Подпишись и читай
самые интересные
статьи первым!

Варианты катодной защиты трубопроводов – преимущества и недостатки способов. Катодная защита трубопроводов от коррозии, схема, принцип действия и видео

Трубопроводные магистрали – это на сегодняшний день наиболее распространенное средство для осуществления транспортировки носителей энергии. Очевидный их недостаток – подверженность образованию ржавчины. Для этого выполняется катодная защита магистральных трубопроводов от коррозии. В чем же ее принцип действия?

Причины коррозии

Сети трубопроводов систем жизнеобеспечения распространены по всей территории России. С их помощью эффективно транспортируется газ, вода, нефтепродукты и нефть. Не так давно был проложен трубопроводов для транспортировки аммиака. Большинство видов трубопроводов выполнены из металла, а главный их враг – это коррозия, видов которой имеется много.

Причины образования ржавчины на металлических поверхностях основаны на свойствах окружающей среды, как наружной, так и внутренней коррозии трубопроводов. Опасность образования коррозии для внутренних поверхностей основана на:

  1. Взаимодействии с водой.
  2. Наличии в воде щелочей, солей или кислот.

Такие обстоятельства могут сложиться на магистральных водопроводах, системах горячего водоснабжения (ГВС), пара и отопления. Не менее важным фактором является способ прокладки трубопровода: наземный или подземный. Первый проще обслуживать и устранять причины образования ржавчины, по сравнению со вторым.

При способе прокладывания “труба в другую трубу” риск возникновения коррозии находится на невысоком уровне. При непосредственном выполнении монтажа трубопровода на открытом воздухе возможно образование ржавчины от взаимодействия с атмосферой, что тоже приводит к изменению конструкции.

Трубопроводы, расположенные под землей, в том числе пара и горячей воды наиболее уязвимы к коррозии. Возникает вопрос о подверженности к коррозии труб, расположенных на дне водоисточников, но лишь небольшая часть магистралей расположена в этих местах.

Согласно предназначению трубопроводы с риском возникновения коррозии подразделяются на:

  • магистральные;
  • промысловые;
  • для систем отопления и жизнеобеспечения населения;
  • для сточной воды от промышленных предприятий.

Подверженность коррозии магистральных трубопроводных сетей

Коррозия трубопроводов данного типа наиболее хорошо изучена, и их защита от воздействия внешних факторов определена стандартными требованиями. В нормативных документах рассматриваются способы защиты, а не причины, исходя из которых происходит образование ржавчины.

Не менее важно учитывать, что при этом рассматривается только наружная коррозия, которой подвержен внешний участок трубопровода, так как внутри магистрали проходят инертные газы. Не столь опасно в этом случае контактирование металла с атмосферой.

Для защищенности от коррозии по ГОСТ рассматриваются для нескольких участок трубопровода: повышенной и высокой опасности, а также коррозионно-опасных.

Воздействие негативных факторов из атмосферы для участков повышенной опасности или виды коррозии:

  1. От источников постоянного тока возникновение блуждающих токов.
  2. Воздействие микроорганизмов.
  3. Созданное напряжение провоцирует растрескивание металла.
  4. Хранение отходов.
  5. Соленые почвы.
  6. Температура транспортируемого вещества выше 300 °С.
  7. Углекислотная коррозия нефтепровода.

Монтер по защите подземных трубопроводов от коррозии должен знать конструкцию трубопровода и требования СНиП.

Электрохимическая коррозия от грунта

Вследствие разности напряжений, образовавшихся на отдельных участках трубопроводов, возникает поток электронов. Процесс образования ржавчины происходит по электрохимическому принципу. На основании этого эффекта часть металла в анодных зонах растрескивается и перетекает в основание почвы. После взаимодействия с электролитом образовывается коррозия.

Одним из значимых критериев для обеспечения защиты от негативных проявлений является длина магистрали. На пути попадаются почвы с разным составом и характеристикой. Все это способствует возникновению разности напряжений между частями проложенных трубопроводов. Магистрали обладают хорошей проводимостью, поэтому происходит образование гальванопар с достаточно большой протяженностью.

Увеличение скорости коррозии трубопровода провоцирует высокая плотность потока электронов. Не меньшее значение играет и глубина расположения магистралей, так как на ней сохраняется существенный процент влажности, и температуры, которая ниже отметки “0” не отпускается. На поверхности труб также остается прокатная окалина после обработки, а это влияет на появление ржавчины.

Путем проведения исследовательских работ установлена прямая зависимость между глубиной и площадью образованной ржавчины на металле. Это основано на том, что металл с большей площадью поверхности наиболее уязвим к внешним негативным проявлениям. К частным случаям можно отнести проявление на стальных сооружениях значительно меньших количеств разрушений под действием электрохимического процесса.

Агрессивность грунтов к металлу, прежде всего, определяется их собственной структурной составляющей, влажностью, сопротивлением, насыщенностью щелочами, воздушной проницаемостью и иными факторами. Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с проектом на строительство магистрали.

Коррозия под влиянием блуждающих токов

Ржавчина может возникать от переменного и постоянного потока электронов:

  • Образование ржавчины под воздействием тока постоянных величин. Блуждающими токами называются токи, находящиеся в почве и в конструктивных элементах, расположенных под землей. Их происхождение антропогенное. Они возникают в результате эксплуатации технических устройств постоянного тока, распространяющегося от зданий или сооружений. Ими могут быть сварочные инверторы, систем защиты от катодов и иные устройства. Ток стремится пройти по пути наименьшего показателя сопротивления, в результате, при имеющихся в наличии трубопроводах в земле, току будет гораздо легче пройти через металл. Анодом является участок трубопровода, из которого блуждающий ток выходит на поверхность почвы. Часть трубопровода, в который попадает ток, играет роль катода. На описанных анодных поверхностях токи имеют повышенную плотность, поэтому именно в этих местах образовываются значительные коррозионные места. Скорость коррозии не ограничивается и может быть до 20 мм в год.
  • Образование ржавчины под воздействием переменного тока. При расположении около магистралей линий электропередач с напряжением сети свыше 110 кВ, а также параллельном расположении трубопроводов под влиянием переменных токов образовывается коррозия, в том числе коррозия под изоляцией трубопроводов.

Коррозионное растрескивание под влиянием напряжения

Если на металлическую поверхность одновременно воздействуют внешние негативные факторы и высокое напряжение от ЛЭП, создающее растягивающие усилия, то происходит образование ржавчины. Согласно проведенным исследованиям получила свое место водородно-коррозионная новая теория.

Трещины небольшого размера образовываются при насыщении трубы водородом, которое после обеспечивает увеличение давления изнутри до показателей, выше положенного эквивалента связи атомов и кристаллов.

Под влиянием диффузии протонов производится наводораживание поверхностного слоя под влияние гидролиза при повышенных уровнях катодной защищенности и одновременного воздействия неорганических соединений.

После того как трещина раскроется, происходит ускорение процесса ржавление металла, которое обеспечивается грунтовым электролитом. В итоге под влиянием механических воздействий металл подвергается медленному разрушению.

Коррозия под влиянием микроорганизмов

Микробиологической коррозией называется процесс образования ржавчины на трубопроводе под влиянием живых микроорганизмов. Это могут быть водоросли, грибки, бактерии, в их числе простейшие организмы. Установлено, что размножение бактерий наиболее существенно влияет на этот процесс. Для поддержания жизнедеятельности микроорганизмов необходимо создание условий, а именно нужен азот, влажность, воды и соли. Также условия такие, как:

  1. Температурно-влажностные показатели.
  2. Давление.
  3. Наличие освещенности.
  4. Кислород.

При выделении кислотной среды организмы также могут вызвать коррозию. Под их влиянием на поверхности проявляются каверны, имеющие черный цвет и неприятный запах сероводорода. Бактерии, содержащие сульфаты присутствуют практические во всех почвах, но скорость коррозии увеличивается при увеличении их количества.

Что такое электрохимическая защита

Электрохимическая защита трубопроводов от коррозии – это комплекс мер, направленных на недопущение развития коррозии под воздействием электрического поля. Для преобразования постоянного тока применяются специализированные выпрямители.

Защита от коррозии производится созданием электромагнитного поля, в результате чего приобретается отрицательный потенциал или участок исполняет роль катода. То есть отрезок стальных трубопроводов, огражденный от образования ржавчины, приобретает отрицательный заряд, а заземление – положительный.

Катодная защита трубопроводов от коррозии сопровождает электролитической защищенностью с достаточной проводимостью среды. Такую функцию выполняет грунт, при прокладывании металлических подземных магистралей. Контактирование электродов осуществляется через токопроводящие элементы.

Индикатор для определения показателей коррозии – это высоковольтный вольтметр или датчик коррозии. С помощью этого прибора контролируется показатель между электролитом и грунтом, конкретно для этого случая.

Как классифицируется электрохимическая защита

Коррозия и защита магистральных трубопроводов и резервуаров от нее контролируются двумя способами:

  • К металлической поверхности подводиться источник от тока. Этот участок приобретает отрицательный заряд, то есть исполняет роль катода. Аноды – это инертные электроды, которые никакого отношения к конструктивному исполнению не имеют. Этот способ считается наиболее распространенным, и электрохимическая коррозия не возникает. Такая методика направлена на недопущение следующих разновидностей коррозий: питтинговой, по причине присутствия блуждающих токов, кристаллического типа нержавеющей стали, а также растрескиванию элементов из латуни.
  • Гальванический способ. Защита магистральных трубопроводов или протекторная защита осуществляется металлическими пластинами с большими показателями отрицательных зарядов, изготовленными из алюминия, цинка, магния либо их сплавов. Аноды – это два элемента, так называемые ингибиторы, при этом медленное разрушение протектора способствует поддержанию в изделии катодного тока. Протекторная защита используется крайне редко. ЭХЗ выполняется на изоляционное покрытие трубопроводов.

Об особенностях электрохимической защиты

Основной причиной разрушения трубопроводов является следствие коррозии металлических поверхностей. После образования ржавчины образовывают трещины, разрывы, каверны, которые постепенно увеличиваются в размерах и способствуют разрыву трубопровода. Это явление чаще происходит у магистралей, проложенных под землей, или соприкасающихся с грунтовыми водами.

В принципе действия катодной защиты заложено создание разности напряжений и действия двумя вышеописанными методами. После проведенных измерительных операций непосредственно на местности расположения трубопровода выяснено, что нужный потенциал, способствующий замедлению процесса разрушения должен составлять 0,85В, а у подземных элементов это значение равно 0,55В.

Для замедления скорости коррозии следует снизить катодное напряжение на 0,3В. При таком раскладе, скорость коррозии не будет более 10 мкм/год, а это существенно продлить срок службы технических устройств.

Одна из значимых проблем – это наличие блуждающих токов в грунте. Такие токи возникают от заземлений зданий, сооружений, рельсовых путей и иных устройств. Тем более невозможно провести точную оценку, в каком месте они могут проявиться.

Для создания разрушающего воздействия достаточно заряда стальных трубопроводов положительным потенциалом по отношению к электролитическому окружению, к ним относятся магистрали, проложенные в грунте.

Для того чтобы обеспечить контур током необходимо подвести внешнее напряжение, параметры которого будут достаточными для пробивания сопротивления грунтового основания.

Как правило, подобные источники – это линии электропередач с показателями мощностей от 6 до 10 кВт. Если электрический ток невозможно подвести, то можно использовать дизельные или газовые генераторы. Монтер по защите подземных трубопроводов от коррозии перед выполнением работ должен быть ознакомлен с проектными решениями.

Катодная защита

Чтобы снизился процент возникновения ржавчины на поверхности труб, используются станции электродной защиты:

  1. Анодная, выполненная в виде заземляющих проводников.
  2. Преобразователи постоянных потоков электронов.
  3. Оборудование пункта управления процессом и контроля за этим процессом.
  4. Кабельные и проводные соединения.

Станции катодных защит достаточно результативны, при непосредственном соединении с линией электропередачи или генератору, они обеспечивают ингибирующее действие токов. При этом обеспечивается защита одновременно нескольких участков трубопровода. Регулировка параметров производиться вручную или автоматически. В первом случае используются обмотки трансформаторов, а во втором – тиристоры.

Наиболее распространенной на территории России является высокотехнологичная установка – Миневра -3000. Ее мощности предостаточно для осуществления защиты 30000 м магистралей.

Достоинства технического устройства:

  • высокие характеристики мощности;
  • обновление режима работы после перегрузок через четверть минуты;
  • с помощью цифрового регулирования осуществляется контроль за рабочими параметрами;
  • герметичность высокоответственных соединений;
  • подключение устройства к дистанционному контролю за процессом.

Также применяются АСКГ-ТМ, хотя они их мощность невелика, их оснащение телеметрическим комплексом или дистанционным управлением позволяет им быть не менее популярными.

Схема изоляционной магистрали водопровода или газопровода должна быть на месте проведения работ.

Видео: катодная защита от коррозии – какой бывает и как выполняется?

Защита от коррозии обустройством дренажа

Монтер по защите подземных трубопроводов от коррозии должен быть ознакомлен с устройством дренажа. Такая защита от образования ржавчины трубопроводов от блуждающих токов производится устройством дренажа, необходимым для отвода этих токов в другой участок земли. Всего существует несколько вариантов дренажей.

Разновидности исполнения:

  1. Выполненный под землей.
  2. Прямой.
  3. С полярностями.
  4. Усиленный.

При осуществлении земляного дренажа производят установку электродов к анодные зоны. Для обеспечения прямой дренажной линии выполняется электрическая перемычка, соединяющая трубопровод с отрицательным полюсом от источников токов, к примеру, заземлению от жилого дома.

Поляризованный дренаж имеет одностороннюю проводимость, то есть при появлении положительного заряда на заземляющем контуре он автоматически отключается. Усиленный дренаж функционирует от преобразователя тока, дополнительно подключенному в электрическую схему, а это улучшает отвод блуждающих токов от магистрали.

Прибавка на коррозию трубопроводов проводится расчетным путем, согласно РД.

Кроме всего, применяется ингибиторная защита, то есть на трубах используется специальный состав для защиты от агрессивных сред. Стояночная коррозия возникает при простое котельного оборудования продолжительное время, чтобы этого не происходило, необходимо техническое обслуживание оборудования.

Монтер по защите подземных трубопроводов от коррозии должен обладать знаниями и навыками, обучен Правилам и периодически проходить медосмотр, и сдавать экзамены в присутствии инспектора Ростехнадзора.

СКЗ – основные сведения.

Станция катодной защиты (СКЗ) – это комплекс сооружений, предназначенных для катодной поляризации газопровода внешним током.

Основными конструктивными элементами СКЗ (рис. 12.4.1.) являются:

Ø источник постоянного (выпрямленного) тока (катодная станция) 5 ;

Ø анодное заземление 2 , зарываемое в землю на некотором расстоянии от трубопровода 1 ;

Ø соединительные электролинии 3 , соединяющие положительный полюс источника тока с анодным заземлением, а отрицательный полюс - с трубопроводом;

Ø катодный вывод газопровода 8 и точка дренажа 7 ;

Ø защитное заземление 4 .

Рисунок – 12.4.1. - Принципиально-конструктивная схема СКЗ

Потенциал трубопровода под действием входящего тока становится более электроотрицательным, оголенные участки газопровода (в местах повреждения изоляции) катодно заполяризовываются и в зависимости от величины установившегося потенциала становится полностью или частично защищенными от коррозии. Одновременно на анодном заземлении под действием стекающего тока происходит процесс анодной поляризации, сопровождающийся постепенным разрушением анодного заземления.

Источники постоянного тока СКЗ разделяются на две группы. К первой группе относятся сетевые преобразующие устройства - выпрямители, питаемые от линий электропередачи (ЛЭП) переменного тока промышленной частоты 50 Гц номинальным напряжением от 0,23 до 10 кВ. Ко второй группе относятся автономные источники – генераторы постоянного тока и электрохимические элементы, которые вырабатывают электроэнергию непосредственно на трассе газопровода вблизи места, где необходимо установить СКЗ (ветроэлектрогенераторы, электрогенераторы с приводом от газовых турбинок, от двигателя внутреннего сгорания, термоэлектрогенераторы, аккумуляторы).

На магистральных газопроводах широкое распространение получили сетевые катодные станции с выпрямителями однофазного переменного тока напряжением 127/220 В, частотой 50 Гц. При наличии линий электропередачи переменного тока с номинальным напряжением 0,23; 0,4; 6 и 10 кВ применение таких станций целесообразно и экономически оправдано. При питании от ЛЭП 6 или 10 кВ выпрямительную установку подключают к питающей линии через понижающий трансформатор.

Рисунок – 12.4.2. – Упрощенная принципиальная схема типового неавтоматического источника питания СКЗ

На рис.12.4.2. приведена упрощенная типовая схема сетевой катодной станции с выпрямителем. Сеть переменного тока подключается к клеммам 1 и 2 . Учет потребляемой электроэнергии осуществляется электросчетчиком 3 . Автомат 4 служит для включения установки, а предохранители 5 обеспечивают защиту от токов короткого замыкания и перегрузок со стороны переменного тока. Понижающий трансформатор 6 питает выпрямитель 7 , собранный из отдельных выпрямительных элементов по двухполупериодной мостовой схеме выпрямления или по двухполупериодной однофазной схеме выпрямления с нулевым выводом. Защита от короткого замыкания и перегрузки со стороны цепи выпрямленного тока обеспечивается предохранителем 9 . Режим работы установки контролируют при помощи амперметра 10 и вольтметра 12 . Соединительный кабель от трубопровода 11 подключается к клемме «-», а от анодного заземления - к клемме «+». Все элементы установки смонтированы в металлическом шкафу, запираемом на замок.

Для обеспечения безопасных условий эксплуатации все металлические части конструкции станции заземляются защитным заземлением 8 .

Выпрямительные установки имеют устройства для регулирования напряжения или силы тока. В большинстве установок применяют ступенчатое регулирование напряжения путем переключения отдельных секций обмоток трансформатора. На некоторых типах выпрямителей напряжение регулируется плавно при помощи автотрансформатора или магнитных шунтов в обмотках трансформатора. Применяют также симисторное регулирование напряжения в первичной обмотке и тиристорное – во вторичной.

При катодной защите газопроводов, находящихся в зоне действия блуждающих токов, режим работы неавтоматических выпрямителей переменного тока обычно выбирается с учетом среднего значения разности потенциала «труба – земля», которое определяется по данным измерений за определенный промежуток времени (обычно среднесуточное значение) и не исключает выбросов потенциала в анодную или катодную область. Для подавления анодных выбросов выпрямитель необходимо настраивать на режим перезащиты. Глубокая катодная поляризация приводит к перерасходу электроэнергии, отслаиванию и растрескиванию изоляционного покрытия, наводораживанию поверхности металла (за счет интенсивного выделения на катоде водорода). Такой характер изменения потенциалов газопроводов приводит к необходимости создания автоматических станций катодной защиты, которые должны поддерживать потенциал в защитном диапазоне при минимальном расходе электроэнергии и максимальном использовании защитных свойств блуждающих токов. СКЗ состоят из устройств для установки заданного значения разности потенциалов (задающих устройств), устройств для измерения фактической разности потенциалов (измерительных устройств со стационарными электродами сравнения), усилителей мощности, исполнительных органов, изменяющих силу тока в цепи СКЗ.

МЕТАЛЛИЧЕСКИХ СООРУЖЕНИЙ»


Теоретические основы

Катодная защита подземных металлических сооружений

Принцип действия катодной защиты

При контакте металла с грунтами, относящимися к электролитическим средам, происходит коррозионный процесс, сопровождаемый образованием электрического тока, и устанавливается определенный электродный потенциал. Величину электродного потенциала трубопровода можно определить по разности потенциалов между двумя электродами: трубопроводом и неполяризующимся медно-сульфатным элементом. Таким образом, значение потенциала трубопровода представляет собой разность его электродного потенциала и потенциала электрода сравнения по отношению к грунту. На поверхности трубопровода протекают электродные процессы определенного направления и стационарные по характеру изменения во времени.

Стационарный потенциал принято называть естественным потенциалом, подразумевая при этом отсутствие на трубопроводе блуждающих и других наведенных токов.

Взаимодействие корродирующего металла с электролитом разделяется на два процесса: анодный и катодный, которые проходят одновременно на различных участках поверхности раздела металла и электролита.

При защите от коррозии используют территориальное разделение анодного и катодного процессов. К трубопроводу подключают источник тока с дополнительным электродом-заземлителем, с помощью которого накладывают на трубопровод внешний постоянный ток. В этом случае анодный процесс происходит на дополнительном электроде-заземлителе.

Катодная поляризация подземных трубопроводов осуществляется с помощью наложения электрического поля от внешнего источника постоянного тока. Отрицательный полюс источника постоянного тока подключается к защищаемой конструкции, при этом трубопровод является катодом по отношению к грунту, искусственно созданный анод-заземлитель - к положительному полюсу.

Принципиальная схема катодной защиты показана на рис. 14.1. При катодной защите отрицательный полюс источника тока 2 подключен к трубопроводу 1, а положительный - к искусственно созданному аноду-заземлителю 3. При включении источника тока от его полюса через анодное заземление поступает в грунт и через поврежденные участки изоляции 6 на трубу. Далее через точку дренажа 4 по соединительному проводу 5 ток возвращается снова к минусу источника питания. При этом на оголенных участках трубопровода начинается процесс катодной поляризации.



Рис. 14.1. Принципиальная схема катодной защиты трубопровода:

1 - трубопровод; 2 - внешний источник постоянного тока; 3 - анодное заземление;

4 - точка дренажа; 5 - дренажный кабель; 6 - контакт катодного вывода;

7 - катодный вывод; 8 - повреждения изоляции трубопровода

Поскольку напряжение внешнего тока, приложенного между электродом-заземлителем и трубопроводом, значительно превышает разность потенциалов между электродами коррозионных макропар трубопровода, стационарный потенциал анодного заземления не играет определяющей роли.

С включением электрохимической защиты (j 0a.доп ) нарушается распределение токов коррозионных макропар, сближаются значения разности потенциалов «труба – земля» катодных участков (j 0к ) с разностью потенциалов анодных участков (j 0а ), обеспечиваются условия для поляризации.

Катодная защита регулируется путем поддержания необходимого защитного потенциала. Если наложением внешнего тока трубопровод заполяризован до равновесного потенциала (j 0к = j 0а ) растворения металла (рис. 14.2 а), то анодный ток прекращается и коррозия приостанавливается. Дальнейшее повышение защитного тока нецелесообразно. При более положительных значениях потенциала наступает явление неполной защиты (рис. 14.2 б). Оно может возникнуть при катодной защите трубопровода, находящегося в зоне сильного влияния блуждающих токов или при использовании протекторов, не имеющих достаточно отрицательного электродного потенциала (цинковые протекторы).

Критериями защиты металла от коррозии являются защитная плотность тока и защитный потенциал.

Катодная поляризация неизолированной металлической конструкции до величины защитного потенциала требует значительных токов. Наиболее вероятные величины плотностей токов, необходимых для поляризации стали в различных средах до минимального защитного потенциала (-0,85 В) по отношению к медно-сульфатному электроду сравнения, приведены в табл. 14.1

Рис. 14.2. Коррозионная диаграмма для случая полной поляризации (а) и

неполной поляризации (б)

Обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность трубопровода. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. Так, для катодной защиты стали с хорошим покрытием в почве требуется всего 0,01 ... 0,2 мА/м 2 .

Таблица 14.1

Плотность тока, необходимая для катодной защиты

неизолированной стальной поверхности в различных средах

Защитная плотность тока для изолированных магистральных трубопроводов не может стать надежным критерием защиты вследствие неизвестного распределения поврежденной изоляции трубопровода, определяющую фактическую площадь контакта металла с грунтом. Даже для неизолированной трубы (патрон на подземном переходе через железные и шоссейные дороги) защитная плотность тока определяется по геометрическим размерам сооружения и является фиктивной, так как остается неизвестной доля поверхности патрона, покрытая постоянно присутствующими пассивными защитными слоями (окалиной и др.) и не участвующая в процессе деполяризации. Поэтому защитная плотность тока как критерий защиты применяется при некоторых лабораторных исследованиях, выполняемых на образцах металла.

Одним из часто применяемых методов электрохимической защиты разнообразных конструкций из металлов от ржавления является катодная защита. В большинстве случаев ее используют совместно с нанесением на металлические поверхности специальных покрытий.

1 Общая информация о катодной защите

Впервые такая защита металлов была описана в 1820-х годах Гемфри Дэви. На основании его докладов в 1824 году на корабле HMS Samarang осуществили проверку предоставленной теории. На медную обшивку корабля установили железные анодные протекторы, которые существенно уменьшили скорость ржавления меди. Методику стали развивать, и в наши дни катодная всевозможных конструкций из металлов (трубопроводов, элементов автомобиля и т. д.) признается наиболее эффективной и широко используемой.

В производственных условиях такая защита металлов (ее нередко называют катодной поляризацией) производится по двум основным методикам.

  1. Предохраняемая от разрушения конструкция подключается к внешнему источнику тока. В данном случае металлоизделие выполняет функцию катода. А анодами являются инертные дополнительные электроды. Эта методика обычно применяется для защиты трубопроводов, металлических сварных оснований, платформ для бурения.
  2. Катодная поляризация гальванического типа. При такой схеме металлическая конструкция контактирует с металлом, который имеет больший электроотрицательный потенциал (алюминий, магний, алюминиевые сплавы, цинк). При этом под анодом понимают оба металла (основной и защитный). Растворение (имеется в виду сугубо электрохимический процесс) электроотрицательного материала приводит к протеканию через предохраняемое изделие необходимого катодного тока. С течением времени происходит полное разрушение металла-"защитника". Гальваническая поляризация эффективна для конструкций, на которых есть изоляционный слой, а также для металлоизделий относительно малых размеров.

Первая методика нашла широкое применение по всему миру. Она достаточно проста и экономически целесообразна, дает возможность предохранять металл от общей коррозии и от многих ее разновидностей – межкристаллитной коррозии "нержавейки", питтинговой, растрескивания латунных изделий, обусловленного напряжениями, при которых они работают.

Гальваническая схема нашла большее применение в США. В нашей стране она используется реже, хотя ее эффективность высока. Ограниченное применение протекторной защиты металлов в России связано с тем, что на многие трубопроводы у нас не наносят специальное покрытие, а это является обязательным условием для реализации антикоррозионной гальванической методики.

2 Как работает стандартная катодная поляризация металлов?

Катодная защита от коррозии производится посредством использования наложенного тока. Он поступает на конструкцию от выпрямителя либо иного источника (внешнего) тока, где промышленный по частоте переменный ток модифицируется в требуемый постоянный. Объект, который защищается, подключают к выпрямленному току (к "минусовому" полюсу). Конструкция, таким образом, является катодом. Анодное заземление (второй электрод) подключают к "плюсу".

Важно, чтобы между вторичным электродом и конструкцией имелся хороший электролитический и электронный контакт. Первый обеспечивается грунтом, куда погружают анод и объект защиты. Грунт в данном случае выполняет роль электролитической среды. А электронного контакта добиваются с помощью проводников из металлических материалов.

Регулирование катодной антикоррозионной защиты осуществляется посредством поддержания защитного потенциала между электролитической средой и индикатором потенциала поляризации (либо непосредственно конструкцией) на строго определенной величине. Замеряют показатель вольтметром с высокоомной шкалой.

Здесь необходимо понимать, что у потенциала есть не только поляризационный компонент, но и еще одна составляющая – падение (омическое) напряжения. Такое падение возникает из-за протекания через эффективное сопротивление катодного тока. Причем качество катодной защиты зависит исключительно от поляризации на поверхности изделия, которое предохраняется от ржавления. По этой причине выделяют две характеристики защищенности металлоконструкции – наибольший и наименьший потенциалы поляризации.

Эффективное регулирование поляризации металлов, учитывая все сказанное, становится возможным в том случае, когда показатель омического компонента исключается из величины полученной разности потенциалов. Добиться этого можно при помощи особой схемы замера потенциала поляризации. Описывать ее в рамках данной статьи мы не будем, так как она изобилует множеством специализированных терминов и понятий.

Как правило, катодная технология применяется совместно с нанесением на внешнюю поверхность предохраняемых от коррозии изделий специальных защитных материалов.

Для защиты неизолированных трубопроводов и других конструкций необходимо использовать существенные токи, что экономически невыгодно и технически сложно.

3 Катодная защита элементов автомобиля

Коррозия – активный и весьма агрессивный процесс. Качественная защита узлов автомобиля от ржавления вызывает немало проблем у автолюбителей. Коррозионному разрушению подвергаются все без исключения транспортные средства, ведь ржавление начинается даже тогда, когда на лакокрасочном покрытии машины появляется маленькая царапина.

Катодная технология предохранения автомобиля от коррозии достаточно распространена в наши дни. Ее применяют наряду с использованием и всевозможных мастик. Под такой методикой понимают подачу электрического потенциала на поверхность той или иной детали автомобиля, что приводит к эффективному и длительному замедлению ржавления.

При описываемой защите транспортного средства катодом являются специальные пластинки, которые накладывают на наиболее уязвимые его узлы. А роль анода играет корпус автомобиля. Подобное распределение потенциалов обеспечивает целостность корпуса машины, так как разрушению подвергаются только катодные пластины, а основной металл не корродирует.

Под уязвимыми местами транспортного средства, которые можно защитить по катодной методике, понимают:

  • заднюю и переднюю части днища;
  • арку заднего колеса;
  • области фиксации подфарников и непосредственно фар;
  • стыки крыла с колесом;
  • внутренние зоны дверей и порогов;
  • пространство за щитками колес (передних).

Для защиты автомобиля необходимо приобрести специальный электронный модуль (некоторые умельцы изготавливают его самостоятельно) и протекторы-пластины. Модуль монтируют в салоне машины, подсоединяют к бортовой сети (он должен быть запитанным при отключении автодвигателя). Установка устройства занимает буквально 10–15 минут. Причем энергии оно берет минимум, а антикоррозионную защиту гарантирует весьма качественную.

Защитные пластины могут иметь разный размер. Их число также отличается в зависимости от того, в каких местах автомобиля они монтируются, а также от того, какие геометрические параметры имеет электрод. На практике пластин нужно тем меньше, чем больший размер имеет электрод.

Защита от коррозии автомобиля по катодной методике производится и иными сравнительно простыми способами. Самый элементарный – подсоединить проводом "плюс" аккумулятора автомобиля к обычному металлическому гаражу. Обратите внимание – для подключения необходимо обязательно использовать резистор.

4 Защита трубопроводов методом катодной поляризации

Разгерметизация различных по назначению трубопроводов происходит во многих случаях из-за их коррозионного разрушения, вызываемого появлением разрывов, трещин и каверн. Особенно подвержены ржавлению подземные коммуникации. На них образуются зоны с разным потенциалом (электродным), что обуславливается гетерогенностью грунта и неоднородным составом металлов, из которых изготавливаются трубы. За счет появления указанных зон начинается процесс активного формирования коррозионных гальванических компонентов.

Катодная поляризация трубопроводов, выполняемая по схемам, описанным в начале статьи (гальваника или внешний источник энергии), базируется на уменьшении скорости растворения материала труб в процессе их эксплуатации. Достигается подобное уменьшение посредством смещения коррозионного потенциала в зону, имеющую по отношению к естественному потенциалу более отрицательные показатели.

Еще в первой трети 20 столетия был определен потенциал катодной поляризации металлов. Его показатель равняется –0,85 вольт. В большинстве грунтов естественный потенциал металлических конструкций находится в диапазоне от –0,55 до –0,6 вольт.

Это означает, что для эффективной защиты трубопроводов требуется "передвинуть" коррозионный потенциал в отрицательную сторону на 0,25-0,3 вольт. При такой его величине практическое влияние ржавления на состояние коммуникаций почти полностью нивелируется (коррозия за год имеет скорость не более 10 микрометров).

Методика с применением источника тока (внешнего) считается трудоемкой и достаточно сложной. Зато она обеспечивает высокий уровень защиты трубопроводов, ее энергетический ресурс ничем не ограничивается, при этом сопротивление (удельное) грунта оказывает минимальное влияние на качество защитных мероприятий.

Источниками питания для катодной поляризации обычно являются воздушные электролинии на 0,4; 6 и 10 кВ. На местностях, где таковых нет, допускается использование газо-, термо и дизель-генераторов в качестве источников энергии.

Ток-"защитник" распределяется неравномерно по протяженности трубопроводов. Наибольшая его величина отмечается в так называемой точке дренажа – в месте, где производится подключение источника. Чем больше расстояние от этой точки, тем меньше защищены трубы. При этом и чрезмерный ток непосредственно в зоне подключения оказывает негативное влияние на трубопровод – высока вероятность водородного растрескивания металлов.

Метод с использованием гальванических анодов демонстрирует неплохую эффективность в грунтах с малым показателем омности (до 50 ом*м). В грунтах высокоомной группы его не применяют, так как особых результатов он не дает. Здесь стоит добавить, что аноды изготавливают из сплавов на основе, алюминия, магния и цинка.

5 Коротко о станциях катодной защиты (СКЗ)

Для антикоррозионной защиты трубопроводов, проложенных под землей, вдоль трассы их залегания устанавливают СКЗ, включающие в себя:

  • анодное заземление;
  • источник тока;
  • пункт контроля и измерения;
  • кабели и провода, выполняющие соединительные функции.

Станции подключают к сетям электрического тока либо к автономным устройствам. Разрешается устанавливать на СКЗ несколько заземлений и источников энергии тогда, когда в одном подземном коридоре проложено две и более ниток трубопровода. Это, правда, влечет за собой увеличение расходов на проведение антикоррозионных мероприятий.

Если монтируется всего одна установка на многониточные коммуникации, ее соединение с трубами осуществляется посредством особых блоков. Они не позволяют формироваться сильным гальваническим парам, возникающим при монтаже глухих перемычек на трубные изделия. Указанные блоки изолируют трубы друг от друга, а также дают возможность выбирать на каждом элементе трубопроводов требуемый потенциал, гарантирующий максимальную защиту конструкции от ржавления.

Выходное напряжение на катодных станциях может регулироваться автоматически (установка в этом случае оснащается тиристорами) или вручную (оператор переключает при необходимости трансформаторные обмотки). В ситуациях, когда СКЗ функционируют в изменяющихся во времени условиях, рекомендуется эксплуатировать станции с автоматической регулировкой напряжения.

Они сами следят за показателями сопротивления (удельного) грунта, появлением блуждающих токов и прочих факторов, оказывающих негативное воздействие на качество защиты, и автоматически корректируют работу СКЗ. А вот в системах, где защитный ток и показатель сопротивления в его цепи остаются неизменными, лучше использовать установки с ручной настройкой напряжения на выходе.

Добавим, что регулирование в автоматическом режиме производится по одному из двух показателей:

  • по току защиты (гальваностатические преобразователи);
  • по потенциалу объекта, который защищается (потенциостатические преобразователи).

6 Информация об известных станциях катодной защиты

Среди популярных отечественных СКЗ можно выделить несколько установок. Очень востребованной является станция Минерва–3000 – мощная система, разработанная французскими и российскими инженерами для объектов Газпрома. Достаточно одной Минервы, чтобы надежно защитить от ржавления до 30 километров трубопроводов. Станция обладает такими основными достоинствами:

  • уникальная технологичность выпуска всех ее комплектующих;
  • повышенная мощность СКЗ (можно предохранять коммуникации с очень плохим защитным покрытием);
  • самовосстановление (после аварийных перегрузок) режимов работы станции на протяжении 15 секунд;
  • наличие высокоточного цифрового оборудования для контроля рабочих режимов и системы терморегулирования;
  • наличие защитных схем от перенапряжения измерительных и входных цепей;
  • отсутствие подвижных узлов и герметичность электрошкафа.

Кроме того, к Минерва–3000 можно подключать установки для удаленного контроля над работой станции и дистанционного управления ее оборудованием.

Отличными техническими показателями обладают и системы АСКГ-ТМ – современные телемеханизированные адаптивные станции для защиты электрокабелей, городских и магистральных трубопроводов, а также емкостей, в которых хранят газ и нефтепродукты. Такие устройства выпускаются с разными показателями (от 1 до 5 киловатт) выходной мощности. Они располагают многофункциональным телеметрическим комплексом, позволяющим выбирать конкретный рабочий режим СКЗ, мониторить и изменять параметры станции, а также обрабатывать поступающую информацию и отправлять ее оператору.

Преимущества использования АСКГ-ТМ :

  • возможность встраивания в SCADA-комплексы за счет поддержки ОРС-технологии;
  • резервный и главный канал связи;
  • выбор значения мощности (выходной);
  • повышенная отказоустойчивость;
  • большой интервал рабочих температур;
  • уникальная точность настройки выходных параметров;
  • предохранение от напряжения силовых выходов системы.

Имеются СКЗ и других типов, сведения о которых несложно найти на специализированных сайтах в интернете.

7 Какие объекты можно защищать при помощи катодной поляризации?

Кроме защиты автомобилей и трубопроводов рассматриваемые методики поляризации активно используются для предохранения от коррозии арматуры, входящей в железобетонные конструкции (здания, дорожные объекты, фундаменты и так далее). Обычно арматура представляет собой единую электросистему, которая при попадании в нее хлоридов и воды активно корродирует.

Катодная поляризация в сочетании с операцией санации бетона останавливает коррозионные процессы. В данном случае необходимо применять два типа анодов:

  • основные – из титана, графита или их комбинации с покрытием металлооксидного вида, а также кремнистого чугуна;
  • распределительные – стержни из сплавов титана с добавочным слоем металлической защиты либо с неметаллическим электропроводящим покрытием.

Регулируя внешний ток, поступающий на железобетонную конструкцию, осуществляют выбор потенциала арматуры.

Поляризация считается незаменимой методикой для защиты стационарных строений, размещаемых на континентальном шельфе, в газовой и нефтяной промысловых сферах. Первоначальные защитные покрытия на таких объектах невозможно восстановить (требуется их демонтаж и транспортировка в сухие ангары), а значит, остается один выход – катодная защита металлов.

Для предохранения от морской коррозии применяется гальваническая поляризация гражданских кораблей посредством анодов из цинка, магния, алюминиевых сплавов. На берегу (во время ремонтов и стоянок) судна подключают к СКЗ, аноды для которых делают из платинированного титана.

Также катодная защита используется для предохранения от разрушения внутренних частей сосудов и емкостей, а также труб, которые контактируют со сточными промышленными водами и иными агрессивными электролитами. Поляризация в данном случае увеличивает время безремонтного применения указанных конструкций в 2–3 раза.

А.И. Хейфец, начальник службы электрохимической защиты,
ОАО «Теплосеть Санкт-Петербурга», г. Санкт-Петербург

Введение

Защита трубопроводов тепловых сетей от коррозии является очень важной задачей, от решения которой во многом зависит надежность работы всей системы централизованного теплоснабжения. В г. Санкт-Петербург превалируют тепловые сети подземной прокладки, которые эксплуатируются в коррозионно-опасных условиях, обусловленных как густой сетью подземных коммуникаций большой протяженности и развитым электрифицированным транспортом, так и насыщенностью почв и грунтов влагой и химическими реагентами. Существует два основных способа защиты металлов от коррозии: пассивный - это нанесение на их поверхность изоляционных покрытий и активный - это использование средств электрохимической защиты.

Немного теории

Металлические сооружения, эксплуатируемые в различных средах (в атмосфере, воде, почве), подвергаются разрушающему воздействию этой среды. Разрушение металла вследствие его взаимодействия с внешней средой называется коррозией. Сутью коррозионного процесса является удаление атомов из металлической решетки, которое может происходить двумя путями, поэтому и различают коррозию просто химическую и электрохимическую.

Коррозия является химической, если после разрыва металлической связи атомы металла непосредственно соединяются химической связью с теми атомами или группами атомов, которые входят в состав окислителей, отнимающих валентные электроны металла. Процесс проходит без участия свободных электронов и не сопровождается появлением электрического тока. Примером может служить образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом.

Коррозия является электрохимической, если при выходе из металлической решетки положительно заряженный ион металла, т.е. катион, вступает в связь не с окислителем, а с другими компонентами коррозионной среды, окислителю же передаются электроны, освобождающиеся при образовании катиона. При электрохимической коррозии удаление атомов из металлической решетки осуществляется в результате не одного, как при химической коррозии, а двух независимых, но сопряженных между собой электрохимических процессов: анодного (переход «захваченных» катионов металла в раствор) и катодного (связывание окислителем освободившихся электронов). Окислителями служат ионы водорода, которые есть везде, где присутствует вода, и молекулы кислорода. Электрохимическая коррозия сопровождается появлением электрического тока.

Трубопроводы тепловых сетей являются протяженными объектами и различные их участки оказываются не в равных условиях с точки зрения развития коррозионных процессов. Почвы и грунты по-разному впитывают в себя атмосферные осадки, талые воды, обладают различной воздухопроницаемостью. Удельное электрическое сопротивление грунтов тоже разное; именно его значение (чем ниже, тем опаснее) характеризует коррозионную агрессивность среды. В результате вдоль поверхности трубопроводов образуются участки, где преимущественно осуществляются либо анодные, либо катодные реакции. Электрическая проводимость металла очень высока, электроны практически мгновенно перераспределяются от мест протекания анодной реакции к местам, где протекает катодная (рис. 1). По сути, возникают подобия гальванических элементов, батареек, в которых роль электролита играет грунт, а внешней цепью является подземное металлическое сооружение. Анодные зоны - это положительный электрод («+»), а катодные зоны - это отрицательный электрод («-»). При протекании электрического тока в анодных зонах непрерывно происходит выход атомов из металлической решетки во внешнюю среду, т.е. растворение металла.

Особую опасность для трубопроводов тепловых сетей представляют блуждающие токи, которые возникают вследствие утечки из транспортных электрических цепей части тока в почву или водные растворы, где они попадают на металлические конструкции. В местах выхода тока из этих конструкций вновь в почву или воду возникает анодное растворение металла. Такие зоны особенно часто наблюдаются в районах наземного электрического транспорта. Коррозию под действием блуждающих токов иногда называют электрической коррозией. Такие токи могут достигать величины в несколько ампер. Для представления: ток силой в 1 А, в соответствии с первым законом Фарадея, вызывает в течение года растворение железа в количестве 9,1 кг. Если ток сосредоточен на участке 1 м 2 , то это соответствует уменьшению толщины стенки трубы на 1,17 мм в год, т.е. за 6 лет она уменьшилась бы на 7 мм.

Принцип действия электрохимической защиты (ЭХЗ) наружной поверхности металла от коррозии основан на том, что, сдвигая потенциал металла пропусканием внешнего электрического тока, можно изменить скорость его коррозии. Зависимость между потенциалом и скоростью коррозии нелинейная и неоднозначная.

ЭХЗ, основанная на наложении катодного тока, носит название катодной защиты. В производственных условиях она реализуется в двух вариантах.

1. В первом варианте необходимый сдвиг потенциала обеспечивается подключением защищаемой конструкции к внешнему источнику напряжения в качестве катода, а в качестве анода используются вспомогательные электроды (рис. 2).

Источником служит регулируемый выпрямитель, который преобразует напряжение промышленной частоты в постоянное, а анодные заземлители объединяются в контур, состав и расположение электродов которого определяются расчетом. В процессе эксплуатации масса электродов контура анодного заземления монотонно уменьшается.

Катодная поляризация неизолированной металлической конструкции до величины минимального защитного потенциала требует значительных токов, поэтому обычно катодная защита используется совместно с изоляционными покрытиями, нанесенными на наружную поверхность защищаемого сооружения. Поверхностное покрытие уменьшает необходимый ток на несколько порядков. При катодной защите необходимо контролировать и величину максимального потенциала, т.к. его слишком большое значение может привести к отслаиванию изоляционного покрытия от стенки трубопровода. Нормативными документами (Типовая инструкция по защите трубопроводов тепловых сетей от наружной коррозии РД 153-34.0-20.518-2003) установлено, что минимальный защитный потенциал для тепловых сетей равен 1,1 В, а максимальный 2,5 В в отрицательную сторону по отношению к неполяризующемуся медносульфатному электроду сравнения. Такие значения должны быть обеспечены на всем протяжении защищаемого участка, и это достигается тем вернее, чем лучше металл изолирован от земли.

2. Вторым вариантом катодной защиты является гальваническая (или протекторная) защита (рис. 3). Принцип ее действия основан на том, что разные металлы характеризуются различными значениями стандартных электродных потенциалов. Катодная поляризация защищаемой конструкции достигается за счет ее контакта с более электроотрицательным металлом. Последний выступает в роли анода, и его электрохимическое растворение обеспечивает протекание катодного тока через защищаемый металл. Сам же анод, выполненный из магния, цинка, алюминия и их сплавов, постепенно разрушается. Достоинством протекторной защиты является то, что для нее не требуется внешний источник напряжения, но этот вид защиты может использоваться только на сравнительно небольших по протяженности участках трубопроводов (до 60 м), а также на стальных футлярах.

3. Для защиты трубопроводов тепловых сетей от наружной коррозии под действием блуждающих токов применяют электродренаж (дренаж) - соединение металлическим проводником участка, с которого стекают эти токи, с рельсом трамвайных или железнодорожных путей. При большом расстоянии до рельса, когда такой дренаж трудно реализовать, используют дополнительный чугунный анод, который закапывают в землю и соединяют с защищаемым участком.

В местах, где электролитическое действие блуждающих токов складывается с токами гальванических пар, может произойти резкое увеличение скорости коррозионных процессов. В таких случаях применяются установки усиленного дренажа (рис. 4), которые позволяют не только отводить блуждающие токи от трубопроводов, но и обеспечить на них необходимую величину защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению, а положительным - не к анодному заземлению, а к рельсам электрифицированного транспорта.

4. Сильное коррозионное воздействие на трубопроводы тепловых сетей могут оказывать установки ЭХЗ владельцев смежных подземных коммуникаций, например газопроводов (рис. 5а). Если трубопроводы оказались в зоне действия катодного тока «чужой» установки, то разрушения в местах выхода этого тока из стальной трубы в грунт будут такими же, как и под действием блуждающих токов. Для защиты необходимо соединить трубопроводы тепловых сетей с отрицательным полюсом источника напряжения (рис. 5б).

Сдвигать потенциал металла для защиты его от коррозии можно не только в сторону отрицательных, но и положительных значений. При этом некоторые металлы переходят в пассивное состояние, а ток растворения металла падает в десятки раз. Такая защита называется анодной, ее преимущество в том, что для поддержания пассивного состояния металла требуются малые токи. Однако, если в электролите есть ионы хлора и серы, коррозия металла может резко возрасти и выйти из строя само анодно-поляризованное оборудование. Анодная защита для тепловых сетей не применяется.

ЭХЗ в ОАО «Теплосеть Санкт-Петербурга» эксплуатируется и развивается как система, т.е. совокупность взаимосвязанных составляющих: стационарных технических средств, инструментального контроля и информационной базы данных.

В соответствии с графиками специалисты службы ЭХЗ в плановом порядке проводят по установленной методике коррозионные измерения на всех участках магистральных и распределительных сетей в местах доступа к подземным трубопроводам (тепловые камеры). После обработки результатов измерений определяются анодные и катодные зоны на трубопроводах, зоны защиты, участки опасного воздействия блуждающих токов. Кроме того, коррозионные измерения проводятся при плановых шурфовках и при устранении дефектов на тепловых сетях, где они дополняются результатом химического анализа грунта. Результаты измерений систематизируются и архивируются, они являются ценной информацией как для правильной организации эксплуатации тепломеханического оборудования, так и для планирования строительства дополнительных средств ЭХЗ.

Более подробные и тщательные коррозионные обследования зон залегания теплотрасс проводятся силами специализированной подрядной организации. Эти обследования проводятся на коррозионно-опасных участках обычно после реконструкции (перекладки) тепловых сетей, т.к. применение современных типов изоляции, конструкций и технологий обеспечивает лучшую, чем ранее, гальваническую развязку металла от бетона и от земли. Это означает, в том числе, и возможное изменение границ анодных и катодных зон, участков воздействия блуждающих токов. Результаты обследований представляются в виде отчетов, содержащих сведения об изменениях значений электродных потенциалов на разных участках поверхности трубопроводов при различных режимах работы (рис. 6) не только своих, но и принадлежащих сторонним организациям средств ЭХЗ. Методами математического моделирования (рис. 7) рассчитываются тип, количество и места расположения необходимых дополнительных средств ЭХЗ для дальнейшего проектирования.

В настоящее время ОАО «Теплосеть Санкт- Петербурга» принадлежат 432 установки ЭХЗ, из них: установок катодной защиты - 204 шт. (в том числе установок катодной защиты, относящихся к категории совместной защиты от наружной коррозии трубопроводов тепловых сетей и проложенных рядом газопроводов, - 20 шт.); установок усиленного дренажа - 8 шт.; установок протекторной защиты - 220 шт. Техническим обслуживанием установок катодной совместной защиты занимается ОАО «Антикор».

В соответствии с требованиями нормативных документов (Защита от коррозии. Проектирование электрохимической защиты подземных сооружений. СТО Газпром 2-3.5-047-2006) установки ЭХЗ не должны оказывать негативного влияния на соседние коммуникации. ОАО «Антикор», занимающееся в Санкт-Петербурге электрохимической защитой газопроводов, при реконструкции и новом строительстве своих установок своевременно уведомляет ОАО «Теплосеть Санкт-Петербурга» о технической возможности подключения участков тепловых сетей к ЭХЗ газопроводов, если это предусмотрено проектом.

В процессе эксплуатации всех, кроме дренажных, установок ЭХЗ непрерывно теряется масса их заземленных электродов, т.к. это составляет физическую сущность электрохимической защиты. Неизбежно наступает момент «смерти» контура анодного заземления или протектора. Обеспечить заданный период эксплуатации между капитальными ремонтами установок ЭХЗ можно и нужно правильным расчетом

необходимого числа и места расположения элементов, выбором качественных материалов, строгим соблюдением технологии монтажа. Возможны случаи отказа электродов из-за локальных точечных повреждений. С 2010 г. при реконструкции и новом строительстве нами применяются ферросилидовые анодные заземлители ЭлЖК-1500 с защитой контактного узла вместо прежних ЭГТ-1450. В течение ряда последних лет в установках ЭХЗ применяются только автоматические преобразователи типа УКЗТА и ПКЗ-АР (рис. 8), позволяющие непрерывно поддерживать заданные значения анодного тока или защитного потенциала на трубопроводе.

Особое значение приобрела практика оснащения установок ЭХЗ телеметрическими регистраторами (рис. 9). Эти устройства, изготовленные в виде встраиваемых блоков, непрерывно дистанционно передают информацию о значениях меняющихся во времени электрических величин на выделенный компьютер (рис. 10). Создаются архивы, позволяющие анализировать работу установок ЭХЗ. Кроме того, в системе телеметрии реализована функция сигнализации о несанкционированном доступе посторонних лиц к установкам.

Стоит отметить, что перед началом строительно-монтажных работ подрядчик извещает о дате начала работ заказчика, проектную организацию, организацию, осуществляющую технический надзор за строительством, и организацию, на обслуживание которой будут передаваться строящиеся защитные установки.

Электрохимической защитой тепловых сетей от наружной коррозии на нашем предприятии занимаются с 1960 г., т.е. более 50 лет. В разные годы специалисты по ЭХЗ входили в состав различных производственных подразделений, а после образования в 2010 г. ОАО «Теплосеть Санкт-Петербурга» была создана отдельная служба ЭХЗ. На сегодняшний день в ее составе 13 чел., которые решают технические и организационные задачи.

К техническим задачам относятся: ежедневные объезды двух бригад электромонтеров по заданным маршрутам установок ЭХЗ с проведением технического обслуживания. Одновременно при этом контролируется, не ведутся ли сторонними организациями без правильного оформления земляные работы в зоне наших установок.

Техническое обслуживание установок ЭХЗ включает:

■ осмотр всех элементов установки с целью выявления внешних дефектов, проверку плотности контактов, исправности монтажа, отсутствия механических повреждений отдельных элементов, отсутствия подгаров и следов перегревов, отсутствия раскопок на трассе дренажных кабелей и анодных заземлений;

■ проверку исправности предохранителей (если они имеются);

■ очистку корпуса дренажного и катодного преобразователя, блока совместной защиты снаружи и внутри;

■ измерение тока и напряжения на выходе преобразователя или между гальваническими анодами (протекторами) и трубами;

■ измерение потенциала трубопровода в точке подключения установки;

■ производство записи в журнале установки о результатах выполненной работы;

■ измерения потенциалов в постоянно закрепленных измерительных пунктах.

Периодически проводится текущий ремонт и контроль эффективности оборудования ЭХЗ. Специалисты службы ЭХЗ ведут технический надзор за производством капитального ремонта, реконструкции и капитального строительства установок ЭХЗ подрядными организациями. Контролируется соответствие выполняемых строительно-монтажных работ проекту.

Текущий ремонт включает:

■ измерение сопротивления изоляции питающих кабелей;

■ ремонт линий питания;

■ ремонт выпрямительного блока;

■ ремонт дренажного кабеля.

Контроль эффективности работы установки ЭХЗ заключается в измерении защитных потенциалов в измерительных пунктах по всей зоне защиты данной установки ЭХЗ. Контроль эффективности ЭХЗ трубопроводов тепловых сетей производят не реже, чем 2 раза в год, а также при изменении параметров работы установок ЭХЗ и при изменении коррозионных условий, связанных с:

■ прокладкой новых подземных сооружений;

■ в связи с проведением ремонтных работ на тепловых сетях;

■ установкой ЭХЗ на смежных подземных коммуникациях.

Специалисты службы ЭХЗ ведут технический надзор за производством капитального ремонта, реконструкции и капитального строительства установок ЭХЗ подрядными организациями. Контролируется соответствие выполняемых строительно-монтажных работ проекту.

К организационным задачам относится, прежде всего, получение разрешения на электроснабжение станций ЭХЗ от сетей ОАО «Ленэнерго». Это многоходовый алгоритм, сопровождаемый оформлением большого количества документации. Кроме электроснабжения, служба ЭХЗ занимается подготовкой адресных программ нового строительства и ремонта, проверкой и согласованием проектов, подготовкой технических заданий.

Установки ЭХЗ от наружной коррозии металлоконструкций используются уже 100 лет. Физико-химический принцип их работы остается неизменным, но для увеличения ресурса их работы, снижения капитальных и эксплуатационных затрат необходимо искать и находить новые технические решения. Перспективным представляется использование протяженных электродов для анодного заземления. Эластомерные электроды укладываются горизонтально в траншею вдоль трубопроводов тепловой сети на глубине

1,5 м и разделяются на несколько участков для повышения ремонтопригодности. Стоимость таких установок меньше, чем при использовании традиционных контуров анодного заземления. В 2011 г. уже построены две установки с горизонтальными электродами.

Оснащение установок ЭХЗ блоками телеметрии будет продолжаться, и в перспективе информация о работе всех установок будет дистанционно передаваться и архивироваться.

В 2011 г. был выполнен проект автоматизированного учета электроэнергии для 59 установок ЭХЗ, а его реализация намечена на 2012 г

Уже начата работа по занесению базы данных об установках ЭХЗ в единую информационно-аналитическую систему ОАО «Теплосеть Санкт- Петербурга». В перспективе это позволит быстрее и достовернее определять приоритеты при составлении программы реконструкции участков тепловых сетей, правильно организовывать земляные работы при устранении дефектов.

Основное назначение ЭХЗ тепловых сетей - это обеспечение эксплуатации трубопроводов без возникновения повреждений в течение всего нормативного срока (25 лет). Для достижения этой цели необходимо относиться к ЭХЗ именно как к системе, не пренебрегая ни одной из ее составляющих, указанных в данной статье. Полезными могут оказаться несколько общих соображений.

1. В коррозионно-опасных зонах нужно вводить в эксплуатацию ЭХЗ как можно быстрее после строительства или реконструкции участка тепловых сетей, т.е. защищать металл «с нуля».

2. На участке трубопроводов, электрически плохо изолированных от земли (разрушение тепловой изоляции, контакт металла с бетонными конструкциями и т.п.), установка ЭХЗ будет мало эффективна, т.к. созданный ею защитный ток не распределится на сотни метров вдоль труб, а стечет в землю в месте «закоротки».

3. При выявленной низкой эффективности существующей установки ЭХЗ (малая разница в значении потенциала металла при включенной и отключенной установке) нужно провести ее реконструкцию с изменением расположения контура анодного заземления (КАЗ) по отношению к защищаемым трубопроводам.

4. При реконструкции и новом строительстве установок ЭХЗ целесообразно использовать самые лучшие марки электродов для КАЗ, т.к. отказ контура - это выход из строя всей установки, а для восстановления КАЗ придется проводить дорогостоящие земляные работы.

5. Координация деятельности в части ЭХЗ с другими владельцами подземных коммуникаций позволит принять меры для защиты трубопроводов тепловых сетей от вредного влияния «чужих» установок ЭХЗ, а также в ряде случаев организовать совместную защиту.

Опыт эксплуатации тепловых сетей ОАО «Теплосеть Санкт-Петербурга» убедительно доказывает, что ЭХЗ была и остается важной составляющей в комплексе мер по повышению надежности теплоснабжения Санкт-Петербурга.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме