глубоком вакууме, где мало ионов, переносящих электрические заряды. По этой причине в вакууме дуговой электрический раз-ряд неустойчив. Для сварки в вакууме с давлением
105–10б мм рт. ст. в качестве источника теплоты используют поток ускоренных электронов. Скорость электронов равна примерно половине скорости света, что достигается высоким напряжением (40–150 кВ) между катодом и заготовкой (анодом). Электроны, излучаемые с катода, разгоняются, концентрируются в луч и бомбардируют металл, выделяя при торможении теплоту за счет перехода кинетической энергии в тепловую. Важно отметить, что энергию луча можно концентрировать на весьма малой площади в глубине металла, где происходит торможение основного количества электронов. Это обеспечивает весьма высокую проплавляющую способность луча, позволяющую сваривать заготовки толщиной 50 мм за один проход без разделки кромок и получать швы минимальной ширины, что исключает искажение формы заготовок при сварке. Сварка электронным лучом применима для заготовок, размещаемых в камере, и обеспечивает наи­более высокое качество соединений любых металлов, в том числе тугоплавких, легко окисляемых при повышенных температурах.

8.4. Газовая сварка и резка металлов.

При газовой сварке металл расплавляется теплотой, выделяемой при горении горючего газа в смеси с кислородом. Важно, что наиболее высокотемпературная (3200° С) зона пламени имеет восстановительные свойства и защищает металл от окисления при сварке. Для борьбы с окислами на поверхности свариваемого металла используют флюсы в виде паст. Однако эффективность этих мер недостаточна при сварке сложно легированных сплавов, а также сплавов титана и др. Кроме того, газовая сварка мало производительна и не автоматизируется. По этим причинам ее значение сохраняется лишь при ремонте чугунных, латунных, тонкостенных стальных заготовок и в полевых условиях при отсутствии электроэнергии,

В противоположность газовой сварке непрерывно расширяется применение в промышленности газовой резки. Важно понять, что под резкой понимают сварки и ее мощности должны зависеть от размеров и формы заготовок, а также от теплопроводности и электросопротивления материала.

8.5. Сварка трением и газопрессовая сварка.

Важно понять, что эти способы относятся к сварке давлением, но отличаются источниками теплоты. Надо рассмотреть их преимущества по сравнению с контактной стыковой сваркой, особенности процессов и рациональные области применения. При этом важно иметь в виду, что для сварки трением одна из заготовок должна иметь ось вращения.

Положительной стороной газопрессовой сварки является более плавный, чем при контактной сварке, режим нагрева и охлаждения; она пригодна для сварки особо крупных заготовок. Важно, что при этом не требуется электроэнергии, что позволяет применять ее при ремонтных и других работах в полевых условиях.

9. Тема 6. Основы технологии обработки материалов резанием.

9.1. Физические основы процесса резания.

Следует подчеркнуть, что для осуществления процесса резания необходимо наличие относительных движений между заготовкой и инструментом, которые делят на главное движение (или движение резания) и движение подачи. Формообразование поверхности в процессе резания осуществляется при различном количестве движений, Пространственная форма детали ограничивается геометрическими поверхностями. Реальные поверхности отличаются от идеальных тем, что имеют в результате обработки микронеровность и волнистость, но методы их получения те же, что и идеальных геометрических поверхностей. Изучите геометрические методы формообразования поверхностей деталей машин, В зависимости от вида обрабатываемой поверхности используют разные методы их формообразования. В одних случаях форма поверхности получается в результате копирования формы режущего лезвия инструмента, в других – как огибающая ряда последовательных положений лезвия инструмента относительна заготовки.

Графическим изображением процесса формообразования поверхности является схема обработки, на которой условно изображается обрабатываемая заготовка, ее закрепление на станке с указанием положения режущего инструмента относительно заготовки и движений резания.

Движения, участвующие в формообразовании поверхности, рассмотрите на, примере обработки наружной цилиндрической поверхности методом точения. Изучите элементы режима резания; скорость резания, подачу и глубину резания, их определения, обозначения и размерности. На примере токарного резца рассмотрите элементы и геометрию режущего инструмента. Для определения углов резца необходимо знать поверхности на обрабатываемой заготовке и координатные плоскости.

Ознакомьтесь с понятием качества обработанной поверхности, которое является совокупностью ряда характеристик; шероховатости, волнистости; структурного состояния (микротрещины, надрывы, измельченная структура); упрочнения поверхностного слоя (глубины и степени); остаточных напряжений; и др. Качество обработанных поверхностей определяет надежность и долговечность деталей и машин в целом.

Ознакомьтесь с физической сущностью процесса резания как процесса упругопластического деформирования материала заготовки, сопровождающегося ее разрушением и образованием стружки,

Динамику процесса резания рассмотрите на примере обтачивания наружной цилиндрической поверхности токарным проходным резцом на токарно-винторезном станке.

Обратите внимание, что по составляющим силы резания ведут расчеты элементов станка, инструмента и приспособления. Рассмотрите влияние составляющих силы резании на точность обработки и качество обработанной поверхности.

Рассмотрите физические явления, сопровождающие процесс формообразования поверхностей резанием: упругопластическая деформация обрабатываемого материала, наростообразование, трение, тепловыделение, износ инструмента, Особое внимание обратите на влияние этих явлений на качество обработки. При одних условиях обработки эти явления положительно влияют на качество обработанной поверхности заготовки, при других – отрицательно.

Применение различных смазочно-охлаждающих веществ оказывает благоприятное влияние на процесс резания и качество обработки. Изучая износ инструмента, рассмотрите его характер, критерии износа и их связь со стойкостью инструмента. Заметьте, что стойкость и соответствующая ей скорость резании должны устанавливаться с учетом высокой производительности, качества по­верхности и наименьшей себестоимости обработки,

Анализируя формулу для определения основного технологического времени при обтачивании цилиндрической поверхности, обратите внимание, что поверхности заготовок следует обрабатывать на таких режимах резания, при которых достигается высокая точность обработки и качество поверхности при удовлетворительной производительности.

При изучении инструментальных материалов обратите внимание, что они должны обладать высокой твердостью (НRС 60, значительной теплостойкостью и износостойкостью, высокой механической прочностью и вязкостью. Для изготовления режущего инструмента применяют различные инструментальные материалы: инструментальные стали, металлокерамические (твердые) сплавы, минералокерамика, абразивные материалы, алмазный инструмент; изучите их характеристики и область применения.

9.2. Обработка поверхностей заготовок лезвийным (точение, сверление, строгание, фрезерование, протягивание) и абразивным инструментом (шлифование, притирка, хонингование).

Обработка заготовок на токарных станках. Ознакомьтесь с характерными особенностями метода точения. Обратите внимание, что на стайках токарной группы обрабатывают поверхности заготовок, имеющих форму тел вращения.

Ознакомьтесь с типами станков токарной группы. Изучите название и назначение узлов токарно-винторезного станка.

Изучите виды и конструкции инструментов и приспособлений, применяемых на токарных станках, и их назначение. Особое внимание уделите обработке заготовок на токарно-винторезных станках, как наиболее универсальных и широко распространенных.

Знакомясь с токарно-револьверными станками, обратите внимание, что они предназначены для обработки партий деталей сложной формы, требующих применения большого числа режущего инструмента. Станки предварительно настраиваются на обработку определенной детали; снабжены устройствами для автоматического получения размеров поверхностей заготовки, В процессе обработки инструменты вводят в работу последовательно (один за другим) или параллельно (одновременно несколько). Параллельная работа инструментов сокращает основное время обработки. Токарно-карусельные станки предназначены для обработки тяжелых заготовок больших размеров, у которых отношение длины (высоты) к диаметру составляет 0,34-0,7. Обратите внимание па то, что карусельные станки за счет наличия нескольких суппортов и револьверной головки имеют большие технологические возможности.

Рассматривая обработку заготовок на многорезцовых токарных станках, обратите внимание, что они работают по полуавтоматическому циклу и предназначены для обработки только наружных поверхностей деталей типа ступенчатых валов. Одновременно обрабатывается несколько поверхностей различными резцами, установленными на продольном или поперечном суппортах, в зависимости от их технологического назначения. При изучении автоматов и полуавтоматов обратите внимание на высокую производительность при изготовлении крупных партий деталей и классификацию автоматов и полуавтоматов. Изучите принципиальные схемы работы токарных автоматов и полуавтоматов параллельной и последовательной обработки, их области применения и техно­логические возможности.

Ознакомьтесь с технологическими требованиями к конструкциям деталей машин, обрабатываемых на станках токарной группы.

9.3. Обработка заготовок на сверлильных станках.

Ознакомьтесь с характерными особенностями метода сверления. Сверлильные станки предназначены для получения и обработки отверстий различными режущими инструментами (сверлами, зенкерами, развертками, метчиками). Изучите применяемый режущий инструмент, приспособления для закрепления заготовок и инструментов, их назначение и возможности. Ознакомьтесь с классификацией сверлильных станков. Изучите название и назначение узлов вертикально - и радиально-сверлильного станков, обратите внимание, что на последнем обрабатывают отверстия в крупногабаритных заготовках. Изучите виды работ, выполняемых на сверлильных станках. Обработка глубоких отверстий, у которых длина больше пяти диаметров вызывает определенные трудности. Режущими инструментами являются сверла специальной конструкции. Рассматривая схему глубокого сверления, обратите внимание на подвод смазочно-охлаждающей жидкости и отвод стружки из зоны резания.

Обратите внимание, что использование агрегатных станков позволяет вести обработку заготовок одновременно несколькими инструментами.

9.4. Обработка заготовок на расточных станках.

Ознакомьтесь с характерными особенностями метода растачивания. На расточных станках обрабатывают отверстия, наружные цилиндрические и плоские поверхности, уступы, канавки, реже конические отверстия в заготовках типа корпусов. Универсальность расточного станка рассмотрите, изучая схемы обработки поверхностей различными инструментами. Схему растачивания отверстий целесообразно изучить на фоне упрощенного вида станка с рассмотрением движений его узлов и их технологического назначения. Изучая алмазно - и координатно-расточные станки, обратите внимание на их конструктивные особенности и технологические возможности. Па алмазно-расточных станках окончательно обрабатывают отверстия алмазными и твердосплавными резцами. Координатно-расточные станки предназначены для обработки отверстий, плоскостей и уступов с высокой точностью их расположения. Ознакомьтесь с технологическими требованиями к конструкциям деталей машин, обрабатываемых на станках сверлильно-расточной группы.

9.5. Обработка заготовок на строгальных и долбежных станках. Ознакомьтесь с характерными особенностями метода обработки строганием и долблением. Изучите типы строгальных станков. Обратите внимание, что станки предназначены для обработки плоских поверхностей, пазов, канавок, уступов и др.

Изучая узлы и движения поперечно-строгального станка, обратите внимание, что процесс резания – прерывистый и удаление материала происходит только при прямом (рабочем) ходе. Изучая формообразование поверхностей на поперечно-продольно-строгальных и долбежных станках, уясните разницу в схемах резания.

Ознакомьтесь с технологическими требованиями, предъявляемыми к конструкциям деталей машин, обрабатываемых на строгальных и долбежных станках.

9.6. Обработка заготовок на протяжных станках.

Ознакомьтесь с характерными особенностями метода протягивания, Изучите типы протяжных станков и виды протяжек. Обратите внимание, что протягивание является прогрессивным методом, обеспечивающим высокое качество и производительность обработки. Протягиванием получают практически любые поверхности – наружные и внутренние, размер которых по длине не изменяется, В формообразовании поверхностей участвует только одно движение – движение резания, а съем припуска осуществляется за счет разности размеров режущих зубьев протяжки.

Изучите конструкцию режущего инструмента на примере круглой протяжки. Изучая непрерывное протягивание, обратите внимание на высокую производительность этих станков. Ознакомьтесь с технологическими требованиями, предъявляемыми к конструкциям деталей машин, обрабатываемых на протяжных станках.

9.7. Обработка заготовок на фрезерных станках.

Ознакомьтесь с характерными особенностями метода фрезерования. Фрезерованием обрабатывают горизонтальные, вертикальные, наклонные и фасонные поверхности, уступы и пазы различного профиля. Обратите внимание, что обработка ведется многолезвийными режущими инструментами – фрезами, имеющими большую номенклатуру по конструкции и размерам аз зависимости от технологического назначения.

Изучите типы фрезерных станков, элементы и геометрию цилиндрической и торцовой фрез.

Обратите внимание, что делительные головки, используемые па фрезерных стайках, служат для периодического поворота заготовок на требуемый угол и для непрерывного их вращения при фрезеровании винтовых поверхностей.

Изучая обработку заготовок на продольно-фрезерных станках, обратите внимание, что они являются много-шпиндельными станками, а заготовка имеет только продольную подачу; предназначены для обработки заготовок большой массы и размеров,

Особенностью барабанно-фрезерных станков является наличие барабана с горизонтальной осью вращения, на гранях которого устанавливают заготовки.

Изучая обработку контурных и объемных фасонных поверхностей па копи-ровально-фрезерных станках, обратите внимание, что траектория относительного движения заготовки и фрезы является результирующей скоростью двух или более движений.

Ознакомьтесь с технологическими требованиями к конструкциям деталей машин, обрабатываемых на фрезерных станках,

9.8. Обработка зубчатых колес на зуборезных станках.

Изучите сущность профилирования зубьев копированием (образование профиля зубьев фасонными фрезами) и обкаткой (огибанием) - образование профиля зубьев как огибающей последовательных положений режущих лезвий инструмента относительно заготовки.

Обратите внимание, что для нарезания зубчатых колес по методу обкатки применяют червячные модульные фрезы, зуборезные долбяки и зубострогальные резцы. Червячная модульная фреза представляет собой винт с прорезанными перпендикулярно шинкам катанками. Зуборезный долбяк представляет собой зубчатое колесо, зубья которого имеют эвольвентный профиль. Зубострогальный резец имеет призматическую форму с соответствующими углами заточки и прямолинейным режущим лезвием.

Уясните, что зуборезные станки, нарезающие зубья колес по методу обкатки, делятся на типы в зависимости от технологического метода обработки (зубофрезерные; зубодолбежные, зубострогальные, зубопротяжные и т. д.).

Зубофрезерные станки предназначены для нарезания цилиндрических прямозубых, косозубых и червячных колес, червячной модульной фрезой по методу обкатки. Заготовке и фрезе сообщают движения, соответствующие зацеплению червячной пары, Боковая поверхность зуба образуется в результате согласованного и непрерывного вращения заготовки и фрезы. Форма зуба по ширине цилиндрического колеса образуется движением фрезы вдоль оси заготовки, а при нарезании червячного колеса – движением заготовки в радиальном направлении. При нарезании цилиндрического косозубого колеса для получения винтового зуба заготовка получает дополнительное вращение. Для согласования движений заготовки и инструмента в процессе нарезания зубьев на зубофрезерном станке настраивают соответствующие гитары сменных зубчатых колес; скоростную, делительную, подач и дифференциала.

На зубодолбежных станках нарезают цилиндрические зубчатые колеса внешнего и внутреннего зацепления с прямыми и косыми зубьями, Обратите внимание, что зубодолбление является одним из основных способов нарезания зубчатых колес внутреннего зацепления и многовенцовых колес (блоков). Нарезание зубчатых колес производят долбяками по методу обкатки, в основу которого положено зацепление двух цилиндрических зубчатых колес.

Изучите нарезание конических прямозубых колес на зубострогальных станках по методу обкатки, В основу метода положено зацепление двух конических колес, одно из которых плоское. Нарезаемое коническое колесо (заготовка) находится в зацеплении с производящим плоским коническим колесом, у которого зубья ограничены плоскостями, сходящимися в общей вершине, и имеют форму зуба рейки. Режущим инструментом служат два зубострогальных резца, образующие одну впадину производящего колеса. На зубопротяжных станках с делительными автоматическими устройствами последовательным протягиванием изготовляют цилиндрические зубчатые колеса с прямыми зубьями.

Ознакомьтесь с технологическими требованиями к конструкциям зубчатых колес,

9.9. Обработка заготовок на шлифовальных станках.

Ознакомьтесь с характерными особенностями шлифования. Обратите внимание, что шлифование является методом окончательной обработки поверхностей заготовок абразивными инструментами, состоящими из большого количества абразивных зерен с острыми гранями и высокой твердостью. Изучите характеристику шлифовальных и алмазных кругов. Обратите внимание на износ и правку инструментов, Уясните, что шлифование целесообразно применять для получения высокой точности и качества поверхности, а также для обработки высокотвердых материалов,

Изучая кругло - и плоскошлифовальные станки, обратите внимание па их широкую универсальность.

Изучая внутришлифовальные станки, рассмотрите формообразование внутренних цилиндрических поверхностей в неподвижной и по вращающейся заготовках. Первый способ обработки применяют при шлифовании отверстий в крупных заготовках сложной формы. Бесцентровое шлифование применяется для обработки партии однотипных деталей. Обработка ведется с продольной и поперечной подачей. Обратите внимание, что заготовка получает продольную подачу за счет поворота оси ведущего круга в вертикальной плоскости. Изучите сущность ленточного и алмазного шлифования.

Ознакомьтесь с технологическими требованиями, предъявляемыми к конструкциям деталей машин, обрабатываемых на шлифовальных станках.

9.10. Отделочные методы обработки.

Ознакомьтесь с характерными особенностями методов отделки поверхностей. Уясните, что отделочные методы применяют для окончательной обработки и придания поверхностям высокой точности, качества и повышения надежности работы. Отделочные методы обработки поверхностей (притирка, полирование, обработка абразивными лентами, абразивно-жидкостная обработка, хонингование, суперфиниширование) основаны на применении в качестве инструментального материала мелкозернистых абразивных порошков и паст.

Обратите внимание, что особенностью кинематики процесса отделочных методов обработки является сложное относительное движение инструмента и заготовки, при котором траектории движения абразивных зерен не должны повторяться.

Рассматривая методы отделки зубьев зубчатых колес, обратите внимание, что они дают возможность повысить эксплуатационные качества зубчатых передач (плавность работы, усталостную прочность, бесшумность и т, д.).

При отделочных методах обработки зубьев зубчатых колес шевингованием, шлифованием и хонингованием боковые поверхности зубьев профилируются методом обкатки или копирования. Шевингование применяют для окончательной обработки сырых (незакаленных) зубчатых колес, а шлифование и хонингование – закаленных.

Список литературы

1. и др. Технология конструкционных материалов. М., 1977.

2. Технология металлов и других конструкционных материалов. Под ред. и. Л., 1972.

3. , Леонтьев. М., 1975.

4. , Степанов литейного производства. М.: Машиностроение, 1985.

5. Объемная штамповка. Под общ. ред. М.: Машиностроение, 1973.

6. Семенов и объемная штамповка. М.: Высшая школа, 1972.

7. Машины и оборудование машиностроительных предприятий. и др. Л.: Политехника, 1991.

8. , Калинин обработки, заготовки и припуски в машиностроении. Справочник технолога. – М.: Машиностроение, 1976.

9. Романовский по холодной штамповке. – 6-е изд., перераб. и доп. – Л.: Машиностроение, 1979.

10. , «Технологические процессы машиностроительного производства» М: Учебная литература, 2001г. в 3-х т.

11. , «Технология конструкционных материалов и материаловедение» Учебник для вузов.- М: Высшая школа, 1990г.

1. Цель и задачи изучения дисциплины, ее место в учебном процессе.............................................................................................

3. Лабораторный практикум...........................................................

4. Тема 1. Введение в технологию..................................................

5. Тема 2. Основы металлургического производства черных и цветных металлов.........................................................................

6. Тема 3. Основы технологии производства отливок из черных и цветных металлов......................................................................

7. Тема 4. Основы технологии обработки металлов давлением...

8. Тема 5. Основы технологии производства сварных изделий...

9. Тема 6. Основы технологии обработки материалов резанием...

10. Список литературы.....................................................................

Составители:

Ольга Владимировна Мартыненко

Андрей Эдуардович Вирт

Технологические процессы в машиностроении. Часть I

Методические указания

Темплан 2009 г., поз. № 2К.

Подписано в печать г. Формат 60×84 1/16.

Бумага листовая. Печать офсетная.

Усл. печ. л. 2,13. Усл. авт. л. 1,94.

Тираж 100 экз. Заказ №

Волгоградский государственный технический университет

400131 Волгоград, просп. им. , 28.

РПК «Политехник»

Волгоградского государственного технического университета

400131 Волгоград, ул. Советская, 35.

Технологические процессы в машиностроении Лекция 1 ВВЕДЕНИЕ Н. А. Денисова, доцент кафедры машиностроения, канд. пед. наук

План лекции 1 Краткая характеристика изучаемой дисциплины 2 Классификация технологических процессов 3 Основные понятия и определения

Краткая характеристика изучаемой дисциплины Технология – это наука о методах, с помощью которых можно реализовать производственный процесс с целью получения готового изделия с параметрами качества, обеспечивающими требуемые его эксплуатационные свойства. Частью производственного процесса применительно к машиностроению является технологический процесс, или определенная последовательность действий, необходимая для получения конструкционных материалов, заготовок, деталей, комплектов, агрегатов и машин в целом с заданными параметрами качества l

Краткая характеристика изучаемой дисциплины l Цель изучения дисциплины – освоить терминологию и методологию, используемые при проектировании технологических и производственных процессов в машиностроении, а также при их реализации на производственных предприятиях.

Классификация технологических процессов Технологические процессы классифицируют по четырем признакам: l Формообразование l Параметры качества l Производительность изготовления изделий или партии изделий l Себестоимость изготовления изделий.

Классификация технологических процессов По признаку «Формообразование» вся технология конструкционных материалов делится на этапы – переделы: l l Металлургия (производство металлов и сплавов) Производство заготовок (литье, обработка давлением, сварка, методы порошковой металлургии) Механическая обработка (методы резания, поверхностное пластическое деформирование) Сборочное производство (создание подвижных и неподвижных соединений деталей механическими, электрическими способами, сваркой…)

Классификация технологических процессов Признак «Параметры качества» характеризуется группами качества, в числе которых: химический состав l структура и физико-механические свойства основного объема заготовки или детали и их поверхностных слоев l геометрическая форма l точность размеров, формы и взаимного расположения поверхностей l микрогеометрия поверхности l

Классификация технологических процессов l Признак «Производительность изготовления изделий или партии изделий» характеризуется временем, необходимым для изготовления изделия или партии изделий l Характеристикой признака «Себестоимость изготовления изделия» являются суммарные затраты на изготовление одного изделия.

Технологический процесс l Технологический процесс – часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда l Технологический процесс – это совокупность методов обработки: изготовления, изменения состояния, свойств, формы, сырья, материалов, – осуществляемых в процессе производства продукции

Основные понятия и определения Термин Определение ОБЩИЕ ПОНЯТИЯ 1. Технологический процесс Процесс D. Technologischer Prozeß Fertigungsablauf Е. Manufacturing process F. Precédé de fabrication 2. Технологическая операция Операция D. Operation; Arbeitsgang Е. Operation F. Opération Часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. Примечания: 1. Технологический процесс может быть отнесен к изделию, его составной части или к методам обработки, формообразования и сборки. 2. К предметам труда относятся заготовки и изделия. Законченная часть технологического выполняемая на одном рабочем месте процесса,

Основные понятия и определения 3. Технологический метод Метод 4. Технологическая база D. Technologische Basis 5. Обрабатываемая поверхность D. Zu bearbeitende Fläche Совокупность правил, определяющих последовательность и содержание действий при выполнении формообразования, обработки или сборки, перемещения, включая технический контроль, испытания в технологическом процессе изготовления или ремонта, установленных безотносительно к наименованию, типоразмеру или исполнению изделия Поверхность, сочетание поверхностей, ось или точка, используемые для определения положения предмета труда в процессе изготовления. Примечание. Поверхность, сочетание поверхностей, ось или точка принадлежат предмету труда. Поверхность, подлежащая обработки. воздействию в процессе

Основные понятия и определения 6. Технологический документ Документ D. Technologisches Dokument 7. Оформление технологического документа Оформление документа Графический или текстовый документ, который отдельно или в совокупности с другими документами определяет технологический процесс или операцию изготовления изделия Комплекс процедур, необходимых для подготовки и утверждения технологического документа в соответствии с порядком, установленным на предприятии. Примечание. К подготовке документа относится его подписание, согласование и т. д.

Основные понятия и определения 97. Материал Исходный предмет труда, изготовления изделия потребляемый для 98. Основной материал D. Grundmaterial E. Basic material F. Matière première Материал исходной заготовки. Примечание. К основному материалу относится материал, масса которого входит в массу изделия при выполнении технологического процесса, например материал сварочного электрода, припоя и т. д. 99. Вспомогательный материал D. Hilfsmaterial E. Auxiliary material F. Matière auxiliaire Материал, расходуемый при выполнении технологического процесса дополнительно к основному материалу. Примечание. Вспомогательными могут быть материалы, расходуемые при нанесении покрытия, пропитке, сварке (например, аргон), пайке (например, канифоль), закалке и т. д.

Основные понятия и определения 100. Полуфабрикат D. Halbzeug E. Semi-finished product F. Demi-produit Предмет труда, подлежащий дальнейшей обработке на предприятии-потребителе 101. Заготовка D. Rohteil E. Blank F. Ebauche Предмет труда, из которого изменением формы, размеров, свойств поверхности и (или) материала изготавливают деталь 102. Исходная заготовка D. Anfangs-Rohteil E. Primary blank F. Ebauche première Заготовка перед первой технологической операцией 103. Листоштампованное изделие Деталь или заготовка, изготовленная методом листовой штамповки

Основные понятия и определения (Измененная редакция, Поправка, ИУС 6 -91) 104. Отливка D. Gußstück E. Casting 105. Поковка D. Schmiedestück E. Forging Изделие или заготовка, полученные технологическим методом литья Изделие или заготовка, полученные технологическими методами ковки, объемной штамповки или вальцовки. Примечания: 1. Кованая поковка - поковка, полученная технологическим методом ковки. 2. Штампованная поковка - поковка, полученная технологическим методом объемной штамповки. 3. Вальцованная поковка - поковка, полученная технологическим методом вальцовки из сортового проката. (Измененная редакция, Поправка, ИУС 6 -91) 106. Изделие По ГОСТ 15895 -77

Основные понятия и определения 107. Комплектующее изделие Изделие предприятия-поставщика, применяемое как составная часть изделия, выпускаемого предприятиемизготовителем. Примечание. Составными частями изделия могут быть детали и сборочные единицы 108. Типовое изделие D. Typenwerkstück Е. Typified workpiece F. Pièce type Изделие, принадлежащее к группе изделий близкой конструкции, обладающее наибольшим количеством конструктивных и технологических признаков этой группы 109. Сборочный комплект D. Montagesatz E. Assembly set F. Jeu de montage Группа составных частей изделия, которые необходимо подать на рабочее место для сборки изделия или его составной части

ИСПОЛЬЗУЕМЫЕ ИНФОРМАЦИОННЫЕ ИСТОЧНИКИ ГОСТ 3. 1109 -82 Термины и определения основных понятий Гоцеридзе, Р. М. Процессы формообразования и инструменты: учебник для студ. учреждений сред. проф. образования / Р. М. Гоцеридзе. – М. : Издательский центр «Академия» , 2007. – 384 с. 3. Материаловедение и технология конструкционных материалов: учебник для студ. в. учеб. заведений / В. Б. Арзамасов, А. Н. Волчков, В. А. Головин и др. ; под ред. В. Б. Арзамасова, А. А. Черепахина. – М. : Издательский центр «Академия» , 2007. – 448 с. 4. Основы механосборочного производства: Учебное пособие для машиностр. спец. вузов А. Г. Схиртладзе, В. Г. Осетров, Т. Н. Иванова, Г. Н. Главатских. – М: ИЦ МГТУ «Станкин» , 2004. – 239 с. 5. Схиртладзе, А. Г. Проектирование нестандартного оборудования: учебник / А. Г. Схиртладзе, С. Г. Ярушин. – М. : Новое знание, 2006. – 424 с. 1. 2.

2. Элементы технологической операции и характеристика технологического процесса.

3. Технологическая характеристика различных типов производства.

1. Структура технологического процесса (по гост 3.1109–82)

Производственным процессом называют совокупность всех действий людей и орудий производства, необходимых для изготовления или ремонта изделий, выпускаемых на данном предприятии.

Технологический процесс – часть производственного процесса, содержащая целенаправленные действия по изменению (или определению) состояния предмета труда. Различают технологические процессы изготовления изделия или его части, получения заготовки, литья, термической обработки, электрофизической обработки, электрохимической обработки, сборки, контроля качества продукции, ремонта и т.д.

При обработке осуществляется заданное изменение формы, размеров, шероховатости поверхности или свойств заготовки, а при сборке – образование разъемных или неразъемных соединений составных частей заготовки или изделия.

Помимо основных технологических процессов производственные процессы включают вспомогательные процессы – транспортировку, складирование, учет и отчетность.

Технологический процесс состоит из операций.

Технологическая операция – законченная часть технологического процесса, выполняемая на одном рабочем месте.

Рабочее место – часть производственной площади цеха, на которой размещены один или несколько исполнителей работы, обслуживаемая единица технологического оборудования или часть конвейера, а также оснастка и предметы труда.

Операция является основной единицей производственного планирования. Подход к операции как к единице планирования позволяет разобраться во многих спорных случаях, когда неясно, следует ли данный комплекс действий считать за одну или несколько операций.

Пример 1.

Пусть при токарной обработке партии ступенчатых валиков у всех заготовок сначала обтачивается одна шейка, потом вторая и т.д. В этом случае обработку каждой ступени можно рассматривать как законченную часть технологического процесса, составляющую одну операцию. На каждую из этих операций может быть выписан отдельный наряд. Однако часто для упрощения планирования и отчетности выписывают один общий наряд на токарную обработку валиков, которую в этом случае следует рассматривать как одну концентрированную операцию.

Пример 2.

В тяжелом машиностроении часто на одном рабочем месте с помощью переносных различных станков различными рабочими выполняется обработка различных поверхностей одной и той же заготовки.

В таких случаях работу разбивают на операции, каждая из которых выполняется с помощью определенного станка. Если же станки работают последовательно и обслуживаются одной бригадой рабочих, то возможно объединение этих операций в одну.

Пример 3.

Рабочий, который обслуживает автолинию из нескольких станков, выписывается один наряд. Поэтому автолинию следует считать одним рабочим местом, на котором выполняется одна операция.

Первые достоверно известные технологические процессы были разработаны в древнем Шумере — на глиняной табличке клинописью был описан по операциям порядок приготовления пива. С тех пор способы описания технологий производства продуктов питания, инструментов, домашней утвари, оружия и украшений — всего, что изготавливало человечество, многократно усложнились и усовершенствовались. Современный технологический процесс может состоять из десятков, сотен и даже тысяч отдельных операций, он может быть многовариантным и ветвиться в зависимости от различных условий. Выбор той или иной технологии- это непросто выбор тех или иных станков, инструмента и оснастки. Нужно также обеспечить соответствие требованиям технических условий, плановых и финансовых показателей.

Определение и характеристика

ГОСТ дает научно строгое, но сформулированное слишком сухим и наукообразным языком определение технологического процесса. Если же говорить о понятии технологического процесса более понятным языком, то технологический процесс — это совокупность выстроенных в определенном порядке операций. Он направлен на превращение сырья и заготовок в конечные изделия. Для этого с ними совершают определенные действия, обычно выполняемые механизмами. Технологический процесс не существует сам по себе, а является важнейшей частью более общего , включающего в себя в общем случае также процессы контрактации, закупки и логистики, продажи, управления финансами, административного управления и контроля качества.

Технологи на предприятии занимают весьма важное положение. Они являются своего рода посредниками между конструкторами, создающими идею изделия и выпускающими его чертежи, и производством, которому предстоит воплощать эти идеи и чертежи в металл, дерево, пластмассу и другие материалы. При разработке техпроцесса технологи работают в тесном контакте не только с конструкторами и производством, но и с логистикой, закупками, финансами и службой контроля качества. Именно техпроцесс и является той точкой, в которой сходятся требования всех этих подразделений и находится баланс между ними.

Описание технологического процесса должно содержаться в таких документах, как:

  • Маршрутная карта - описание высокого уровня, в нем перечислены маршруты перемещения детали или заготовки от одного рабочего места к другому или между цехами.
  • Операционная карта – описание среднего уровня, более подробное, в нем перечислены все операционные переходы, операции установки-съемки, используемые инструменты.
  • Технологическая карта — документ самого низкого уровня, содержит самое подробное описание процессов обработки материалов, заготовок, узлов и сборок, параметры этих процессов, рабочие чертежи и используемая оснастка.

Технологическая карта даже для простого на первый взгляд изделия может представлять собой довольно толстый том.

Для сравнения и измерения технологических процессов серийного производства применяются следующие характеристики:

  • Цикл технологической операции — длительность (измеряется в секундах, часах, днях, месяцах) операции, повторяющейся с определенной периодичностью. Отсчитывается от момента начала операции до момента ее окончания. Длительность цикла не зависит от числа заготовок или деталей, обрабатываемых одномоментно.
  • Такт выпуска изделия – промежуток времени, через который выпускается это изделие. Рассчитывается как отношение времени, за которое выпускается определенное количество изделий, к этому количеству. Так, если за 20 минут было выпущено 4 изделия, то такт выпуска будет равен 20/4=5 минут/штуку.
  • Ритм выпуска – величина, обратная такту, определяется как число изделий, выпускаемых в единицу времени (секунду, час, месяц и т.п.).

В дискретном производстве такие характеристики технологических процессов не находят применения ввиду малой повторяемости изделий и больших сроков их выпуска.

Производственная программа — представляет собой список названий и учетных номеров выпускаемых изделий, причем для каждой позиции приводится объемы и сроки выпуска.

Производственная программа предприятия складывается из производственных программ его цехов и участков. Она содержит:

  • Перечень выпускаемых изделий с детализацией типов, размеров, количества.
  • Календарные планы выпуска с привязкой к каждой контрольной дате определенного объема выпускаемых изделий.
  • Количество запасных частей к каждой позиции в рамках процесса поддержки жизненного цикла изделий.
  • Подробную конструкторско-технологическую документацию, трехмерные модели, чертежи, деталировки и спецификации.
  • Техусловия на производство и методики управления качеством, включая программы и методики испытаний и измерений.

Производственная программа является разделом общего бизнес-плана предприятия на каждый период планирования.

Виды техпроцессов

Классификация техпроцессов проводится по нескольким параметрам.

По критерию частоты повторения при производстве изделий технологические процессы подразделяют на:

  • единичный технологический процесс, создается для производства уникальной по конструктивным и технологическим параметрам детали или изделия;
  • типовой техпроцесс, создается для некоторого количества однотипных изделий, схожих по своим конструктивным и технологическим характеристикам. Единичный техпроцесс, в свою очередь, может состоять из набора типовых техпроцессов. Чем больше типовых техпроцессов применяется на предприятии, тем меньше затраты на подготовку производства и тем выше экономическая эффективность предприятия;
  • групповой техпроцесс подготавливается для деталей, различных конструктивно, но сходных технологически.

По критерию новизны и инновационности различают такие виды технологических процессов, как:

  • Типичные. Основные технологические процессы используют традиционные, проверенные конструкции, технологии и операции обработки материалов, инструмента и оснастки.
  • Перспективные. Такие процессы используют самые передовые технологии, материалы, инструменты, характерные для предприятий — лидеров отрасли.

По критерию степени детализации различают следующие виды технологических процессов:

  • Маршрутный техпроцесс исполняется в виде маршрутной карты, содержащей информацию верхнего уровня: перечень операций, их последовательность, класс или группа используемого оборудования, технологическая оснастка и общая норма времени.
  • Пооперационный техпроцесс содержит детализированную последовательность обработки вплоть до уровня переходов, режимов и их параметров. Исполняется в виде операционной карты.

Пооперационный техпроцесс был разработан во время Второй Мировой войны в США в условиях нехватки квалифицированной рабочей силы. Детальные и подробные описания каждой стадии технологического процесса позволили привлечь к работе людей, не имевших производственного опыта и в срок выполнить большие военные заказы. В условиях мирного времени и наличия, хорошо обученного и достаточно опытного производственного персонала использование такого вида технологического процесса ведет к непроизводительным расходам. Иногда возникает ситуация, в которой технологи старательно издают толстые тома операционных карт, служба технической документации тиражирует их в положенном числе экземпляров, а производство не открывает эти талмуды. В цеху рабочие и мастера за многие годы работы накопили достаточный опыт и приобрели достаточно высокую квалификацию для того, чтобы самостоятельно выполнить последовательность операций и выбрать режимы работы оборудования. Таким предприятиям имеет смысл подумать об отказе от операционных карт и замене их маршрутными.

Существуют и другие классификации видов технологических процессов.

Этапы ТП

В ходе конструкторско-технологической подготовки производства различают такие этапы написания технологического процесса, как:

  • Сбор, обработка и изучение исходных данных.
  • Определение основных технологических решений.
  • Подготовка технико-экономического обоснования (или обоснования целесообразности).
  • Документирование техпроцесса.

Трудно с первого раза найти технологические решения, обеспечивающие и плановые сроки, и необходимое качество, и плановую себестоимость изделия. Поэтому процесс разработки технологии – это процесс многовариантный и итеративный.

Если результаты экономических расчетов неудовлетворительны, то технологи повторяют основные этапы разработки технологического процесса до тех пор, пока не достигнут требуемых планом параметров.

Сущность технологического процесса

Процессом называют изменение состояния объекта под воздействием внутренних или внешних по отношению к объекту условий.

Внешними факторами будут механические, химические, температурные, радиационные воздействия, внутренними — способность материала, детали, изделия сопротивляться эти воздействиям и сохранять свою исходную форму и фазовое состояние.

В ходе разработки техпроцесса технолог подбирает те внешние факторы, под воздействием которых материал заготовки или сырья изменит свою форму, размеры или свойства таким образом, чтобы удовлетворять:

  • техническим спецификациям на конечное изделие;
  • плановым показателям по срокам и объемам выпуска изделий;

За долгое время были выработаны основные принципы построения технологических процессов.

Принцип укрупнения операций

В этом случае в рамках одной операции собирается большее число переходов. С практической точки зрения такой поход позволяет улучшить точность взаимного расположения осей и обрабатываемых поверхностей. Такой эффект достигается за счет выполнения всех объединяемых в операцию переходов за одну остановку на станок или многокоординатный обрабатывающий центр.

Подход также упрощает внутреннюю логистику и снижает внутрицеховые расходы за счет снижения числа установок и наладок режимов работы оборудования.

Особенно важно это для крупногабаритных и сложных деталей, установка которых отнимает много времени.

Принцип применяется при работе на револьверных и многорезцовых токарных станках, многокоординатных обрабатывающих центрах.

Принцип расчленения операций

Операция разбивается на ряд простейших переходов, наладка режимов работы обрабатывающего оборудования выполняется единожды, для первой детали серии, далее оставшиеся детали проходят обработку на тех же режимах.

Такой подход эффективен при больших размерах серий и относительно несложной пространственной конфигурации изделий.

Принцип дает существенный эффект снижения относительной трудоемкости за счет улучшенной организации рабочих мест, совершенствования у рабочих навыка однообразных движений по постановке-снятию заготовок, манипуляций с инструментом и оборудованием.

Абсолютное число установок при этом растет, но сокращается время на настройку режимов оборудования, за счет чего и достигается положительный результат.

Чтобы получить этот положительный эффект, технологу придется позаботиться о применении специализированной оснастки и приспособлений, позволяющих быстро и, главное, точно устанавливать и снимать заготовку. Размер серии также должен быть значительным.

Обработка дерева и металла

На практике одну и ту же деталь, одного и того же размера и веса, из одного и того же материала можно изготовить разными, иногда сильно отличающимися друг от друга методами.

На этапе конструкторско-технологической подготовки производства конструкторы и технологи совместно прорабатывают несколько вариантов описания технологического процесса, изготовления и последовательности обработки изделия. Эти варианты сравниваются по ключевым показателям, насколько полно они удовлетворяют:

  • техническим условиям на конечный продукт;
  • требованиям производственного плана, срокам и объемам отгрузки;
  • финансово-экономическим показателям, заложенным в бизнес-план предприятия.

На следующем этапе проводится сравнение этих вариантов, из них выбирается оптимальный. Большое влияние на выбор варианта оказывает тип производства.

В случае единичного, или дискретного производства вероятность повторения выпуска одной и той же детали невелика. В этом случае выбирается вариант с минимальными издержками на разработку и создание специальной оснастки, инструмента и приспособлений, с максимальным задействованием универсальных станков и настраиваемой оснастки. Однако исключительные требования к точности соблюдения размеров или к условиям эксплуатации, таким, как радиация ил высоко агрессивные среды, могут вынудить применять и специально изготовленную оснастку, и уникальные инструменты.

При серийном же выпуске процесс производства разбивается на выпуск повторяющихся партий изделий. Технологический процесс оптимизируют с учетом существующего на предприятии оборудования, станком и обрабатывающих центров. Оборудование при этом снабжают специально разработанной оснасткой и приспособлениями, позволяющими сократить непроизводительные потери времени хотя бы на несколько секунд. В масштабе всей партии эти секунды сложатся вместе и дадут достаточный экономический эффект. Станки и обрабатывающие центры подвергают специализации, за станком закрепляют определенные группы операций.

При массовом производстве размеры серий весьма высоки, а выпускаемые детали достаточно долгий срок не подвергаются конструктивным изменениям. Специализация оборудования заходит еще дальше. В этом случае технологически и экономически оправдано закрепление за каждым станком одной и той же операции на все время выпуска серии, а также изготовление спецоснастки и применение отдельного режущего инструмента и средств измерений и контроля.

Оборудование в этом случае физически перемещают в цеху, располагая его в порядке следования операций в технологическом процессе

Средства выполнения технологических процессов

Технологический процесс существует сначала в головах технологов, далее он фиксируется на бумаге, а на современных предприятиях — в базе данных программ, обеспечивающих процесс управления жизненным циклом изделия (PLM). Переход на автоматизированные средства хранения, написания, тиражирования и проверки актуальности технологических процессов- это не вопрос времени, в вопрос выживания предприятия в конкурентной борьбе. При этом предприятиям приходится преодолевать сильное сопротивление высококвалифицированных технологов строй школы, привыкших за долгие годы писать техпроцессы от руки, а потом отдавать их на перепечатку.

Современные программные средства позволяют автоматически проверять упомянутые в техпроцессе инструмент, материалы и оснастку на применимость и актуальность, повторно использовать ранее написанные техпроцессы целиком или частично. Они повышают производительность труда технолога и существенно снижают риск человеческой ошибки при написании техпроцесса.

Для того чтобы из идей и расчетов технологический процесс превратился в реальность, необходимы физические средства его выполнения.

Технологическое оборудование предназначено для установки, закрепления, ориентации в пространстве и подачи в зону обработки сырья, заготовок, деталей, узлов и сборок.

В зависимости от отрасли производства сюда входят станки, обрабатывающие центры, реакторы, плавильные печи, кузнечные прессы, установки и целые комплексы.

Оборудование обладает длительным сроком использования и может изменять свои функции в зависимости от использования той или иной технологической оснастки.

Технологическая оснастка включает в себя инструмент, литейные формы, штампы, приспособления для установки и снятия детали, для облегчения доступа рабочих к зоне выполнения операций. Оснастка дополняет основное оборудование, расширяя его функциональность. Она имеет более короткий срок использования и иногда специально изготавливается для конкретной партии изделий или даже для одного уникального изделия. При разработке технологии следует шире применять универсальную оснастку, применимую для нескольких типоразмеров изделия. Особенно это важно на дискретных производствах, где стоимость оснастки не распределяется на всю серию, а целиком ложится на себестоимость одного изделия.

Инструмент предназначен для оказания непосредственного физического воздействия на материал заготовки с целью доведения ее формы размеров, физических, химических и других параметров до заданных в технических условиях.

Технолог при выборе инструмента должен принимать во внимание не только цену его покупки, но и ресурс и универсальность. Часто бывает, что более дорогой инструмент позволяет без его замены выпустить в несколько раз больше продукции, чем дешевый аналог. Кроме того, современный универсальный и высокоскоростной инструмент позволит также сократить время машинной обработки, что также прямо ведет к снижению себестоимости. С каждым годом технологи приобретают все больше экономических знаний и навыков, и написание техпроцесса из дела чисто технологического превращается в серьезный инструмент повышения конкурентоспособности предприятия.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме