Подпишись и читай
самые интересные
статьи первым!

Определение степени с показателем 1. Что такое степень с натуральным показателем (В.А

I. Произведение n сомножителей, каждый из которых равен а называется n -й степенью числа а и обозначается а n .

Примеры. Записать произведение в виде степени.

1) mmmm; 2) aaabb; 3) 5·5·5·5·ccc; 4) ppkk+pppk-ppkkk.

Решение.

1) mmmm=m 4 , так как, по определению степени, произведение четырех сомножителей, каждый из которых равен m , будет четвертой степенью числа m .

2) aaabb=a 3 b 2 ; 3) 5·5·5·5·ccc=5 4 c 3 ; 4) ppkk+pppk-ppkkk=p 2 k 2 +p 3 k-p 2 k 3 .

II. Действие, посредством которого находится произведение нескольких равных сомножителей, называется возведением в степень. Число, которое возводится в степень, называется основанием степени. Число, которое показывает, в какую степень возводится основание, называется показателем степени. Так, а n – степень, а – основание степени, n – показатель степени. Например:

2 3 — это степень. Число 2 — основание степени, показатель степени равен 3 . Значение степени 2 3 равно 8, так как 2 3 =2·2·2=8.

Примеры. Написать следующие выражения без показателя степени.

5) 4 3 ; 6) a 3 b 2 c 3 ; 7) a 3 -b 3 ; 8) 2a 4 +3b 2 .

Решение.

5) 4 3 = 4·4·4; 6) a 3 b 2 c 3 = aaabbccc; 7) a 3 -b 3 = aaa-bbb; 8) 2a 4 +3b 2 = 2aaaa+3bb.

III. а 0 =1 Любое число (кроме нуля) в нулевой степени равно единице. Например, 25 0 =1.
IV. а 1 =а Любое число в первой степени равно самому себе.

V. a m a n = a m + n При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.

Примеры. Упростить:

9) a·a 3 ·a 7 ; 10) b 0 +b 2 ·b 3 ; 11) c 2 ·c 0 ·c·c 4 .

Решение.

9) a·a 3 ·a 7 =a 1+3+7 =a 11 ; 10) b 0 +b 2 ·b 3 = 1+b 2+3 =1+b 5 ;

11) c 2 ·c 0 ·c·c 4 = 1·c 2 ·c·c 4 =c 2+1+4 =c 7 .

VI. a m : a n = a m - n При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Примеры. Упростить:

12) a 8:a 3 ; 13) m 11:m 4 ; 14) 5 6:5 4 .

12) a 8:a 3 =a 8-3 =a 5 ; 13) m 11:m 4 =m 11-4 =m 7 ; 14) 5 6:5 4 =5 2 =5·5=25.

VII. (a m ) n = a mn При возведении степени в степень основание оставляют прежним, а показатели перемножают.

Примеры. Упростить:

15) (a 3) 4 ; 16) (c 5) 2 .

15) (a 3) 4 =a 3·4 =a 12 ; 16) (c 5) 2 =c 5·2 =c 10 .

Обратите внимание , что, так как от перестановки множителей произведение не меняется, то :

15) (a 3) 4 =(a 4) 3 ; 16) (c 5) 2 =(c 2) 5 .

V I II . (a∙b) n =a n ∙b n При возведении произведения в степень возводят в эту степень каждый из множителей.

Примеры. Упростить:

17) (2a 2) 5 ; 18) 0,2 6 ·5 6 ; 19) 0,25 2 ·40 2 .

Решение.

17) (2a 2) 5 =2 5 ·a 2·5 =32a 10 ; 18) 0,2 6 ·5 6 =(0,2·5) 6 =1 6 =1;

19) 0,25 2 ·40 2 =(0,25·40) 2 =10 2 =100.


IX. При возведении в степень дроби возводят в эту степень и числитель и знаменатель дроби.

Примеры. Упростить:

Решение.

Страница 1 из 1 1

§ 1 Степень с натуральным показателем

Вспомним такую известную нам операцию как сложение нескольких одинаковых слагаемых. Например, 5 + 5 + 5. Такую запись математик заменит более короткой:

5 ∙ 3. Или 7 + 7 + 7 + 7 + 7 + 7 запишет как 7 ∙ 6

А писать а + а + а + …+ а (где n слагаемых а) - вообще не будет, а напишет а ∙ n. Точно так же математик не будет длинно писать произведение нескольких одинаковых множителей. Произведение 2 ∙ 2 ∙ 2 запишется как 23 (2 в третьей степени). А произведение 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 ∙ 4 как 46(4 в шестой степени). Но если необходимо, то можно короткую запись заменить более длинной. Например, 74 (7 в четвёртой степени) записать как 7∙7∙7∙7. Теперь дадим определение.

Под записью аn (где n - натуральное число) понимают произведение n множителей, каждый из которых равен а.

Саму запись аn называют степенью числа а, число а - основанием степени, число n - показателем степени.

Запись аn можно прочитать как «а в энной степени» или как «а в степени эн». Записи а2 (а во второй степени) можно прочитать как « а в квадрате», а запись а3 (а в третьей степени) можно прочитать как «а в кубе». Ещё один особый случай - это степень с показателем 1. Здесь необходимо отметить следующее:

Степенью числа а с показателем 1 называют само это число. Т.е. а1 = а.

Любая степень числа 1 равна 1.

А теперь давайте рассмотрим несколько степеней с основанием 10.

Вы заметили, что степени десяти - это единица с таким количеством нулей, каков показатель степени? Вообще, 10n = 100..0 (где в записи n нулей).

§ 2 Примеры по теме урока

Пример 1. Записать произведение (-2)∙(-2)∙(-2)∙(-2) в виде степени.

Так как здесь 4 одинаковых множителя каждый из которых равен -2, то имеем запись (-2)4.

Пример2. Вычислить 1,52.

Показатель 2 говорит о том, что нам надо найти произведение двух одинаковых множителей, каждый из которых равен 1,5. Т.е. вычислить произведение 1,5∙1,5 = 2, 25.

Пример 3. Вычислить произведение 102 ∙ (-1)3.

Сначала вычислим 102 = 100. Затем вычислим (-1)3 = -1. И наконец, перемножим 100 и -1. Получим -100.

Список использованной литературы:

  1. Мордкович А.Г, Алгебра 7 класс в 2 частях, Часть 1, Учебник для общеобразовательных учреждений/А.Г. Мордкович. – 10 – е изд., переработанное – Москва, «Мнемозина», 2007
  2. Мордкович А.Г., Алгебра 7 класс в 2 частях, Часть 2, Задачник для общеобразовательных учреждений/[А.Г. Мордкович и др.]; под редакцией А.Г. Мордковича – 10-е издание, переработанное – Москва, «Мнемозина», 2007
  3. Е.Е. Тульчинская, Алгебра 7 класс. Блиц опрос: пособие для учащихся общеобразовательных учреждений, 4-е издание, исправленное и дополненное, Москва, «Мнемозина», 2008
  4. Александрова Л.А., Алгебра 7 класс. Тематические проверочные работы в новой форме для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича, Москва, «Мнемозина», 2011
  5. Александрова Л.А. Алгебра 7 класс. Самостоятельные работы для учащихся общеобразовательных учреждений, под редакцией А.Г. Мордковича – 6-е издание, стереотипное, Москва, «Мнемозина», 2010

I. Произведение n сомножителей, каждый из которых равен а называется n -й степенью числа а и обозначается а n .

Примеры. Записать произведение в виде степени.

1) mmmm; 2) aaabb; 3) 5·5·5·5·ccc; 4) ppkk+pppk-ppkkk.

Решение.

1) mmmm=m 4 , так как, по определению степени, произведение четырех сомножителей, каждый из которых равен m , будет четвертой степенью числа m .

2) aaabb=a 3 b 2 ; 3) 5·5·5·5·ccc=5 4 c 3 ; 4) ppkk+pppk-ppkkk=p 2 k 2 +p 3 k-p 2 k 3 .

II. Действие, посредством которого находится произведение нескольких равных сомножителей, называется возведением в степень. Число, которое возводится в степень, называется основанием степени. Число, которое показывает, в какую степень возводится основание, называется показателем степени. Так, а n – степень, а – основание степени, n – показатель степени. Например:

2 3 — это степень. Число 2 — основание степени, показатель степени равен 3 . Значение степени 2 3 равно 8, так как 2 3 =2·2·2=8.

Примеры. Написать следующие выражения без показателя степени.

5) 4 3 ; 6) a 3 b 2 c 3 ; 7) a 3 -b 3 ; 8) 2a 4 +3b 2 .

Решение.

5) 4 3 = 4·4·4; 6) a 3 b 2 c 3 = aaabbccc; 7) a 3 -b 3 = aaa-bbb; 8) 2a 4 +3b 2 = 2aaaa+3bb.

III. а 0 =1 Любое число (кроме нуля) в нулевой степени равно единице. Например, 25 0 =1.
IV. а 1 =а Любое число в первой степени равно самому себе.

V. a m a n = a m + n При умножении степеней с одинаковыми основаниями основание оставляют прежним, а показатели складывают.

Примеры. Упростить:

9) a·a 3 ·a 7 ; 10) b 0 +b 2 ·b 3 ; 11) c 2 ·c 0 ·c·c 4 .

Решение.

9) a·a 3 ·a 7 =a 1+3+7 =a 11 ; 10) b 0 +b 2 ·b 3 = 1+b 2+3 =1+b 5 ;

11) c 2 ·c 0 ·c·c 4 = 1·c 2 ·c·c 4 =c 2+1+4 =c 7 .

VI. a m : a n = a m - n При делении степеней с одинаковыми основаниями основание оставляют прежним, а из показателя степени делимого вычитают показатель степени делителя.

Примеры. Упростить:

12) a 8:a 3 ; 13) m 11:m 4 ; 14) 5 6:5 4 .

12) a 8:a 3 =a 8-3 =a 5 ; 13) m 11:m 4 =m 11-4 =m 7 ; 14) 5 6:5 4 =5 2 =5·5=25.

VII. (a m ) n = a mn При возведении степени в степень основание оставляют прежним, а показатели перемножают.

Примеры. Упростить:

15) (a 3) 4 ; 16) (c 5) 2 .

15) (a 3) 4 =a 3·4 =a 12 ; 16) (c 5) 2 =c 5·2 =c 10 .

Обратите внимание , что, так как от перестановки множителей произведение не меняется, то :

15) (a 3) 4 =(a 4) 3 ; 16) (c 5) 2 =(c 2) 5 .

V I II . (a∙b) n =a n ∙b n При возведении произведения в степень возводят в эту степень каждый из множителей.

Нижеприведенная формула будет являться определением степени с натуральным показателем (a — основание степени и повторяющийся множитель, а n — показатель степени, который показывает сколько раз повторяется множитель):

Данное выражение означает, что степень числа a с натуральным показателем n является произведением n сомножителей, при том, что каждый из множителей равняется a .

17^5=17 \cdot 17 \cdot 17 \cdot 17 \cdot 17=1\,419\,857

17 — основание степени,

5 — показатель степени,

1419857 — значение степени.

Степень с нулевым показателем равна 1 , при условии, что a \neq 0 :

a^0=1 .

Например: 2^0=1

Когда нужно записать большое число обычно используют степень числа 10 .

Например, один из самых древних динозавров на Земле жил около 280 млн. лет назад. Его возраст записывается следующим образом: 2,8 \cdot 10^8 .

Каждое число большее 10 можно записать в виде a \cdot 10^n , при условии, что 1 < a < 10 и n является положительным целым числом . Такую запись называют стандартным видом числа .

Примеры таких чисел: 6978=6,978 \cdot 10^3, 569000=5,69 \cdot 10^5 .

Можно говорить как и «a в n -ой степени», так и «n -ая степень числа a » и «a в степени n ».

4^5 — «четыре в степени 5 » или «4 в пятой степени» или также можно сказать «пятая степень числа 4 »

В данном примере 4 — основание степени, 5 — показатель степени.

Приведем теперь пример с дробями и отрицательными числами. Для избежания путаницы принято записывать основания, отличные от натуральных чисел, в скобках:

(7,38)^2 , \left(\frac 12 \right)^7 , (-1)^4 и др.

Заметьте также разницу:

(-5)^6 — означает степень отрицательного числа −5 с натуральным показателем 6.

5^6 — соответствует числу противоположному 5^6 .

Свойства степеней с натуральным показателем

Основное свойство степени

a^n \cdot a^k = a^{n+k}

Основание остается прежним, а складываются показатели степеней.

Например: 2^3 \cdot 2^2 = 2^{3+2}=2^5

Свойство частного степеней с одинаковыми основаниями

a^n: a^k=a^{n-k}, если n > k .

Показатели степени вычитаются, а основание остается прежним.

Данное ограничение n > k вводится для того, чтобы не выходить за рамки натуральных показателей степени. Действительно, при n > k показатель степени a^{n-k} будет являться натуральным числом, иначе он будет либо отрицательным числом (k < n ), либо нулем (k-n ).

Например: 2^3: 2^2 = 2^{3-2}=2^1

Свойство возведения степени в степень

(a^n)^k=a^{nk}

Основание остается прежним, перемножаются лишь показатели степеней.

Например: (2^3)^6 = 2^{3 \cdot 6}=2^{18}

Свойство возведения в степень произведения

В степень n возводится каждый множитель.

a^n \cdot b^n = (ab)^n

Например: 2^3 \cdot 3^3 = (2 \cdot 3)^3=6^3

Свойство возведения в степень дроби

\frac{a^n}{b^n}=\left(\frac{a}{b} \right) ^n, b \neq 0

В степень возводится и числитель и знаменатель дроби. \left(\frac{2}{5} \right)^3=\frac{2^3}{5^3}=\frac{8}{125}



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме