Подпишись и читай
самые интересные
статьи первым!

Метод экспоненциального сглаживания является обобщением метода. Прогнозирование методом экспоненциального сглаживания (ES, exponential smoothing)

Тема 3. Сглаживание и прогнозирование временных рядов на основе трендовых моделей

Целью изучения данной темы является создание базовой основы подготовки менеджеров по специальности 080507 в области построения моделей различных задач в сфере экономики, формирования у студентов систематизированного подхода к постановке и решению задач прогнозирования. Предлагаемый курс позволит специалистам быстрее адаптироваться к практической работе, лучше ориентироваться в научно-технической информации и литературе по специальности, увереннее принимать решения, возникающие в работе.

Основными задачами изучения темы являются: получение студентами углубленных теоретических знаний по применению моделей прогноза, приобретение ими устойчивых навыков выполнения научно-исследовательских работ, умение решать сложные научные проблемы, связанные с построением моделей, включая и многомерные, способности к логическому анализу полученных результатов и определению путей поиска приемлемых решений.

Достаточно простым методом выявления тенденции развития является сглаживание временного ряда, т. е. замена фактических уровней расчетными, имеющими меньшие вариации, чем исходные данные. Соответствующее преобразование называется фильтрованием . Рассмотрим несколько методов сглаживания.

3.1. Простые средние

Целью сглаживания является построение модели прогнозирования для последующих периодов, исходя из прошлых наблюдений. В методе простых средних за начальные данные принимаются значения переменной Y в моменты времени t , а прогнозное значение определяется как простое среднее на следующий временной период. Расчетная формула имеет вид

где n — число наблюдений.

В случае, когда становится доступным новое наблюдение, для прогнозирования на следующий период следует учесть и вновь полученный прогноз. При использовании этого метода прогноз осуществляется путем усреднения всех предыдущих данных, однако недостатком такого прогнозирования является трудность его использования в трендовых моделях.

3.2. Метод скользящих средних

Данный метод основан на представлении ряда в виде суммы достаточно гладкого тренда и случайного компонента. В основе метода лежит идея расчета теоретического значения на основе локального приближения. Для построения оценки тренда в точке t по значениям ряда из временного интервала рассчитывают теоретическое значение ряда. Наибольшее распространение в практике сглаживания рядов получил случай, когда все веса для элементов интервала равны между собой. По этой причине этот метод называют методом скользящих средних, так как при выполнении процедуры происходит скольжение окном шириной (2 m + 1) по всему ряду. Ширину окна обычно берут нечетной, так как теоретическое значение рассчитывается для центрального значения: количество слагаемых k = 2m + 1 с одинаковым числом уровней слева и справа от момента t.

Формула для расчета скользящей средней в этом случае принимает вид:

Дисперсия cкользящей средней определяется как σ 2 /k, где через σ 2 обозначена дисперсия исходных членов ряда, а k — интервал сглаживания, поэтому чем больше интервал сглаживания, тем сильнее усреднение данных и менее изменчива выделяемая тенденция. Чаще всего сглаживание производят по трем, пяти и семи членам исходного ряда. При этом следует учитывать следующие особенности скользящей средней: если рассмотреть ряд с периодическими колебаниями постоянной длины, то при сглаживании на основе скользящей средней с интервалом сглаживания, равным или кратным периоду, колебания полностью устранятся. Нередко сглаживание на основе скользящей средней столь сильно преобразует ряд, что выделенная тенденция развития проявляется лишь в самых общих чертах, а более мелкие, но важные для анализа детали (волны, изгибы и т. д.) исчезают; после сглаживания мелкие волны могут иногда поменять направление на противоположное — на месте «пиков» появляются «ямы», и наоборот. Все это требует осторожности в применении простой скользящей средней и заставляет искать более тонкие методы описания.

Метод скользящих средних не дает значений тренда для первых и последних m членов ряда. Этот недостаток особенно заметно сказывается в случае, когда длина ряда невелика.

3.3. Экспоненциальное сглаживание

Экспоненциальная средняя y t является примером асимметричной взвешенной скользящей средней, в которой учитывается степень старения данных: более «старая» информация с меньшим весом входит в формулу для расчета сглаженного значения уровня ряда

Здесь — экспоненциальная средняя, заменяющая наблюдаемое значение ряда y t (в сглаживании участвуют все данные, полученные к текущему моменту t ), α — параметр сглаживания, характеризующий вес текущего (самого нового) наблюдения; 0 < α <1.

Метод применяется для прогнозирования нестационарных временных рядов, имеющих случайные изменения уровня и угла наклона. По мере удаления от текущего момента времени в прошлое вес соответствующего члена ряда быстро (экспоненциально) уменьшается и практически перестает оказывать какое-либо влияние на значение .

Легко получить, что Последнее соотношение позволяет дать следующую интерпретацию экспоненциальной средней: если — прогноз значения ряда y t , то разность есть погрешность прогноза. Таким образом, прогноз для следующего момента времени t + 1 учитывает ставшую известной в момент t ошибку прогноза.

Параметр сглаживания α является взвешивающим фактором. В случае, если α близко к единице, то в прогнозе существенно учитывается величина ошибки последнего прогнозирования. При малых значениях α прогнозируемая величина близка к предыдущему прогнозу. Выбор параметра сглаживания представляет собой достаточно сложную проблему. Общие соображения таковы: метод хорош для прогнозирования достаточно гладких рядов. В этом случае можно выбрать сглаживающую константу путем минимизации ошибки прогноза на один шаг вперед, оцененной по последней трети ряда. Некоторые специалисты не рекомендуют использовать большие значения параметра сглаживания. На рис. 3.1 показан пример сглаженного ряда методом экспоненциального сглаживания при α= 0,1.

Рис. 3.1. Результат экспоненциального сглаживания при α =0,1
(1 — исходный ряд; 2 — сглаженный ряд; 3 — остатки)

3.4. Экспоненциальное сглаживание
с учетом тренда (метод Хольта)

В этом методе учитывается локальный линейный тренд, имеющийся во временных рядах. Если во временных рядах есть тенденция к росту, то вместе с оценкой текущего уровня необходима и оценка наклона. В методике Хольта значения уровня и наклона сглаживаются непосредственно путем использования различных постоянных для каждого из параметров. Постоянные сглаживания позволяют оценить текущий уровень и наклон, уточняя их всякий раз при появлении новых наблюдений.

В методе Хольта используются три расчетных формулы:

  1. Экспоненциально сглаженный ряд (оценка текущего уровня)

(3.2)

  1. Оценка тренда

(3.3)

  1. Прогноз на р периодов вперед

(3.4)

где α, β — постоянные сглаживания из интервала .

Уравнение (3.2) похоже на уравнение (3.1) для простого экспоненциального сглаживания за исключением члена, учитывающего тренд. Постоянная β нужна для сглаживания оценки тренда. В уравнении прогноза (3.3) оценка тренда умножается на число периодов р , на которое строится прогноз, а затем это произведение складывается с текущим уровнем сглаженных данных.

Постоянные α и β выбираются субъективно или путем минимизации ошибки прогнозирования. Чем большие значения весов будут взяты, тем более быстрый отклик на происходящие изменения будет иметь место и большему сглаживанию подвергаются данные. Меньшие веса делают структуру сглаженных значений менее ровной.

На рис. 3.2 приведен пример сглаживания ряда по методу Хольта при значениях α и β , равных 0,1.

Рис. 3.2. Результат сглаживания по методу Хольта
при α = 0,1 и β = 0,1

3.5. Экспоненциальное сглаживание с учетом тренда и сезонных вариаций (метод Винтерса)

При наличии в структуре данных сезонных колебаний для уменьшения ошибок прогнозирования используется трехпараметрическая модель экспоненциального сглаживания, предложенная Винтерсом. Этот подход является расширением предыдущей модели Хольта. Для учета сезонных вариаций здесь применяется дополнительное уравнение, и полностью этот метод описывается четырьмя уравнениями:

  1. Экспоненциально сглаженный ряд

(3.5)

  1. Оценка тренда

(3.6)

  1. Оценка сезонности

.

(3.7)

  1. Прогноз на р периодов вперед

(3.8)

где α, β, γ — постоянные сглаживания для уровня, тренда и сезонности, соответственно; s - длительность периода сезонного колебания.

Уравнение (3.5) корректирует сглаженные ряды. В этом уравнении член учитывает сезонность в исходных данных. После учета сезонности и тренда в уравнениях (3.6), (3.7) оценки сглаживаются, а в уравнении (3.8) делается прогноз.

Так же, как и в предыдущем способе, веса α, β, γ могут выбираться субъективно или путем минимизации ошибки прогнозирования. Перед применением уравнения (3.5) необходимо определить начальные значения для сглаженного ряда L t , тренда T t , коэффициентов сезонности S t . Обычно начальное значение сглаженного ряда принимается равным первому наблюдению, тогда тренд равен нулю, а коэффициенты сезонности устанавливаются равными единице.

На рис. 3.3 показан пример сглаживания ряда по методу Винтерса.

Рис. 3.3. Результат сглаживания по методу Винтерса
при α = 0,1 = 0,1; γ = 0,1 (1- исходный ряд; 2 — сглаженный ряд; 3 — остатки)

3.6. Прогнозирование на основе трендовых моделей

Довольно часто временные ряды имеют линейную тенденцию (тренд). При предположении линейной тенденции нужно построить прямую линию, которая наиболее точно отображала бы изменение динамики за рассматриваемый период. Есть несколько методов построения прямой линии, но наиболее объективным с формальной точки зрения будет построение, основанное на минимизации суммы отрицательных и положительных отклонений исходных значений ряда от прямой линии.

Прямую линию в системе двух координат (х,у) можно определить точкой пересечения одной из координат у и углом наклона к оси х. Уравнение такой прямой будет выглядеть как где a - точка пересечения; b — угол наклона.

Для того чтобы прямая отображала ход динамики, необходимо минимизировать сумму вертикальных отклонений. При использовании в качестве критерия оценки минимизации простой суммы отклонений получится не очень хороший результат, так как отрицательные и положительные отклонения взаимно компенсируют друг друга. Минимизация суммы абсолютных значений также не приводит к удовлетворительным результатам, поскольку оценки параметров в этом случае неустойчивы, имеются также вычислительные трудности при реализации такой процедуры оценивания. Поэтому наиболее часто используемой процедурой является минимизация суммы квадратов отклонений или метод наименьших квадратов (МНК).

Поскольку ряд исходных значений имеет колебания, то модель ряда будет содержать ошибки, квадраты которых надо минимизировать

где y i — наблюдаемое значение; y i * — теоретические значения модели; — номер наблюдения.

При моделировании тенденции исходного временного ряда с помощью линейного тренда примем, что

Поделив первое уравнение на n , приходим к следующему

Подставив полученное выражение во второе уравнение системы (3.10), для коэффициента b * получим:

3.7. Проверка соответствия модели

В качестве примера на рис. 3.4 приведен график линейной регрессии между мощностью автомобиля х и его стоимостью у .

Рис. 3.4. График линейной регрессии

Уравнение для этого случая имеет вид: у =1455,3 + 13,4 х . Визуальный анализ этого рисунка показывает, что для ряда наблюдений имеются значительные отклонения от теоретической кривой. График остатков показан на рис. 3.5.

Рис. 3.5. График остатков

Анализ остатков линии регрессии может представлять полезную меру того, насколько оцененная регрессия отражает реальные данные. Хорошая регрессия та, которая объясняет значительную долю дисперсии и, наоборот, плохая регрессия не отслеживает большую величину колебаний исходных данных. Интуитивно ясно, что всякая дополнительная информация позволит улучшить модель, т. е. уменьшить необъясненную долю вариации переменной у . Для анализа регрессионной проведем разложение дисперсии на составляющие. Очевидно, что

Последнее слагаемое будет равно нулю, так как представляет собой сумму остатков, поэтому приходим к следующему результату

где SS 0 , SS 1 , SS 2 определяют соответственно общую, регрессионную и остаточную суммы квадратов.

Регрессионная сумма квадратов измеряет часть дисперсии, объясняемую линейной зависимостью; остаточная — часть дисперсии, не объясняемую линейной зависимостью.

Каждая из этих сумм характеризуется соответствующим числом степеней свободы (ЧСС), которое определяет число единиц данных, независимых друг от друга. Иначе говоря, ЧСС связано с числом наблюдений n и числом вычисляемых по совокупности данных параметров. В рассматриваемом случае для расчета SS 0 определяется только одна постоянная (среднее значение), следовательно ЧСС для SS 0 составит (n 1), ЧСС для SS 2 – (n – 2) и ЧСС для SS 1 составит n – (n – 1)=1 , так как в уравнении регрессии имеется n – 1 постоянных точек. Так же, как и суммы квадратов, ЧСС связаны соотношением

Суммы квадратов, связанные с разложением дисперсии, вместе с соответствующими ЧСС могут быть размещены в так называемой таблице анализа дисперсий (таблица ANOVA — ANalysis Of VAriance) (табл. 3.1).

Таблица 3.1

Таблица ANOVA

Источник

Сумма квадратов

Средний квадрат

Регрессия

SS 2 / (n-2)

С помощью введенной аббревиатуры для сумм квадратов определим коэффициент детерминации как отношение суммы квадратов регрессии к общей сумме квадратов в виде

(3.13)

Коэффициент детерминации измеряет долю изменчивости переменной Y , которую можно объяснить с помощью информации об изменчивости независимой переменной X. Коэффициент детерминации изменяется от нуля, когда Х не влияет на Y, до единицы, когда изменение Y полностью объясняется изменением X.

3.8. Регрессионная модель прогноза

Лучшим считается прогноз, имеющий минимальную дисперсию. В нашем случае обычный МНК производит наилучший прогноз из всех методов, дающих несмещенные оценки на основе линейных уравнений. Ошибка прогноза, связанная с процедурой прогнозирования, может исходить от четырех источников.

Во-первых, случайная природа аддитивных ошибок, обрабатываемых линейной регрессией, гарантирует, что прогноз будет отклоняться от истинных величин даже если модель правильно специфицирована и ее параметры точно известны.

Во-вторых, сам процесс оценки вносит ошибку в оценку параметров — они редко могут быть равны истинным значениям, хотя равны им в среднем.

В-третьих, в случае условного прогноза (в случае неизвестных точно значений независимых переменных) ошибка вносится с прогнозом объясняющих переменных.

В-четвертых, ошибка может появиться из-за того, что спецификация модели неточна.

В итоге, источники ошибки можно классифицировать следующим образом:

  1. природа переменной;
  2. природа модели;
  3. ошибка, вносимая прогнозом независимых случайных величин;
  4. ошибка спецификации.

Будем рассматривать безусловный прогноз, когда независимые переменные легко и точно прогнозируются. Начнем рассмотрение проблемы качества прогноза с уравнения парной регрессии.

Постановку задачи в этом случае можно сформулировать следующим образом: каким будет наилучший прогноз y T+1 при условии, что в модели y = a + bx параметры а и b оценены точно, а значение x T+1 — известно.

Тогда прогнозное значение можно определить как

Ошибка прогноза при этом составит

.

Ошибка прогноза обладает двумя свойствами:

Полученная дисперсия минимальна среди всех возможных оценок, основанных на линейных уравнениях.

Хотя а и b известны, ошибка прогноза появляется за счет того, что у T+1 может не лежать на линии регрессии из-за ошибки ε T+1 , подчиняющейся нормальному распределению с нулевым средним и дисперсией σ 2 . Для проверки качества прогноза введем нормализованную величину

Тогда можно определить 95 %-ный доверительный интервал в следующем виде:

где β 0,05 — квантили нормального распределения.

Границы 95 %-ного интервала можно определить как

Отметим, что в этом случае ширина доверительного интервала не зависит от величины х, и границы интервала представляют собой прямые линии, параллельные линии регрессии.

Чаще при построении линии регрессии и проверке качества прогноза надо оценивать не только параметры регрессии, но и дисперсию ошибки прогноза. Можно показать , что в этом случае дисперсия ошибки зависит от величины (), где — среднее значение независимой переменной. Кроме того, чем больше длина ряда, тем точнее прогноз. Ошибка прогноза уменьшается, если значение X T+1 близко к средней величине независимой переменной, и, наоборот, при удалении от среднего значения прогноз становится менее точным. На рис. 3.6 показаны результаты прогноза с помощью уравнения линейной регрессии на 6 интервалов времени вперед вместе с доверительными интервалами.

Рис. 3.6. Прогноз по уравнению линейной регрессии

Как видно из рис. 3.6, эта линия регрессии недостаточно хорошо описывает исходные данные: наблюдается большая вариация относительно подгоночной прямой. О качестве модели можно судить также по остаткам, которые при удовлетворительной модели должны быть распределены примерно по нормальному закону. На рис. 3.7 приведен график остатков, построенный с помощью вероятностной шкалы.

Рис.3.7. График остатков

При использовании такой шкалы данные, подчиняющиеся нормальному закону, должны лежать на прямой линии. Как следует из приведенного рисунка, точки в начале и конце периода наблюдений несколько отклоняются от прямой линии, что свидетельствует о недостаточно высоком качестве выбранной модели в виде уравнения линейной регрессии.

В табл. 3.2 приведены результаты прогноза (вторая колонка) вместе с доверительными 95 %-ными интервалами (нижним — третья и верхним — четвертая колонки соответственно).

Таблица 3.2

Результаты прогноза

3.9. Многомерная регрессионная модель

При многомерной регрессии данные для каждого случая включают значения зависимой переменной и каждой независимой переменной. Зависимая переменная y — это случайная величина, связанная с независимыми переменными следующим соотношением:

где — коэффициенты регрессии, подлежащие определению; ε — компонент ошибки, соответствующий отклонению значений зависимой переменной от истинного соотношения (предполагается, что ошибки независимы и имеют нормальное распределение с нулевым математическим ожиданием и неизвестной дисперсией σ ).

Для заданного набора данных оценки коэффициентов регрессии можно найти с помощью МНК. Если оценки МНК обозначить через , то соответствующая функция регрессии будет иметь вид:

Остатки являются оценками компонента ошибки и подобны остаткам в случае простой линейной регрессии.

Статистический анализ модели многомерной регрессии проводится аналогично анализу простой линейной регрессии. Стандартные пакеты статистических программ позволяют получить оценки по МНК для параметров модели, оценки их стандартных ошибок. Кроме того, можно получить значение t -статистики для проверки значимости отдельных слагаемых регрессионной модели и величину F -статистики для проверки значимости регрессионной зависимости.

Форма разбиения сумм квадратов в случае многомерной регрессии аналогична выражению (3.13), но соотношение для ЧСС будет следующим

Подчеркнем еще раз, что n представляет собой объем наблюдений, а k — число переменных в модели. Общая вариация зависимой переменной состоит из двух составляющих: вариации, объясненной независимыми переменными через функцию регрессии, и необъясненной вариации.

Таблица ANOVA для случая многомерной регрессии будет иметь вид, показанный в табл. 3.3.

Таблица 3.3

Таблица ANOVA

Источник

Сумма квадратов

Средний квадрат

Регрессия

SS 2 / (n-k-1)

В качестве примера многомерной регрессии воспользуемся данными из пакета Statistica (файл данных Poverty.Sta) Приведенные данные основаны на сравнении результатов переписи 1960 и 1970 гг. для случайной выборки из 30 стран. Названия стран были введены как названия строк, а названия всех переменных этого файла приведены ниже:

POP_CHNG — изменение населения за 1960-1970 гг.;

N_EMPLD — количество людей, занятых в сельском хозяйстве;

PT_POOR — процент семей, живущих ниже уровня бедности;

TAX_RATE — ставка налога;

PT_PHONE — процент квартир с телефоном;

PT_RURAL — процент сельского населения;

AGE — средний возраст.

В качестве зависимой переменной выберем признак Pt_Poor , а в качестве независимых - все остальные. Рассчитанные коэффициенты регрессии между выделенными переменными приведены в табл. 3.4

Таблица 3.4

Регрессионные коэффициенты

Эта таблица показывает регрессионные коэффициенты (В ) и стандартизованные регрессионные коэффициенты (Beta ). С помощью коэффициентов В устанавливается вид уравнения регрессии, которое в данном случае имеет вид:

Включение в правую часть только этих переменных обусловлено тем, что лишь эти признаки имеют значение вероятности р меньше, чем 0,05 (см. четвертый столбец табл. 3.4).

Библиография

  1. Басовский Л. Е. Прогнозирование и планирование в условиях рынка. – М.: Инфра - М, 2003.
  2. Бокс Дж., Дженкинс Г. Анализ временных рядов. Вып.1. Прогноз и управление. – М.: Мир, 1974.
  3. Боровиков В. П., Ивченко Г. И. Прогнозирование в системе Statistica в среде Windows. – М.: Финансы и статистика, 1999.
  4. Дюк В. Обработка данных на ПК в примерах. – СПб.: Питер, 1997.
  5. Ивченко Б. П., Мартыщенко Л. А., Иванцов И. Б. Информационная микроэкономика. Часть 1. Методы анализа и прогнозирования. – СПб.: Нордмед-Издат, 1997.
  6. Кричевский М. Л. Введение в искусственные нейронные сети: Учеб. пособие. – СПб.: СПб. гос. морской техн. ун-т, 1999.
  7. Сошникова Л. А., Тамашевич В. Н., Уебе Г. и др. Многомерный статистический анализ в экономике. – М.: Юнити-Дана, 1999.

Скользящая средняя позволяет прекрасно сглаживать данные. Но ее главный недостаток заключатся в том, что каждое значение в исходных данных для нее имеет одинаковый вес. Например, для средней скользящей использующей период шести недель каждому значению для каждой недели уделяется 1/6 веса. В случае некоторых собранных статистических данных более актуальным значениям присваивается больший вес. Поэтому экспоненциальное сглаживание применятся для того, чтобы придать самым актуальным данным большего веса. Таким образом решается данная статистическая проблема.

Формула расчета метода экспоненциального сглаживания в Excel

Ниже на рисунке изображен отчет спроса на определенный продукт за 26 недель. Столбец «Спрос» содержит информацию о количестве проданного товара. В столбце «Прогноз» – формула:

В столбце «Скользящая средняя» определяется прогнозируемый спрос, рассчитанный с помощью обычного вычисления скользящей средней с периодом 6 недель:

В последнем столбце «Прогноз», с описанной выше формулой применяется метод экспоненциального сглаживания данных в которых значения последних недель имеет больший вес чем предыдущих.

Коэффициент «Альфа:» вводится в ячейке G1, он значит вес присвоения наиболее актуальным данным. В данном примере он имеет значение 30%. Остальные 70% веса распределяется на остальные данные. То есть второе значение с точки зрения актуальности (с право на лево) имеет вес равный 30% от оставшихся 70% веса – это 21%, третье значение имеет вес равен 30% от остальной части 70% веса – 14,7% и так далее.



График экспоненциального сглаживания

Ниже на рисунке изображен график спроса, среднее скользящие и прогноз методом экспоненциального сглаживания, который построен на основе исходных значений:


Обратите внимание, что прогноз с экспоненциальным сглаживанием более активно реагирует на изменения спроса чем скользящая средняя линия.

Данные для очередных предыдущих недель умножаются на коэффициент альфа, а результат добавляется к оставшейся части процентов веса умноженный на предыдущее прогнозируемое значение.

Экспоненциальное сглаживание - способ сглаживания временных рядов, вычислительная процедура которого включает обработку всех предыдущих наблюдений, при этом учитывается устаревание информации по мере удаления от прогнозного периода. Иначе говоря, чем "старше" наблюдение, тем меньше оно должно влиять на величину прогнозной оценки. Идея экспоненциального сглаживания состоит в том, что по мере "старения" соответствующим наблюдениям придаются убывающие веса.

Данный метод прогнозирования считается весьма эффективным и падежным. Основные достоинства метода состоят в возможности учета весов исходной информации, в простоте вычислительных операций, в гибкости описания различных динамик процессов. Метод экспоненциального сглаживания дает возможность получить оценку параметров тренда, характеризующих не средний уровень процесса, а тенденцию, сложившуюся к моменту последнего наблюдения. Наибольшее применение метод нашел для реализации среднесрочных прогнозов. Для метода экспоненциального сглаживания основным моментом является выбор параметра сглаживания (сглаживающей константы) и начальных условий.

Простое экспоненциальное сглаживание временных рядов, содержащих тренд, приводит к систематической ошибке, связанной с отставанием сглаженных значений от фактических уровней временного ряда. Для учета тренда в нестационарных рядах применяется специальное двухпараметрическое линейное экспоненциальное сглаживание. В отличие от простого экспоненциального сглаживания с одной сглаживающей константой (параметром) данная процедура сглаживает одновременно случайные возмущения и тренд с использованием двух различных констант (параметров). Двухпараметрический метод сглаживания (метод Хольта) включает два уравнения. Первое предназначено для сглаживания наблюденных значений, а второе -для сглаживания тренда:

где I - 2, 3, 4 - периоды сглаживания; 5, - сглаженная величина на период £; У, - фактическое значение уровня на период 1 5, 1 - сглаженное значение на период Ь-Ьг- сглаженное значение тренда на период 1 - сглаженное значение на период I- 1; А и В - сглаживающие константы (числа между 0 и 1).

Сглаживающие константы А и В характеризуют фактор взвешивания наблюдений. Обычно Л, В < 0,3. Так как (1 - А) < 1, (1 - В) < 1, то они убывают по экспоненциальному закону по мере удаления наблюдения от текущего периода I. Отсюда данная процедура получила название экспоненциально сглаживания.

Уравнение добавляется в общую процедуру для сглаживания тренда. Каждая новая оценка тренда получается как взвешенная сумма разности между последними двумя сглаженными значениями (текущая оценка тренда) и предыдущей сглаженной оценки. Данное уравнение позволяет существенно сократить влияние случайных возмущений на тренд с течением времени.

Прогнозирование с использованием экспоненциального сглаживания подобно процедуре "наивного" прогнозирования, когда прогнозная оценка на завтра полагается равной сегодняшнему значению. В данном случае в качестве прогноза на один период вперед рассматривается сглаженная величина на текущий период плюс текущее сглаженное значение тренда:

Данную процедуру можно использовать для прогнозирования на любое число периодов, на пример на т периодов:

Процедура прогнозирования начинается с того, что сглаженная величина 51 полагается равной первому наблюдению У, т.е. 5, = У,.

Возникает проблема определения начального значения тренда 6]. Существуют два способа оценки Ьх.

Способ 1. Положим Ьх = 0. Такой подход хорошо работает в случае длинного исходного временного ряда. Тогда сглаженный тренд за небольшое число периодов приблизится к фактическому значению тренда.

Способ 2. Можно получить более точную оценку 6, используя первые пять (или более) наблюдений временного ряда. На их основе гю методу наименьших квадратов решается уравнение У(= а + Ь х г. Величина Ь берется в качестве начального значения тренда.

Насколько Forecast NOW! лучше модели Экспоненциального сглаживания (ES) вы можете увидеть на графике ниже. По оси X - номер товара, по оси Y - процентное улучшение качества прогноза. Описание модели, детальное исследование, результаты экспериментов читайте ниже.

Описание модели

Прогнозирование методом экспоненциального сглаживания является одним из самых простых способов прогнозирования. Прогноз может быть получен только на один период вперед. Если прогнозирование ведется в разрезе дней, то только на один день вперед, если недель, то на одну неделю.

Для сравнения прогнозирование проводилось на неделю вперед в течение 8 недель.

Что такое экспоненциально сглаживание?

Пусть ряд С представляет исходный ряд продаж для прогнозирования

С(1)- продажи в первую неделю, С (2) во второй и так далее.

Рисунок 1. Продажи по неделям, ряд С

Аналогично, ряд S представляет собой экспоненциально сглаженный ряд продаж. Коэффициент α находится от нуля до единицы. Получается он следующим образом, здесь t - момент времени (день, неделя)

S (t+1) = S(t) + α *(С(t) - S(t))

Большие значения константы сглаживания α ускоряют отклик прогноза на скачок наблюдаемого процесса, но могут привести к непредсказуемым выбросам, потому что сглаживание будет почти отсутствовать.

Первый раз после начала наблюдений, располагая лишь одним результатом наблюдений С (1) , когда прогноза S(1) нет и формулой (1) воспользоваться еще невозможно, в качестве прогноза S(2) следует взять С (1) .

Формула легко может быть переписана в ином виде:

S(t+1) = (1 - α)* S(t) + α * С(t) .

Таким образом, с увеличением константы сглаживания доля последних продаж увеличивается, а доля сглаженных предыдущих уменьшается.

Константа α выбирается опытным путем. Обычно строится несколько прогнозов для разных констант и выбирается наиболее оптимальная константа с точки зрения выбранного критерия.

Критерием может выступать точность прогнозирования на предыдущие периоды.

В своем исследовании мы рассмотрели модели экспоненциального сглаживания, в которых α принимает значения {0.2, 0.4, 0.6, 0.8}. Для сравнения с алгоритмом прогнозирования Forecast NOW! для каждого товара строились прогнозы при каждом α, выбирался наиболее точный прогноз. В действительности же, ситуация обстояла бы гораздо более сложная, пользователю не зная наперед точности прогноза нужно определиться с коэффициентом α, от которого очень сильно зависит качество прогноза. Вот такой замкнутый круг.

Наглядно

Рисунок 2. α =0.2 , степень экспоненциального сглаживания высокая, реальные продажи учитываются слабо

Рисунок 3. α =0.4 , степень экспоненциального сглаживания средняя, реальные продажи учитываются в средней степени

Можно видеть как с увеличением константы α сглаженный ряд все сильнее соответствует реальным продажам, и если там присутствуют выбросы или аномалии, мы получим крайне неточный прогноз.

Рисунок 4. α =0.6 , степень экспоненциального сглаживания низкая, реальные продажи учитываются значительно

Можем видеть, что при α=0.8 ряд почти в точности повторяет исходный, а значит прогноз стремится к правилу «будет продано столько же, сколько и вчера»

Стоит отметить, что здесь совершенно нельзя ориентироваться на ошибку приближения к исходным данным. Можно добиться идеального соответствия, но получить неприемлемый прогноз.

Рисунок 5. α =0.8 , степень экспоненциального сглаживания крайне низкая, реальные продажи учитываются сильно

Примеры прогнозов

Теперь давайте посмотрим на прогнозы, которые получаются с использованием различных значений α. Как можно видеть из рисунка 6 и 7, чем больше коэффициент сглаживания, тем точнее повторяет реальные продажи с опозданием на один шаг, прогноз. Такое опоздание на деле может оказаться критичным, поэтому нельзя просто выбирать максимальное значение α. Иначе получится ситуация, когда мы говорим, что будет продано ровно столько, сколько было продано в прошлый период.

Рисунок 6. Прогноз метода экспоненциального сглаживания при α=0.2

Рисунок 7. Прогноз метода экспоненциального сглаживания при α=0.6

Давайте посмотрим, что получается при α = 1.0. Напомним, S - прогнозируемые (сглаженные) продажи, C - реальные продажи.

S(t+1) = (1 - α)* S(t) + α * С(t) .

S(t+1) = С(t) .

Продажи в t+1 день согласно прогнозу равны продажам в предыдущий день. Поэтому к выбору константы надо подходить с умом.

Сравнение с Forecast NOW!

Теперь рассмотрим данный метод прогнозирования в сравнении с Forecast NOW!. Сравнение велось на 256 товарах, которые имеют различные продажи, с сезонностью краткосрочной и долгосрочной, с «плохими» продажами и дефицитом, акциями и прочими выбросами. Для каждого товара был построен прогноз по модели экспоненциального сглаживания, для различных α, выбирался лучший и сравнивался с прогнозом по модели Forecast NOW!

В таблице ниже вы видите значение ошибки прогноза для каждого товара. Ошибка здесь считалась как RMSE. Это корень из среднеквадратичного отклонения прогноза от реальности. Грубо говоря, показывает, на сколько единиц товара мы отклонились в прогнозе. Улучшение показывает, на сколько процентов прогноз Forecast NOW! лучше, если цифра положительная, и хуже, если отрицательная. На рисунке 8 по оси X отложены товары, по оси Y указано насколько прогноз Forecast NOW! лучше, чем прогнозирование методом экспоненциального сглаживания. Как можно видеть из этого графика, точность прогнозирования Forecast NOW! почти всегда в два раза выше и почти никогда не хуже. На деле это означает, что использование Forecast NOW! позволит в два раза сократить запасы или снизить дефицит.

Экстраполяция - это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. К методам экстраполяции относятся метод скользящей средней, метод экспоненциального сглаживания, метод наименьших квадратов.

Метод экспоненциального сглаживания наиболее эффективен при разработке среднесрочных прогнозов. Он приемлем при прогнозировании только на один период вперед. Его основные достоинства простота процедуры вычислений и возможность учета весов исходной информации. Рабочая формула метода экспоненциального сглаживания:

При прогнозировании данным методом возникает два затруднения:

  • выбор значения параметра сглаживания α;
  • определение начального значения Uo.

От величины α зависит , как быстро снижается вес влияния предшествующих наблюдений. Чем больше α, тем меньше сказывается влияние предшествующих лет. Если значение α близко к единице, то это приводит к учету при прогнозе в основном влияния лишь последних наблюдений. Если значение α близко к нулю, то веса, по которым взвешиваются уровни временного ряда, убывают медленно, т.е. при прогнозе учитываются все (или почти все) прошлые наблюдения.

Таким образом, если есть уверенность, что начальные условия, на основании которых разрабатывается прогноз, достоверны, следует использовать небольшую величину параметра сглаживания (α→0). Когда параметр сглаживания мал, то исследуемая функция ведет себя как средняя из большого числа прошлых уровней. Если нет достаточной уверенности в начальных условиях прогнозирования, то следует использовать большую величину α, что приведет к учету при прогнозе в основном влияния последних наблюдений.

Точного метода для выбора оптимальной величины параметра сглаживания α нет. В отдельных случаях автор данного метода профессор Браун предлагал определять величину α, исходя из длины интервала сглаживания. При этом α вычисляется по формуле:

где n – число наблюдений, входящих в интервал сглаживания.

Задача выбора Uo (экспоненциально взвешенного среднего начального) решается следующими способами:

  • если есть данные о развитии явления в прошлом, то можно воспользоваться средней арифметической и приравнять к ней Uo;
  • если таких сведений нет, то в качестве Uo используют исходное первое значение базы прогноза У1.

Также можно воспользоваться экспертными оценками.

Отметим, что при изучении экономических временных рядов и прогнозировании экономических процессов метод экспоненциального сглаживания не всегда «срабатывает». Это обусловлено тем, что экономические временные ряды бывают слишком короткими (15-20 наблюдений), и в случае, когда темпы роста и прироста велики, данный метод не «успевает» отразить все изменения.

Пример применения метода экспоненциального сглаживания для разработки прогноза

Задача . Имеются данные, характеризующие уровень безработицы в регионе, %

  • Постройте прогноз уровня безработицы в регионе на ноябрь, декабрь, январь месяцы, используя методы: скользящей средней, экспоненциального сглаживания, наименьших квадратов.
  • Рассчитайте ошибки полученных прогнозов при использовании каждого метода.
  • Сравните полученные результаты, сделайте выводы.

Решение методом экспоненциального сглаживания

1) Определяем значение параметра сглаживания по формуле:

где n – число наблюдений, входящих в интервал сглаживания. α = 2/ (10+1) = 0,2

2) Определяем начальное значение Uo двумя способами:
І способ (средняя арифметическая) Uo = (2,99 + 2,66 + 2,63 + 2,56 + 2,40 + 2,22 + 1,97 + 1,72 + 1,56 + 1,42)/10 = 22,13/10 = 2,21
II способ (принимаем первое значение базы прогноза) Uo = 2,99

3) Рассчитываем экспоненциально взвешенную среднюю для каждого периода, используя формулу

где t – период, предшествующий прогнозному; t+1 – прогнозный период; Ut+1 - прогнозируемый показатель; α - параметр сглаживания; Уt - фактическое значение исследуемого показателя за период, предшествующий прогнозному; Ut - экспоненциально взвешенная средняя для периода, предшествующего прогнозному.

Например:
Uфев = 2,99*0,2 +(1-0,2) * 2,21 = 2,37 (І способ)
Uмарт = 2,66*0,2+(1-0,2) * 2,37 = 2,43 (І способ) и т.д.

Uфев = 2,99*0,2 +(1-0,2) * 2,99 = 2,99 (II способ)
Uмарт = 2,66*0,2+(1-0,2) * 2,99 = 2,92 (II способ)
Uапр = 2,63*0,2+(1-0,2) * 2,92 = 2,86 (II способ) и т.д.

4) По этой же формуле вычисляем прогнозное значение
Uноябрь= 1,42*0,2+(1-0,2) * 2,08 = 1,95 (І способ)
Uноябрь= 1,42*0,2+(1-0,2) * 2,18 = 2,03 (ІІ способ)
Результаты заносим в таблицу.

5) Рассчитываем среднюю относительную ошибку по формуле:

ε = 209,58/10 = 20,96% (І способ)
ε = 255,63/10 = 25,56% (ІІ способ)

В каждом случае точность прогноза является удовлетворительной поскольку средняя относительная ошибка попадает в пределы 20-50%.

Решив данную задачу методами скользящей средней и наименьших квадратов , сделаем выводы.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме