Подпишись и читай
самые интересные
статьи первым!

Контрольная работа уравнения множественной регрессии. Регрессия в Excel: уравнение, примеры

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

###### ## ## ###### ######
## ### ### ## ##
## #### ## ##### ##
## ## ## ## ## ##
## ## ###### ## ## ## ## ##
#### ## ###### #### ####

Введите число, изображенное выше:

Подобные документы

    Основы построения и тестирования адекватности экономических моделей множественной регрессии, проблема их спецификации и последствия ошибок. Методическое и информационное обеспечение множественной регрессии. Числовой пример модели множественной регрессии.

    курсовая работа , добавлен 10.02.2014

    Понятие модели множественной регрессии. Сущность метода наименьших квадратов, который используется для определения параметров уравнения множественной линейной регрессии. Оценка качества подгонки регрессионного уравнения к данным. Коэффициент детерминации.

    курсовая работа , добавлен 22.01.2015

    Построение модели множественной линейной регрессии по заданным параметрам. Оценка качества модели по коэффициентам детерминации и множественной корреляции. Определение значимости уравнения регрессии на основе F-критерия Фишера и t-критерия Стьюдента.

    контрольная работа , добавлен 01.12.2013

    Построение уравнения множественной регрессии в линейной форме с полным набором факторов, отбор информативных факторов. Проверка значимости уравнения регрессии по критерию Фишера и статистической значимости параметров регрессии по критерию Стьюдента.

    лабораторная работа , добавлен 17.10.2009

    Описание классической линейной модели множественной регрессии. Анализ матрицы парных коэффициентов корреляции на наличие мультиколлинеарности. Оценка модели парной регрессии с наиболее значимым фактором. Графическое построение интервала прогноза.

    курсовая работа , добавлен 17.01.2016

    Факторы, формирующие цену квартир в строящихся домах в Санкт-Петербурге. Составление матрицы парных коэффициентов корреляции исходных переменных. Тестирование ошибок уравнения множественной регрессии на гетероскедастичность. Тест Гельфельда-Квандта.

    контрольная работа , добавлен 14.05.2015

    Оценка распределения переменной Х1. Моделирование взаимосвязи между переменными У и Х1 с помощью линейной функции и методом множественной линейной регрессии. Сравнение качества построенных моделей. Составление точечного прогноза по заданным значениям.

    курсовая работа , добавлен 24.06.2015

Регрессионный анализ — это статистический метод исследования, позволяющий показать зависимость того или иного параметра от одной либо нескольких независимых переменных. В докомпьютерную эру его применение было достаточно затруднительно, особенно если речь шла о больших объемах данных. Сегодня, узнав как построить регрессию в Excel, можно решать сложные статистические задачи буквально за пару минут. Ниже представлены конкретные примеры из области экономики.

Виды регрессии

Само это понятие было введено в математику в 1886 году. Регрессия бывает:

  • линейной;
  • параболической;
  • степенной;
  • экспоненциальной;
  • гиперболической;
  • показательной;
  • логарифмической.

Пример 1

Рассмотрим задачу определения зависимости количества уволившихся членов коллектива от средней зарплаты на 6 промышленных предприятиях.

Задача. На шести предприятиях проанализировали среднемесячную заработную плату и количество сотрудников, которые уволились по собственному желанию. В табличной форме имеем:

Количество уволившихся

Зарплата

30000 рублей

35000 рублей

40000 рублей

45000 рублей

50000 рублей

55000 рублей

60000 рублей

Для задачи определения зависимости количества уволившихся работников от средней зарплаты на 6 предприятиях модель регрессии имеет вид уравнения Y = а 0 + а 1 x 1 +…+а k x k , где х i — влияющие переменные, a i — коэффициенты регрессии, a k — число факторов.

Для данной задачи Y — это показатель уволившихся сотрудников, а влияющий фактор — зарплата, которую обозначаем X.

Использование возможностей табличного процессора «Эксель»

Анализу регрессии в Excel должно предшествовать применение к имеющимся табличным данным встроенных функций. Однако для этих целей лучше воспользоваться очень полезной надстройкой «Пакет анализа». Для его активации нужно:

  • с вкладки «Файл» перейти в раздел «Параметры»;
  • в открывшемся окне выбрать строку «Надстройки»;
  • щелкнуть по кнопке «Перейти», расположенной внизу, справа от строки «Управление»;
  • поставить галочку рядом с названием «Пакет анализа» и подтвердить свои действия, нажав «Ок».

Если все сделано правильно, в правой части вкладки «Данные», расположенном над рабочим листом «Эксель», появится нужная кнопка.

в Excel

Теперь, когда под рукой есть все необходимые виртуальные инструменты для осуществления эконометрических расчетов, можем приступить к решению нашей задачи. Для этого:

  • щелкаем по кнопке «Анализ данных»;
  • в открывшемся окне нажимаем на кнопку «Регрессия»;
  • в появившуюся вкладку вводим диапазон значений для Y (количество уволившихся работников) и для X (их зарплаты);
  • подтверждаем свои действия нажатием кнопки «Ok».

В результате программа автоматически заполнит новый лист табличного процессора данными анализа регрессии. Обратите внимание! В Excel есть возможность самостоятельно задать место, которое вы предпочитаете для этой цели. Например, это может быть тот же лист, где находятся значения Y и X, или даже новая книга, специально предназначенная для хранения подобных данных.

Анализ результатов регрессии для R-квадрата

В Excel данные полученные в ходе обработки данных рассматриваемого примера имеют вид:

Прежде всего, следует обратить внимание на значение R-квадрата. Он представляет собой коэффициент детерминации. В данном примере R-квадрат = 0,755 (75,5%), т. е. расчетные параметры модели объясняют зависимость между рассматриваемыми параметрами на 75,5 %. Чем выше значение коэффициента детерминации, тем выбранная модель считается более применимой для конкретной задачи. Считается, что она корректно описывает реальную ситуацию при значении R-квадрата выше 0,8. Если R-квадрата<0,5, то такой анализа регрессии в Excel нельзя считать резонным.

Анализ коэффициентов

Число 64,1428 показывает, каким будет значение Y, если все переменные xi в рассматриваемой нами модели обнулятся. Иными словами можно утверждать, что на значение анализируемого параметра оказывают влияние и другие факторы, не описанные в конкретной модели.

Следующий коэффициент -0,16285, расположенный в ячейке B18, показывает весомость влияния переменной Х на Y. Это значит, что среднемесячная зарплата сотрудников в пределах рассматриваемой модели влияет на число уволившихся с весом -0,16285, т. е. степень ее влияния совсем небольшая. Знак «-» указывает на то, что коэффициент имеет отрицательное значение. Это очевидно, так как всем известно, что чем больше зарплата на предприятии, тем меньше людей выражают желание расторгнуть трудовой договор или увольняется.

Множественная регрессия

Под таким термином понимается уравнение связи с несколькими независимыми переменными вида:

y=f(x 1 +x 2 +…x m) + ε, где y — это результативный признак (зависимая переменная), а x 1 , x 2 , …x m — это признаки-факторы (независимые переменные).

Оценка параметров

Для множественной регрессии (МР) ее осуществляют, используя метод наименьших квадратов (МНК). Для линейных уравнений вида Y = a + b 1 x 1 +…+b m x m + ε строим систему нормальных уравнений (см. ниже)

Чтобы понять принцип метода, рассмотрим двухфакторный случай. Тогда имеем ситуацию, описываемую формулой

Отсюда получаем:

где σ — это дисперсия соответствующего признака, отраженного в индексе.

МНК применим к уравнению МР в стандартизируемом масштабе. В таком случае получаем уравнение:

в котором t y , t x 1, … t xm — стандартизируемые переменные, для которых средние значения равны 0; β i — стандартизированные коэффициенты регрессии, а среднеквадратическое отклонение — 1.

Обратите внимание, что все β i в данном случае заданы, как нормируемые и централизируемые, поэтому их сравнение между собой считается корректным и допустимым. Кроме того, принято осуществлять отсев факторов, отбрасывая те из них, у которых наименьшие значения βi.

Задача с использованием уравнения линейной регрессии

Предположим, имеется таблица динамики цены конкретного товара N в течение последних 8 месяцев. Необходимо принять решение о целесообразности приобретения его партии по цене 1850 руб./т.

номер месяца

название месяца

цена товара N

1750 рублей за тонну

1755 рублей за тонну

1767 рублей за тонну

1760 рублей за тонну

1770 рублей за тонну

1790 рублей за тонну

1810 рублей за тонну

1840 рублей за тонну

Для решения этой задачи в табличном процессоре «Эксель» требуется задействовать уже известный по представленному выше примеру инструмент «Анализ данных». Далее выбирают раздел «Регрессия» и задают параметры. Нужно помнить, что в поле «Входной интервал Y» должен вводиться диапазон значений для зависимой переменной (в данном случае цены на товар в конкретные месяцы года), а в «Входной интервал X» — для независимой (номер месяца). Подтверждаем действия нажатием «Ok». На новом листе (если так было указано) получаем данные для регрессии.

Строим по ним линейное уравнение вида y=ax+b, где в качестве параметров a и b выступают коэффициенты строки с наименованием номера месяца и коэффициенты и строки «Y-пересечение» из листа с результатами регрессионного анализа. Таким образом, линейное уравнение регрессии (УР) для задачи 3 записывается в виде:

Цена на товар N = 11,714* номер месяца + 1727,54.

или в алгебраических обозначениях

y = 11,714 x + 1727,54

Анализ результатов

Чтобы решить, адекватно ли полученное уравнения линейной регрессии, используются коэффициенты множественной корреляции (КМК) и детерминации, а также критерий Фишера и критерий Стьюдента. В таблице «Эксель» с результатами регрессии они выступают под названиями множественный R, R-квадрат, F-статистика и t-статистика соответственно.

КМК R дает возможность оценить тесноту вероятностной связи между независимой и зависимой переменными. Ее высокое значение свидетельствует о достаточно сильной связи между переменными «Номер месяца» и «Цена товара N в рублях за 1 тонну». Однако, характер этой связи остается неизвестным.

Квадрат коэффициента детерминации R 2 (RI) представляет собой числовую характеристику доли общего разброса и показывает, разброс какой части экспериментальных данных, т.е. значений зависимой переменной соответствует уравнению линейной регрессии. В рассматриваемой задаче эта величина равна 84,8%, т. е. статистические данные с высокой степенью точности описываются полученным УР.

F-статистика, называемая также критерием Фишера, используется для оценки значимости линейной зависимости, опровергая или подтверждая гипотезу о ее существовании.

(критерий Стьюдента) помогает оценивать значимость коэффициента при неизвестной либо свободного члена линейной зависимости. Если значение t-критерия > t кр, то гипотеза о незначимости свободного члена линейного уравнения отвергается.

В рассматриваемой задаче для свободного члена посредством инструментов «Эксель» было получено, что t=169,20903, а p=2,89Е-12, т. е. имеем нулевую вероятность того, что будет отвергнута верная гипотеза о незначимости свободного члена. Для коэффициента при неизвестной t=5,79405, а p=0,001158. Иными словами вероятность того, что будет отвергнута верная гипотеза о незначимости коэффициента при неизвестной, равна 0,12%.

Таким образом, можно утверждать, что полученное уравнение линейной регрессии адекватно.

Задача о целесообразности покупки пакета акций

Множественная регрессия в Excel выполняется с использованием все того же инструмента «Анализ данных». Рассмотрим конкретную прикладную задачу.

Руководство компания «NNN» должно принять решение о целесообразности покупки 20 % пакета акций АО «MMM». Стоимость пакета (СП) составляет 70 млн американских долларов. Специалистами «NNN» собраны данные об аналогичных сделках. Было принято решение оценивать стоимость пакета акций по таким параметрам, выраженным в миллионах американских долларов, как:

  • кредиторская задолженность (VK);
  • объем годового оборота (VO);
  • дебиторская задолженность (VD);
  • стоимость основных фондов (СОФ).

Кроме того, используется параметр задолженность предприятия по зарплате (V3 П) в тысячах американских долларов.

Решение средствами табличного процессора Excel

Прежде всего, необходимо составить таблицу исходных данных. Она имеет следующий вид:

  • вызывают окно «Анализ данных»;
  • выбирают раздел «Регрессия»;
  • в окошко «Входной интервал Y» вводят диапазон значений зависимых переменных из столбца G;
  • щелкают по иконке с красной стрелкой справа от окна «Входной интервал X» и выделяют на листе диапазон всех значений из столбцов B,C, D, F.

Отмечают пункт «Новый рабочий лист» и нажимают «Ok».

Получают анализ регрессии для данной задачи.

Изучение результатов и выводы

«Собираем» из округленных данных, представленных выше на листе табличного процессора Excel, уравнение регрессии:

СП = 0,103*СОФ + 0,541*VO - 0,031*VK +0,405*VD +0,691*VZP - 265,844.

В более привычном математическом виде его можно записать, как:

y = 0,103*x1 + 0,541*x2 - 0,031*x3 +0,405*x4 +0,691*x5 - 265,844

Данные для АО «MMM» представлены в таблице:

Подставив их в уравнение регрессии, получают цифру в 64,72 млн американских долларов. Это значит, что акции АО «MMM» не стоит приобретать, так как их стоимость в 70 млн американских долларов достаточно завышена.

Как видим, использование табличного процессора «Эксель» и уравнения регрессии позволило принять обоснованное решение относительно целесообразности вполне конкретной сделки.

Теперь вы знаете, что такое регрессия. Примеры в Excel, рассмотренные выше, помогут вам в решение практических задач из области эконометрики.

Материал будет проиллюстрирован сквозным примером: прогнозирование объемов продаж компании OmniPower. Представьте себе, что вы - менеджер по маркетингу в крупной национальной сети бакалейных магазинов. В последние годы на рынке появились питательные батончики, содержащие большое количество жиров, углеводов и калорий. Они позволяют быстро восстановить запасы энергии, потраченной бегунами, альпинистами и другими спортсменами на изнурительных тренировках и соревнованиях. За последние годы объем продаж питательных батончиков резко вырос, и руководство компании OmniPower пришло к выводу, что этот сегмент рынка весьма перспективен. Прежде чем предлагать новый вид батончика на общенациональном рынке, компания хотела бы оценить влияние его стоимости и рекламных затрат на объем продаж. Для маркетингового исследования были отобраны 34 магазина. Вам необходимо создать регрессионную модель, позволяющую проанализировать данные, полученные в ходе исследования. Можно ли применить для этого модель простой линейной регрессии, рассмотренную в предыдущей заметке? Как ее следует изменить?

Модель множественной регрессии

Для маркетингового исследования в компании OmniPower была создана выборка, состоящая из 34 магазинов с приблизительно одинаковыми объемами продаж. Рассмотрим две независимые переменные - цена батончика OmniPower в центах (Х 1 ) и месячный бюджет рекламной кампании, проводимой в магазине, выраженный в долларах (Х 2 ). В этот бюджет входят расходы на оформление вывесок и витрин, а также на раздачу купонов и бесплатных образцов. Зависимая переменная Y представляет собой количество батончиков OmniPower, проданных за месяц (рис. 1).

Рис. 1. Месячный объем продажа батончиков OmniPower, их цена и расходы на рекламу

Скачать заметку в формате или , примеры в формате

Интерпретация регрессионных коэффициентов. Если в задаче исследуются несколько объясняющих переменных, модель простой линейной регрессии можно расширить, предполагая, что между откликом и каждой из независимых переменных существует линейная зависимость. Например, при наличии k объясняющих переменных модель множественной линейной регрессии принимает вид:

(1) Y i = β 0 + β 1 X 1i + β 2 X 2i + … + β k X ki + ε i

где β 0 - сдвиг, β 1 - наклон прямой Y , зависящей от переменной Х 1 , если переменные Х 2 , Х 3 , … , Х k являются константами, β 2 - наклон прямой Y , зависящей от переменной Х 2 , если переменные Х 1 , Х 3 , … , Х k являются константами, β k - наклон прямой Y , зависящей от переменной Х k , если переменные Х 1 , Х 2 , … , Х k-1 являются константами, ε i Y в i -м наблюдении.

В частности, модель множественной регрессии с двумя объясняющими переменными:

(2) Y i = β 0 + β 1 X 1 i + β 2 X 2 i + ε i

где β 0 - сдвиг, β 1 - наклон прямой Y , зависящей от переменной Х 1 , если переменная Х 2 является константой, β 2 - наклон прямой Y , зависящей от переменной Х 2 , если переменная Х 1 является константой, ε i - случайная ошибка переменной Y в i -м наблюдении.

Сравним эту модель множественной линейной регрессии и модель простой линейной регрессии: Y i = β 0 + β 1 X i + ε i . В модели простой линейной регрессии наклон β 1 Y при изменении значения переменной X на единицу и не учитывает влияние других факторов. В модели множественной регрессии с двумя независимыми переменными (2) наклон β 1 представляет собой изменение среднего значения переменной Y при изменении значения переменной X 1 на единицу с учетом влияния переменной Х 2 . Эта величина называется коэффициентом чистой регрессии (или частной регрессии).

Как и в модели простой линейной регрессии, выборочные регрессионные коэффициенты b 0 , b 1 , и b 2 представляют собой оценки параметров соответствующей генеральной совокупности β 0 , β 1 и β 2 .

Уравнение множественной регрессии с двумя независимыми переменными:

(3) = b 0 + b 1 X 1 i + b 2 X 2 i

Для вычисления коэффициентов регрессии используется метод наименьших квадратов. В Excel можно воспользоваться Пакетом анализа , опцией Регрессия . В отличие от построения линейной регрессии, просто задайте в качестве Входного интервала Х область, включающую все независимые переменные (рис. 2). В нашем примере это $C$1:$D$35.

Рис. 2. Окно Регрессия Пакета анализа Excel

Результаты работы Пакета анализа представлены на рис. 3. Как видим, b 0 = 5 837,52, b 1 = –53,217 и b 2 = 3,163. Следовательно, = 5 837,52 –53,217 X 1 i + 3,163 X 2 i , где Ŷ i - предсказанный объем продаж питательных батончиков OmniPower в i -м магазине (штук), Х 1 i - цена батончика (в центах) в i -м магазине, Х 2i - ежемесячные затраты на рекламу в i -м магазине (в долларах).

Рис. 3. Множественная регрессия исследования объем продажа батончиков OmniPower

Выборочный наклон b 0 равен 5 837,52 и является оценкой среднего количества батончиков OmniPower, проданных за месяц при нулевой цене и отсутствии затрат на рекламу. Поскольку эти условия лишены смысла, в данной ситуации величина наклона b 0 не имеет разумной интерпретации.

Выборочный наклон b 1 равен –53,217. Это значит, что при заданном ежемесячном объеме затрат на рекламу увеличение цены батончика на один цент приведет к снижению ожидаемого объема продаж на 53,217 штук. Аналогично выборочный наклон b 2 , равный 3,613, означает, что при фиксированной цене увеличение ежемесячных рекламных затрат на один доллар сопровождается увеличением ожидаемого объема продаж батончиков на 3,613 шт. Эти оценки позволяют лучше понять влияние цены и рекламы на объем продаж. Например, при фиксированном объеме затрат на рекламу уменьшение цены батончика на 10 центов увеличит объем продаж на 532,173 шт., а при фиксированной цене батончика увеличение рекламных затрат на 100 долл. увеличит объем продаж на 361,31 шт.

Интерпретация наклонов в модели множественной регрессии. Коэффициенты в модели множественной регрессии называются коэффициентами чистой регрессии. Они оценивают среднее изменение отклика Y при изменении величины X на единицу, если все остальные объясняющие переменные «заморожены». Например, в задаче о батончиках OmniPower магазин с фиксированным объемом рекламных затрат за месяц продаст на 53,217 батончика меньше, если увеличит их стоимость на один цент. Возможна еще одна интерпретация этих коэффициентов. Представьте себе одинаковые магазины с одинаковым объемом затрат на рекламу. При уменьшении цены батончика на один цент объем продаж в этих магазинах увеличится на 53,217 батончика. Рассмотрим теперь два магазина, в которых батончики стоят одинаково, но затраты на рекламу отличаются. При увеличении этих затрат на один доллар объем продаж в этих магазинах увеличится на 3,613 штук. Как видим, разумная интерпретация наклонов возможна лишь при определенных ограничениях, наложенных на объясняющие переменные.

Предсказание значений зависимой переменной Y. Выяснив, что накопленные данные позволяют использовать модель множественной регрессии, мы можем прогнозировать ежемесячный объем продаж батончиков OmniPower и построить доверительные интервалы для среднего и предсказанного объемов продаж. Для того чтобы предсказать средний ежемесячный объем продаж батончиков OmniPower по цене 79 центов в магазине, расходующем на рекламу 400 долл. в месяц, следует применить уравнение множественной регрессии: Y = 5 837,53 – 53,2173*79 + 3,6131*400 = 3 079. Следовательно, ожидаемый объем продаж в магазинах, торгующих батончиками OmniPower по цене 79 центов и расходующих на рекламу 400 долл. в месяц, равен 3 079 шт.

Вычислив величину Y и оценив остатки, можно построить доверительные интервалы, содержащие математическое ожидание и предсказанное значение отклика. мы рассмотрели эту процедуру в рамках модели простой линейной регрессии. Однако построение аналогичных оценок для модели множественной регрессии сопряжено с большими вычислительными трудностями и здесь не приводится.

Коэффициент множественной смешанной корреляции. Напомним, что модель регрессии позволяет вычислить коэффициент смешанной корреляции r 2 . Поскольку в модели множественной регрессии существуют по крайней мере две объясняющие переменные, коэффициент множественной смешанной корреляции представляет собой долю вариации переменной Y , объясняемой заданным набором объясняющих переменных:

где SSR – сумма квадратов регрессии, SST – полная сумма квадратов.

Например, в задаче о продажах батончика OmniPower SSR = 39 472 731, SST = 52 093 677 и k = 2. Таким образом,

Это означает, что 75,8% вариации объемов продаж объясняется изменениями цен и колебаниями объемов затрат на рекламу.

Анализ остатков для модели множественной регрессии

Анализ остатков позволяет определить, можно ли применять модель множественной регрессии с двумя (или более) объясняющими переменными. Как правило, проводят следующие виды анализа остатков:

Первый график (рис. 4а) позволяет проанализировать распределение остатков в зависимости от предсказанных значений . Если величина остатков не зависит от предсказанных значений и принимает как положительные так и отрицательные значения (как в нашем пример), условие линейной зависимости переменной Y от обеих объясняющих переменных выполняется. К сожалению, в Пакете анализа этот график почему-то не создается. Можно в окне Регрессия (см. рис. 2) включить Остатки . Это позволит вывести таблицу с остатками, а уже по ней построить точечный график (рис. 4).

Рис. 4. Зависимость остатков от предсказанного значения

Второй и третий график демонстрируют зависимость остатков от объясняющих переменных. Эти графики могут выявить квадратичный эффект. В этой ситуации необходимо добавить в модель множественной регрессии квадрат объясняющей переменной. Эти графики выводятся Пакетом анализа (см. рис. 2), если включить опцию График остатков (рис. 5).

Рис. 5. Зависимость остатков от цены и затрат на рекламу

Проверка значимости модели множественной регрессии.

Убедившись с помощью анализа остатков, что модель линейной множественной регрессии является адекватной, можно определить, существует ли статистически значимая взаимосвязь между зависимой переменной и набором объясняющих переменных. Поскольку в модель входит несколько объясняющих переменных, нулевая и альтернативная гипотезы формулируются следующим образом: Н 0: β 1 = β 2 = … = β k = 0 (между откликом и объясняющими переменными нет линейной зависимости), Н 1: существует по крайней мере одно значение β j ≠ 0 (мжду откликом и хотя бы одной объясняющей переменной существует линейная зависимость).

Для проверки нулевой гипотезы применяется F -критерий – тестовая F -статистика равна среднему квадрату, обусловленному регрессией (MSR), деленному на дисперсию ошибок (MSE):

где F F -распределение с k и n – k – 1 степенями свободы, k – количество независимых переменных в регрессионной модели.

Решающее правило выглядит следующим образом: при уровне значимости α нулевая гипотеза Н 0 отклоняется, если F > F U(k,n – k – 1) , в противном случае гипотеза Н 0 не отклоняется (рис. 6).

Рис. 6. Сводная таблица дисперсионного анализа для проверки гипотезы о статистической значимости коэффициентов множественной регрессии

Сводная таблица дисперсионного анализа, заполненная с использованием Пакета анализа Excel при решении задачи о продажах батончиков OmniPower, показана на рис. 3 (см. область А10:F14). Если уровень значимости равен 0,05, критическое значение F -распределения с двумя и 31 степенями свободы F U(2,31) = F.ОБР(1-0,05;2;31) = равно 3,305 (рис. 7).

Рис. 7. Проверка гипотезы о значимости коэффициентов регрессии при уровне значимости α = 0,05, с 2 и 31 степенями свободы

Как показано на рис. 3, F-статистика равна 48,477 > F U(2,31) = 3,305, а p -значение близко к 0,000 < 0,05. Следовательно, нулевая гипотеза Н 0 отклоняется, и объем продаж линейно связан хотя бы с одной из объясняющих переменных (ценой и/или затратами на рекламу).

Статистические выводы о генеральной совокупности коэффициентов регрессии

Чтобы выявить статистически значимую зависимость между переменными X и Y в модели простой линейной регрессии, была выполнена проверка гипотезы о наклоне. Кроме того, для оценки наклона генеральной совокупности был построен доверительный интервал (см. ).

Проверка гипотез. Для проверки гипотезы, утверждающей, что наклон генеральной совокупности β 1 , в модели простой линейной регрессии равен нулю, используется формула t = (b 1 – β 1)/S b 1 . Ее можно распространить на модель множественной регрессии:

где t – тестовая статистика, имеющая t -распределение с n – k – 1 степенями свободы, b j - наклон переменной х j по отношению к переменной Y , если все остальные объясняющие переменные являются константами, S bj – среднеквадратичная ошибка регрессионного коэффициента b j , k - количество объясняющих переменных в уравнении регрессии, β j - гипотетический наклон генеральной совокупности откликов j -й относительно переменной, когда все остальные переменные фиксированы.

На рис. 3 (нижняя таблица) показаны результаты применения t -критерия (полученные с помощью Пакета анализа ) для каждой из независимых переменных, включенных в регрессионную модель. Таким образом, если необходимо определить, оказывает ли переменная Х 2 (затраты на рекламу) существенное влияние на объем продаж при фиксированной цене батончика OmniPower, формулируются нулевая и альтернативная гипотезы: Н 0: β2 = 0, Н 1: β2 ≠ 0. В соответствии с формулой (6) получаем:

Если уровень значимости равен 0,05, критическими значениями t -распределения с 31 степенями свободы являются t L = СТЬЮДЕНТ.ОБР(0,025;31) = –2,0395 и t U = СТЬЮДЕНТ.ОБР(0,975;31) = 2,0395 (рис. 8). р -значение =1-СТЬЮДЕНТ.РАСП(5,27;31;ИСТИНА) и близко к 0,0000. На основании одного из неравенств t = 5,27 > 2,0395 или р = 0,0000 < 0,05 нулевая гипотеза Н 0 отклоняется. Следовательно, при фиксированной цене батончика между переменной Х 2 (затраты на рекламу) и объемом продаж существует статистически значимая зависимость. Таким образом, существует чрезвычайно малая вероятность отвергнуть нулевую гипотезу, если между затратами на рекламу и объемами продаж нет линейной зависимости.

Рис. 8. Проверка гипотезы о значимости коэффициентов регрессии при уровне значимости α = 0,05, с 31 степенью свободы

Проверка значимости конкретных коэффициентов регрессии фактически представляет собой проверку гипотезы о значимости конкретной переменной, включенной в регрессионную модель наряду с другими. Следовательно, t -критерий для проверки гипотезы о значимости регрессионного коэффициента эквивалентен проверке гипотезы о влиянии каждой из объясняющих переменных.

Доверительные интервалы. Вместо проверки гипотезы о наклоне генеральной совокупности можно оценить значение этого наклона. В модели множественной регрессии для построения доверительного интервала используется формула:

(7) b j ± t n k –1 S bj

Воспользуемся этой формулой для того, чтобы построить 95%-ный доверительный интервал, содержащий наклон генеральной совокупности β 1 (влияние цены X 1 на объем продаж Y при фиксированном объеме затрат на рекламу Х 2 ). По формуле (7) получаем: b 1 ± t n k –1 S b 1 . Поскольку b 1 = –53,2173 (см. рис. 3), S b 1 = 6,8522, критическое значение t -статистики при 95%-ном доверительном уровне и 31 степени свободы t n k –1 =СТЬЮДЕНТ.ОБР(0,975;31) = 2,0395, получаем:

–53,2173 ± 2,0395*6,8522

–53,2173 ± 13,9752

–67,1925 ≤ β 1 ≤ –39,2421

Таким образом, учитывая эффект затрат на рекламу, можно утверждать, что при увеличении цены батончика на один цент объем продаж уменьшается на величину, которая колеблется от 39,2 до 67,2 шт. Существует 95%-ная вероятность, что этот интервал правильно оценивает зависимость между двумя переменными. Поскольку данный доверительный интервал не содержит нуля, можно утверждать, что регрессионный коэффициент β 1 имеет статистически значимое влияние на объем продаж.

Оценка значимости поясняющих переменных в модели множественной регрессии

В модель множественной регрессии следует включать только те объясняющие переменные, которые позволяют точно предсказать значение зависимой переменной. Если какая-либо из объясняющих переменных не соответствует этому требованию, ее нужно удалить из модели. В качестве альтернативного метода, позволяющего оценить вклад объясняющей переменной, как правило, применяется частный F -критерий. Он заключается в оценке изменения суммы квадратов регрессии после включения в модель очередной переменной. Новая переменная включается в модель лишь тогда, когда это приводит к значительному увеличению точности предсказания.

Для того чтобы применить частный F-критерий для решения задачи о продажах батончика OmniPower, необходимо оценить вклад переменной Х 2 (затраты на рекламу) после включения в модель переменной X 1 (цена батончика). Если в модель входят несколько поясняющих переменных, вклад объясняющей переменной х j можно определить, исключив ее из модели и оценив сумму квадратов регрессии (SSR), вычисленную по оставшимся переменным. Если в модель входят две переменные, вклад каждой из них определяется по формулам:

Оценка вклада переменной Х 1 Х 2 :

(8а) SSR(X 1 |Х 2) = SSR(X 1 и Х 2) – SSR(X 2)

Оценка вклада переменной Х 2 при условии, что в модель включена переменная Х 1 :

(8б) SSR(X 2 |Х 1) = SSR(X 1 и Х 2) – SSR(X 1)

Величины SSR(X 2) и SSR(X 1 ) соответственно представляют собой суммы квадратов регрессии, вычисленных только по одной из объясняемых переменных (рис. 9).

Рис. 9. Коэффициенты модели простой линейной регрессии, учитывающей: (а) объем продаж и цену батончика – SSR(X 1) ; (б) объем продаж и затраты на рекламу – SSR(X 2) (получены с помощью Пакета анализа Excel)

Нулевая и альтернативная гипотезы о вкладе переменной Х 1 формулируются следующим образом: Н 0 - включение переменной Х 1 не приводит к значительному увеличению точности модели, в которой учитывается переменная Х 2 ; Н 1 - включение переменной Х 1 приводит к значительному увеличению точности модели, в которой учтена переменная Х 2 . Статистика, положенная в основу частного F -критерия для двух переменных, вычисляется по формуле:

где MSE – дисперсия ошибки (остатка) для двух факторов одновременно. По определению F -статистика имеет F -распределение с одной и n –k–1 степенями свободы.

Итак, SSR(X 2) = 14 915 814 (рис. 9), SSR(X 1 и Х 2) = 39 472 731 (рис. 3, ячейка С12). Следовательно, по формуле (8а) получаем: SSR(X 1 |Х 2) = SSR(X 1 и Х 2) – SSR(X 2) = 39 472 731 – 14 915 814 = 24 556 917. Итак, для SSR(X 1 |Х 2) = 24 556 917 и MSE (X 1 и Х 2) = 407 127 (рис. 3, ячейка D13), используя формулу (9), получаем: F = 24 556 917 / 407 127 = 60,32. Если уровень значимости равен 0,05, то критическое значение F -распределения с одной и 31 степенями свободы =F.ОБР(0,95;1;31) = 4,16 (рис. 10).

Рис. 10. Проверка гипотезы о значимости коэффициентов регрессии при уровне значимости, равном 0,05, с одной и 31 степенями свободы

Поскольку вычисленное значение F -статистики больше критического (60,32 > 4,17), гипотеза Н 0 отклоняется, следовательно, учет переменной Х 1 (цены) значительно улучшает модель регрессии, в которую уже включена переменная Х 2 (затраты на рекламу).

Аналогично можно оценить влияние переменной Х 2 (затраты на рекламу) на модель, в которую уже включена переменная Х 1 (цена). Проведите вычисления самостоятельно. Решающее условие приводит к тому, что 27,8 > 4,17, и следовательно, включение переменной Х 2 также приводит к значительному увеличению точности модели, в которой учитывается переменная Х 1 . Итак, включение каждой из переменных повышает точность модели. Следовательно, в модель множественной регрессии необходимо включить обе переменные: и цену, и затраты на рекламу.

Любопытно, что значение t -статистики, вычисленное по формуле (6), и значение частной F -статистики, заданной формулой (9), однозначно взаимосвязаны:

где а - количество степеней свободы.

Регрессионные модели с фиктивной переменной и эффекты взаимодействия

Обсуждая модели множественной регрессии, мы предполагали, что каждая независимая переменная является числовой. Однако во многих ситуациях в модель необходимо включать категорийные переменные. Например, в задаче о продажах батончиков OmniPower для предсказания среднемесячного объема продаж использовались цена и затраты на рекламу. Кроме этих числовых переменных, можно попытаться учесть в модели расположение товара внутри магазина (например, на витрине или нет). Для того чтобы учесть в регрессионной модели категорийные переменные, следует включить в нее фиктивные переменные. Например, если некая категорийная объясняющая переменная имеет две категории, для их представления достаточно одной фиктивной переменной X d : X d = 0, если наблюдение принадлежит первой категории, X d = 1, если наблюдение принадлежит второй категории.

Для иллюстрации фиктивных переменных рассмотрим модель для предсказания средней оценочной стоимости недвижимости на основе выборки, состоящей из 15 домов. В качестве объясняющих переменных выберем жилую площадь дома (тыс. кв. футов) и наличие камина (рис. 11). Фиктивная переменная Х 2 (наличие камина) определена следующим образом: Х 2 = 0, если камина в доме нет, Х 2 = 1, если в доме есть камин.

Рис. 11. Оценочная стоимость, предсказанная по жилой площади и наличию камина

Предположим, что наклон оценочной стоимости, зависящей от жилой площади, одинаков у домов, имеющих камин и не имеющих его. Тогда модель множественной регрессии выглядит следующим образом:

Y i = β 0 + β 1 X 1i + β 2 X 2i + ε i

где Y i - оценочная стоимость i -гo дома, измеренная в тысячах долларов, β 0 - сдвиг отклика, X 1 i ,- жилая площадь i -гo дома, измеренная в тыс. кв. футов, β 1 - наклон оценочной стоимости, зависящей от жилой площади дома при постоянном значении фиктивной переменной, X 1 i ,- фиктивная переменная, означающая наличие или отсутствие камина, β 1 - наклон оценочной стоимости, зависящей от жилой площади дома при постоянном значении фиктивной переменной β 2 - эффект увеличения оценочной стоимости дома в зависимости от наличия камина при постоянной величине жилой площади, ε i – случайная ошибка оценочной стоимости i -гo дома. Результаты вычисления регрессионой модели представлены на рис. 12.

Рис. 12. Результаты вычисления регрессионой модели для оценочной стоимости домов; получены с помощью Пакета анализа в Excel; для расчета использована таблица, аналогичная рис. 11, с единственным изменением: «Да» заменены единицами, а «Нет» – нулями

В этой модели коэффициенты регрессии интерпретируются следующим образом:

  1. Если фиктивная переменная имеет постоянное значение, увеличение жилой площади на 1000 кв. футов приводит к увеличению предсказанной средней оценочной стоимости на 16,2 тыс. долл.
  2. Если жилая площадь постоянна, наличие камина увеличивает среднюю оценочную стоимость дома на 3,9 тыс. долл.

Обратите внимание (рис. 12), t -статистика, соответствующая жилой площади, равна 6,29, а р -значение почти равно нулю. В то же время t -статистика, соответствующая фиктивной переменной, равна 3,1, а p -значение – 0,009. Таким образом, каждая из этих двух переменных вносит существенный вклад в модель, если уровень значимости равен 0,01. Кроме того, коэффициент множественной смешанной корреляции означает, что 81,1% вариации оценочной стоимости объясняется изменчивостью жилой площади дома и наличием камина.

Эффект взаимодействия. Во всех регрессионных моделях, рассмотренных выше, считалось, что влияние отклика на объясняющую переменную является статистически независимым от влияния отклика на другие объясняющие переменные. Если это условие не выполняется, возникает взаимодействие между зависимыми переменными. Например, вполне вероятно, что реклама оказывает большое влияние на объем продаж товаров, имеющих низкую цену. Однако, если цена товара слишком высока, увеличение расходов на рекламу не может существенно повысить объем продаж. В этом случае наблюдается взаимодействие между ценой товара и затратами на его рекламу. Иначе говоря, нельзя делать общих утверждений о зависимости объема продаж от затрат на рекламу. Влияние рекламных расходов на объем продаж зависит от цены. Это влияние учитывается в модели множественной регрессии с помощью эффекта взаимодействия. Для иллюстрации этого понятия вернемся к задаче о стоимости домов.

В разработанной нами регрессионной модели предполагалось, что влияние размера дома на его стоимость не зависит от того, есть ли в доме камин. Иначе говоря, считалось, что наклон оценочной стоимости, зависящей от жилой площади дома, одинаков у домов, имеющих камин и не имеющих его. Если эти наклоны отличаются друг от друга, между размером дома и наличием камина существует взаимодействие.

Проверка гипотезы о равенстве наклонов сводится к оценке вклада, который вносит в модель регрессии произведение объясняющей переменной X 1 и фиктивной переменной Х 2 . Если этот вклад является статистически значимым, исходную модель регрессии применять нельзя. Результаты регрессионного анализа, включающего переменные Х 1 , Х 2 и Х 3 = Х 1 *Х 2 приведены на рис. 13.

Рис. 13. Результаты, полученные с помощью Пакета анализа Excel для регрессионной модели, учитывающей жилую площадь, наличие камина и их взаимодействие

Для того чтобы проверить нулевую гипотезу Н 0: β 3 = 0 и альтернативную гипотезу Н 1: β 3 ≠ 0, используя результаты, приведенные на рис. 13, обратим внимание на то, что t -статистика, соответствующая эффекту взаимодействия переменных, равна 1,48. Поскольку р -значение равно 0,166 > 0,05, нулевая гипотеза не отклоняется. Следовательно, взаимодействие переменных не имеет существенного влияния на модель регрессии, учитывающую жилую площадь и наличие камина.

Резюме. В заметке показано, как менеджер по маркетингу может применять множественный линейный анализ для предсказания объема продаж, зависящего от цены и затрат на рекламу. Рассмотрены различные модели множественной регрессии, включая квадратичные модели, модели с фиктивными переменными и модели с эффектами взаимодействия (рис. 14).

Рис. 14. Структурная схема заметки

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 873–936

Предположим, что застройщик оценивает стоимость группы небольших офисных зданий в традиционном деловом районе.

Застройщик может использовать множественный регрессионный анализ для оценки цены офисного здания в заданном районе на основе следующих переменных.

y - оценочная цена здания под офис;

x 1 - общая площадь в квадратных метрах;

x 2 - количество офисов;

x 3 - количество входов (0,5 входа означает вход только для доставки корреспонденции);

x 4 - время эксплуатации здания в годах.

В этом примере предполагается, что существует линейная зависимость между каждой независимой переменной (x 1 , x 2 , x 3 и x 4) и зависимой переменной (y), то есть ценой здания под офис в данном районе. Исходные данные показаны на рисунке.

Настройки для решения поставленной задачи показаны на рисунке окна "Регрессия ". Результаты расчетов размещены на отдельном листе в трех таблицах

В итоге мы получили следующую математическую модель:

y = 52318 + 27,64*x1 + 12530*x2 + 2553*x3 - 234,24*x4.

Теперь застройщик может определить оценочную стоимость здания под офис в том же районе. Если это здание имеет площадь 2500 квадратных метров, три офиса, два входа и время эксплуатации - 25 лет, можно оценить его стоимость, используя следующую формулу:

y = 27,64*2500 + 12530*3 + 2553*2 - 234,24*25 + 52318 = 158 261 у.е.

В регрессионном анализе наиболее важными результатами являются:

  • коэффициенты при переменных и Y-пересечение, являющиеся искомыми параметрами модели;
  • множественный R, характеризующий точность модели для имеющихся исходных данных;
  • F-критерий Фишера (в рассмотренном примере он значительно превосходит критическое значение, равное 4,06);
  • t-статистика – величины, характеризующие степень значимости отдельных коэффициентов модели.

На t-статистике следует остановиться особо. Очень часто при построении регрессионной модели неизвестно, влияет тот или иной фактор x на y. Включение в модель факторов, которые не влияют на выходную величину, ухудшает качество модели. Вычисление t-статистики помогает обнаружить такие факторы. Приближенную оценку можно сделать так: если при n>>k величина t-статистики по абсолютному значению существенно больше трех, соответствующий коэффициент следует считать значимым, а фактор включить в модель, иначе исключить из модели. Таким образом, можно предложить технологию построения регрессионной модели, состоящую из двух этапов:

1) обработать пакетом "Регрессия " все имеющиеся данные, проанализировать значения t-статистики;

2) удалить из таблицы исходных данных столбцы с теми факторами, для которых коэффициенты незначимы и обработать пакетом "Регрессия " новую таблицу.

Назначение множественной регрессии – анализ связи между одной зависимой и несколькими независимыми переменными.

Пример: Имеются данные о стоимости одного рабочего места (при покупке 50 рабочих мест) для различных PDM-систем. Требуется: оценить зависимость между ценой рабочего места PDM-системы от количества реализованных в ней характеристик, приведенных в таблице 2.

Таблица 2 - Характеристики PDM-систем

Номер п/п PDM-система Стоимость Управление конфигурацией изделия Модели изделий Коллективная работа Управление изменениями изделий Документооборот Архивы Поиск документов Планирование проекта Управление изготовлением изделий
iMAN Да Да
PartY Plus Да Да
PDM STEP Suite Да Да
Search Да Да
Windchill Да Да
Компас-Менеджер Да Да
T-Flex Docs Да Да
ТехноПро Нет Нет

Численное значение характеристик (кроме «Стоимость», «Модели изделий» и «Коллективная работа») означает количество реализованных требований каждой характеристики.

Создадим и заполним электронную таблицу с исходными данными (Рисунок 27).

Значение «1» переменных «Мод. изд.» и «Коллект. р-та.» соответствует значению «Да» исходных данных, а значение «0» значению «Нет» исходных данных.

Построим регрессию между зависимой переменной «Стоимость» и независимыми переменными «Упр. конф.», «Мод. изд.», «Коллект. р-та», «Упр. изм.», «Док.», «Архивы», «Поиск», «План-е», «Упр. изгот.».

Для начала статистического анализа исходных данных вызвать модуль «Multiple Regression» (рисунок 22).

В появившемся диалоговом окне (рисунок 23) указать переменные по которым будет производиться статистический анализ.

Рисунок 27 - Исходные данные

Для этого нажать кнопку Variables и в появившемся диалоговом окне (рисунок 28) в части соответствующей зависимым переменным (Dependent var.) выбрать «1-Стоимость», а в части соответствующей независимым переменным (Independent variable list) выбрать все остальные переменные. Выбор нескольких переменных из списка осуществляется с использованием клавиш «Ctrl» или «Shift», либо указанием номеров (диапазона номеров) переменных в соответствующем поле.



Рисунок 28 - Диалоговое окно задания переменных для статистического анализа

После того как переменные выбраны нажать кнопку «OK» в диалоговом окне задания параметров модуля «Multiple Regression». В появившемся окне с надписью «No of indep. vars. >=(N-1); cannot invert corr. matrix.» (рисунок 29) нажать кнопку «OK».

Данное сообщение появляется в случае когда система не может построить регрессию по всем заявленным независимым переменным, т.к. число переменных больше или равно числу случаев минус 1.

В появившемся окне (рисунок 30) на закладке «Advanced» можно изменить метод построения уравнения регрессии.

Рисунок 29 - Сообщение об ошибке

Для этого в поле «Method» (метод) выбрать «Forward stepwise» (пошаговый с включением).

Рисунок 30 - Окно выбора метода и задания параметров построения уравнения регрессии

Метод пошаговой регрессии состоит в том, что на каждом шаге в модель включается, либо исключается какая-то независимая переменная. Таким образом, выделяется множество наиболее "значимых" переменных. Это позволяет сократить число переменных, которые описывают зависимость.

Пошаговый анализ с исключением («Backward stepwise»). В этом случае все переменные будут сначала включены в модель, а затем на каждом шаге будут устраняться переменные, вносящие малый вклад в предсказания. Тогда в качестве результата успешного анализа можно сохранить только "важные" переменные в модели, то есть те переменные, чей вклад в дискриминацию больше остальных.

Пошаговый анализ с включением («Forward stepwise»). При использовании этого метода в регрессионное уравнение последовательно включаются независимые переменные, пока уравнение не станет удовлетворительно описывать исходные данные. Включение переменных определяется при помощи F - критерия. На каждом шаге просматриваются все переменные и находится та из них, которая вносит наибольший вклад в различие между совокупностями. Эта переменная должна быть включена в модель на данном шаге, и происходит переход к следующему шагу.

В поле «Intercept» (свободный член регрессии) можно выбрать включать ли его в уравнение («Include in model») либо не учитывать и считать равным нулю («Set to zero»).

Параметр «Tolerance» это толерантность переменных. Определяется как 1 минус квадрат коэффициента множественной корреляции этой переменной со всеми другими независимыми переменными в уравнении регрессии. Поэтому, чем меньший толерантность переменной, тем более избыточный - ее вклад в уравнение регрессии. Если толерантность любой из переменных в уравнении регрессии равна или близка к нулю, то уравнение регресса не может быть оценено. Поэтому параметр толерантность желательно задать равным 0,05 или 0,1.

Параметр «Ridge regression; lambda:» используется, когда независимые переменные высоко межкоррелированые, и устойчивые оценки для коэффициентов уравнения регрессии, не могут быть получен через метод наименьших квадратов. Указанная постоянная (лямбда) будет добавлена к диагонали матрицы корреляций, которая тогда заново будет приведена к стандартизированному виду (так чтобы все диагональные элементы были равны 1.0). Другими словами, данный параметр искусственно уменьшает коэффициенты корреляции так, чтобы можно было вычислить более устойчивые (все же смещенный) оценки параметров регрессии. В наше случае данный параметр не используется.

Параметр «Batch processing/printing» (обработка, печать отчетов) используется, когда необходимо сразу подготовить для отчета несколько таблиц, отражающих результаты и процесс регрессионного анализа. Эта опция весьма полезна, когда необходимо напечатать или проанализировать результаты пошагового регрессионного анализа на каждом шаге.

На закладке «Stepwise» (рисунок 31) можно задать параметры условия включения («F to enter») или исключения («F to remove») переменных при построении уравнения регрессии, а также количество шагов построения уравнения («Number of steps»).

Рисунок 31 – Закладка «Stepwise» окна выбора метода и задания параметров построения регрессионного уравнения

F это величина значения F-критерия.

Если при пошаговом анализе с включением необходимо, чтобы все или почти все переменные вошли в уравнение регрессии то необходимо значение «F to enter» установить минимальным (0,0001), и значение «F to remove» также установить минимальным.

Если при пошаговом анализе с исключением необходимо, удалять все переменные (по одной) из уравнения регрессии то необходимо значение «F to enter» установить очень большим, например 999, и значение «F to remove» установить близким к «F to enter».

Следует помнить, что значение параметра «F to remove» всегда должно быть меньше чем «F to enter».

Опция «Display results» (отображение результатов) имеет два варианта:

2) At each step – отображать результаты анализа на каждом шаге.

После нажатия кнопки «OK» в окне выбора методов регрессионного анализа появится окно результатов анализа (рисунок 32).

Рисунок 32 - Окно результатов анализа

Рисунок 33 - Краткие результаты регрессионного анализа

Согласно результатам анализа коэффициент детерминации . Это означает, что построенная регрессия объясняет 99,987% разброса значений относительно среднего, т.е. объясняет практически всю изменчивость переменных.

Большое значение и его уровень значимости показывают, что построенная регрессия высоко значима.

Для просмотра кратких результатов регрессии нажать кнопку «Summary: Regression result». На экране появится электронная таблица с результатами анализа (рисунок 33).

В третьем столбце («B») отображены оценки неизвестных параметров модели, т.е. коэффициенты уравнения регрессии.

Таким образом, искомая регрессия имеет вид:

Качественно построенное уравнение регрессии можно интерпретировать следующим образом:

1) Стоимость PDM-системы увеличивается с возрастанием количества реализованных функций по управлению изменениями, документообороту и планированию, а также, если в систему включена функция поддержки модели изделия;

2) Стоимость PDM-системы снижается с увеличением реализованных функций управления конфигурацией и с увеличением возможностей поиска.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме