Подпишись и читай
самые интересные
статьи первым!

Проверка гипотезы помощью критерия пирсона. Проверка гипотезы о нормальном распределении генеральной совокупности по критерию пирсона

​ Критерий корреляции Пирсона – это метод параметрической статистики, позволяющий определить наличие или отсутствие линейной связи между двумя количественными показателями, а также оценить ее тесноту и статистическую значимость. Другими словами, критерий корреляции Пирсона позволяет определить, есть ли линейная связь между изменениями значений двух переменных. В статистических расчетах и выводах коэффициент корреляции обычно обозначается как r xy или R xy .

1. История разработки критерия корреляции

Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон .

2. Для чего используется критерий корреляции Пирсона?

Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой - определяются при помощи регрессионного анализа .
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа .
  4. Критерий корреляции Пирсона является параметрическим , в связи с чем условием его применения служит нормальное распределение сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена .
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Например, рост ребенка зависит от его возраста, то есть чем старше ребенок, тем он выше. Если мы возьмем двух детей разного возраста, то с высокой долей вероятности рост старшего ребенка будет больше, чем у младшего. Данное явление и называется зависимостью , подразумевающей причинно-следственную связь между показателями. Разумеется, между ними имеется и корреляционная связь , означающая, что изменения одного показателя сопровождаются изменениями другого показателя.

В другой ситуации рассмотрим связь роста ребенка и частоты сердечных сокращений (ЧСС). Как известно, обе эти величины напрямую зависят от возраста, поэтому в большинстве случаев дети большего роста (а значит и более старшего возраста) будут иметь меньшие значения ЧСС. То есть, корреляционная связь будет наблюдаться и может иметь достаточно высокую тесноту. Однако, если мы возьмем детей одного возраста , но разного роста , то, скорее всего, ЧСС у них будет различаться несущественно, в связи с чем можно сделать вывод о независимости ЧСС от роста.

Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.

4. Как рассчитать коэффициента корреляции Пирсона?

Расчет коэффициента корреляции Пирсона производится по следующей формуле:

5. Как интерпретировать значение коэффициента корреляции Пирсона?

Значения коэффициента корреляции Пирсона интерпретируются исходя из его абсолютных значений. Возможные значения коэффициента корреляции варьируют от 0 до ±1. Чем больше абсолютное значение r xy – тем выше теснота связи между двумя величинами. r xy = 0 говорит о полном отсутствии связи. r xy = 1 – свидетельствует о наличии абсолютной (функциональной) связи. Если значение критерия корреляции Пирсона оказалось больше 1 или меньше -1 – в расчетах допущена ошибка.

Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения r xy < 0.3 свидетельствуют о слабой связи, значения r xy от 0.3 до 0.7 - о связи средней тесноты, значения r xy > 0.7 - о сильной связи.

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока :

Оценка статистической значимости коэффициента корреляции r xy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:

Полученное значение t r сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если t r превышает t крит, то делается вывод о статистической значимости выявленной корреляционной связи.

6. Пример расчета коэффициента корреляции Пирсона

Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице.

Ширина интервала составит:

Xmax - максимальное значение группировочного признака в совокупности.
Xmin - минимальное значение группировочного признака.
Определим границы группы.

Номер группы Нижняя граница Верхняя граница
1 43 45.83
2 45.83 48.66
3 48.66 51.49
4 51.49 54.32
5 54.32 57.15
6 57.15 60

Одно и тоже значение признака служит верхней и нижней границами двух смежных (предыдущей и последующей) групп.
Для каждого значения ряда подсчитаем, какое количество раз оно попадает в тот или иной интервал. Для этого сортируем ряд по возрастанию.
43 43 - 45.83 1
48.5 45.83 - 48.66 1
49 48.66 - 51.49 1
49 48.66 - 51.49 2
49.5 48.66 - 51.49 3
50 48.66 - 51.49 4
50 48.66 - 51.49 5
50.5 48.66 - 51.49 6
51.5 51.49 - 54.32 1
51.5 51.49 - 54.32 2
52 51.49 - 54.32 3
52 51.49 - 54.32 4
52 51.49 - 54.32 5
52 51.49 - 54.32 6
52 51.49 - 54.32 7
52 51.49 - 54.32 8
52 51.49 - 54.32 9
52.5 51.49 - 54.32 10
52.5 51.49 - 54.32 11
53 51.49 - 54.32 12
53 51.49 - 54.32 13
53 51.49 - 54.32 14
53.5 51.49 - 54.32 15
54 51.49 - 54.32 16
54 51.49 - 54.32 17
54 51.49 - 54.32 18
54.5 54.32 - 57.15 1
54.5 54.32 - 57.15 2
55.5 54.32 - 57.15 3
57 54.32 - 57.15 4
57.5 57.15 - 59.98 1
57.5 57.15 - 59.98 2
58 57.15 - 59.98 3
58 57.15 - 59.98 4
58.5 57.15 - 59.98 5
60 57.15 - 59.98 6

Результаты группировки оформим в виде таблицы:
Группы № совокупности Частота fi
43 - 45.83 1 1
45.83 - 48.66 2 1
48.66 - 51.49 3,4,5,6,7,8 6
51.49 - 54.32 9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26 18
54.32 - 57.15 27,28,29,30 4
57.15 - 59.98 31,32,33,34,35,36 6

Таблица для расчета показателей.
Группы x i Кол-во, f i x i * f i Накопленная частота, S |x - x ср |*f (x - x ср) 2 *f Частота, f i /n
43 - 45.83 44.42 1 44.42 1 8.88 78.91 0.0278
45.83 - 48.66 47.25 1 47.25 2 6.05 36.64 0.0278
48.66 - 51.49 50.08 6 300.45 8 19.34 62.33 0.17
51.49 - 54.32 52.91 18 952.29 26 7.07 2.78 0.5
54.32 - 57.15 55.74 4 222.94 30 9.75 23.75 0.11
57.15 - 59.98 58.57 6 351.39 36 31.6 166.44 0.17
36 1918.73 82.7 370.86 1

Для оценки ряда распределения найдем следующие показатели:
Показатели центра распределения .
Средняя взвешенная


Мода
Мода - наиболее часто встречающееся значение признака у единиц данной совокупности.

где x 0 – начало модального интервала; h – величина интервала; f 2 –частота, соответствующая модальному интервалу; f 1 – предмодальная частота; f 3 – послемодальная частота.
Выбираем в качестве начала интервала 51.49, так как именно на этот интервал приходится наибольшее количество.

Наиболее часто встречающееся значение ряда – 52.8
Медиана
Медиана делит выборку на две части: половина вариант меньше медианы, половина - больше.
В интервальном ряду распределения сразу можно указать только интервал, в котором будут находиться мода или медиана. Медиана соответствует варианту, стоящему в середине ранжированного ряда. Медианным является интервал 51.49 - 54.32, т.к. в этом интервале накопленная частота S, больше медианного номера (медианным называется первый интервал, накопленная частота S которого превышает половину общей суммы частот).


Таким образом, 50% единиц совокупности будут меньше по величине 53.06
Показатели вариации .
Абсолютные показатели вариации .
Размах вариации - разность между максимальным и минимальным значениями признака первичного ряда.
R = X max - X min
R = 60 - 43 = 17
Среднее линейное отклонение - вычисляют для того, чтобы учесть различия всех единиц исследуемой совокупности.


Каждое значение ряда отличается от другого не более, чем на 2.3
Дисперсия - характеризует меру разброса около ее среднего значения (мера рассеивания, т.е. отклонения от среднего).


Несмещенная оценка дисперсии - состоятельная оценка дисперсии.


Среднее квадратическое отклонение .

Каждое значение ряда отличается от среднего значения 53.3 не более, чем на 3.21
Оценка среднеквадратического отклонения .

Относительные показатели вариации .
К относительным показателям вариации относят: коэффициент осцилляции, линейный коэффициент вариации, относительное линейное отклонение.
Коэффициент вариации - мера относительного разброса значений совокупности: показывает, какую долю среднего значения этой величины составляет ее средний разброс.

Поскольку v ≤ 30%, то совокупность однородна, а вариация слабая. Полученным результатам можно доверять.
Линейный коэффициент вариации или Относительное линейное отклонение - характеризует долю усредненного значения признака абсолютных отклонений от средней величины.

Проверка гипотез о виде распределения .
1. Проверим гипотезу о том, что Х распределено по нормальному закону с помощью критерия согласия Пирсона.

где p i - вероятность попадания в i-й интервал случайной величины, распределенной по гипотетическому закону
Для вычисления вероятностей p i применим формулу и таблицу функции Лапласа

где
s = 3.21, x ср = 53.3
Теоретическая (ожидаемая) частота равна n i = np i , где n = 36
Интервалы группировки Наблюдаемая частота n i x 1 = (x i - x ср)/s x 2 = (x i+1 - x ср)/s Ф(x 1) Ф(x 2) Вероятность попадания в i-й интервал, p i = Ф(x 2) - Ф(x 1) Ожидаемая частота, 36p i Слагаемые статистики Пирсона, K i
43 - 45.83 1 -3.16 -2.29 -0.5 -0.49 0.01 0.36 1.14
45.83 - 48.66 1 -2.29 -1.42 -0.49 -0.42 0.0657 2.37 0.79
48.66 - 51.49 6 -1.42 -0.56 -0.42 -0.21 0.21 7.61 0.34
51.49 - 54.32 18 -0.56 0.31 -0.21 0.13 0.34 12.16 2.8
54.32 - 57.15 4 0.31 1.18 0.13 0.38 0.26 9.27 3
57.15 - 59.98 6 1.18 2.06 0.38 0.48 0.0973 3.5 1.78
36 9.84

Определим границу критической области. Так как статистика Пирсона измеряет разницу между эмпирическим и теоретическим распределениями, то чем больше ее наблюдаемое значение K набл, тем сильнее довод против основной гипотезы.
Поэтому критическая область для этой статистики всегда правосторонняя: }

Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме