Подпишись и читай
самые интересные
статьи первым!

Интегральный метод термодинамического анализа пожара. Описание математических моделей прогнозирования опасных факторов пожара

Интегральная математическая модель пожара в помещении разработана на основе уравнений пожара, изложенных в работах . Эти уравнения вытекают из основных законов физики - закона сохранения вещества и первого закона термодинамики для открытой системы, и включаетв себя:

где V - объем помещения, м 3 ; m - среднеобъемная плотность газовой среды кг/м 3 ; - время, с; G в и G г - массовые расходы поступающего в помещение воздуха и уходящих из помещения газов, кг/с; - массовая скорость выгорания горючей нагрузки, кг/с.

уравнение баланса кислорода

где х 1 - среднеобъемная массовая концентрация кислорода в помещении; х 1в - концентрация кислорода в уходящих газах от среднеобъемного значения х 1 , n 1 = x 1г /х 1 ; L 1 - стехиометрическое соотношение «кислород - горючая нагрузка».

где х i - среднеобъемная концентрация i-го продукта горения; L i - удельное массовое выделение i-го продукта; n i - коэффициент, учитывающий отличие концентрации i-го продукта в уходящих газах x iг от среднеобъемного значения x i , n i = x iг /x i ;

уравнения баланса энергии

где Р m - среднеобъемное давление в помещении, Па, К m , С рm , Т m - среднеобъемные значения показателя адиабаты, изобарной теплоемкости и температуры в помещении; Q п н - теплота сгорания горючей нагрузки, Дж/кг; С рв; Т в - изобарная теплоемкость и температура поступающего воздуха; I п - энтальпия продуктов газификации горючего материала, Дж/кг; - коэффициент, учитывающий отличие среднеобъемной изобарной температуры Т m и среднеобъемной изобарной теплоемкости С рm от температуры Т г и изобарной теплоемкости С рг уходящих газов, = ; - коэффициент полноты сгорания; Q c - тепловой поток в ограждение, Вт.

Среднеобъемная температура Т m связана со среднеобъемным давлением Р m и плотностью m уравнением состояния

Р m = m R m Т m . (2.5)

Уравнения пожара при разработке программы были модифицированы с целью учета работы приточно-вытяжной системы механической вентиляции, а так же работы системы объемного тушения пожара инертным газом. При этом система уравнений принимает следующий вид:

уравнение материального баланса

где G пр и G выт - массовые расходы, создаваемые приточно-вытяжной вентиляции, кг/с; G ов - массовая подача огнетушащего вещества кг/с

Для учета влияния температурного режима на работу вентиляторов расхода G пр и G выт представлены в виде:

G пр = в W пр; (2.7)

G выт = m W выт, (2.8)

где в - плотность воздуха, кг/м 3 W пр и W выт - объемные производительности приточной и вытяжной подсистем, принимаемые постоянными.

Расход подачи ОВ так же принимается постоянным в интервале от момента включения системы пожаротушения до окончания запаса ОВ и равным нулю вне пределов этого интервала.

Уравнению (2.1) соответствует начальное условие:

где Р в - атмосферное давления на уровне половины высоты помещения, Па, R в - газовая постоянная воздуха, Дж/кгК; Т m (0) - начальная температура в помещении;

уравнение баланса энергии

где С ров и Т ов - изобарная теплоемкость и температура подаваемая через проемы, Q 0 - источниковый член, учитывающий работу систем отопления, в случае неравенства Т m (0) и Т в

Исходя из многочисленного экспериментального материала, левая часть уравнения (2.2) принимается равной нулю, а величина С рm - постоянной. Значение Q 0 вычисляется в нулевой момент времени и далее считается неизменным. Поскольку I п

Т с =Т m (0)+0,2[Т m -T m (0)]+0.00065[Т m -Т m (0)] 2

где m - среднеобъемная степень черноты среды в помещении; F г - суммарная площадь проемов, м 2 ; F c и T c - площадь конструкций и средняя температура их внутренней поверхности;

уравнение баланса кислорода

Начальные условия для этого уравнения является следующие

Х 1 (0) = х 1В = 0,23

уравнение баланса продуктов горения

Поскольку кинетика химических реакций не моделируется, а все L i полагаются постоянными, то, вводя новую переменную Xi=xi/Li получим в окончательном виде:

Начальным условием для этого уравнения является выражение

Из (2.4) следует, что концентрации всех продуктов горения подобны во времени и могут быть описаны одним общим уравнением:

Уравнение баланса количества дыма и оптической концентрации дыма получено:

где m - среднеобъемное значение оптического количества дыма в помещении; D - дымообразующая способность горючего материала; К с - коэффициент осаждения частиц дыма на поверхность конструкций. Этому уравнению соответствует следующее начальное условие m (0)=0.

Принято различать два основных режима пожара в помещении:

  • - пожар, регулируемый горючей нагрузкой (ПРН), когда кислорода в помещении достаточно и скорость выгорания определяется скоростью газификации горючего материала;
  • - пожар, регулируемый вентиляцией (ПРВ), когда кислорода в помещении очень мало и скорость выгорания определяется скоростью притока воздуха извне.

Подробная классификация достаточно условна. Режим пожара в помещении будет аналогичен режиму пожара на открытом воздухе лишь в случае х 1 =х 1В, т.е. только в нулевой момент времени. Соответственно, для реализации ПРВ требуется положить х 1 =0, т.е. весь поступающий в помещение кислород полностью расходуется на горение. В реальности кислородный режим пожара в помещении практически всегда является некоторым промежуточным режимом между ПРН и ПРВ.

Кислородный режим пожара численно характеризуется величиной безразмерного параметра к, значения которого изменяются от нуля до единицы, причем к=0 соответствует ПРВ, а к=1 - ПРН. Величина к является функцией концентрации кислорода в помещении: к=к(х 1). В соответствии с изложенным ранее, эта функция имеет минимум при х 1 =0 (равный нулю) и максимум при х 1 =х 1в, (равный единице). Кроме того, график функции к(х 1) должен иметь точку перегиба, причем единственную, которая физически соответствует переходу от преобладания одного режима пожара к преобладанию другого.

Всем перечисленным требованиям отвечает функция вида

где А, В, С - положительные коэффициенты, определяемые из изложенных выше граничных условий и экспериментальных данных.

где 0 и уд.0 - полнота сгорания и удельная скорость выгорания на открытом воздухе. Величина 0 может быть найдена по формуле

значение уд.0 является свойством, в основном, самой горючей нагрузки.

Легко заметить, что выражение (2.6) точно отражает физический смысл двух рассматриваемых режимов пожара и является интерполяционной формулой для промежуточных реальных режимов. Если использовать аналогичную формулу для

то (2.7) и (2.8) образуют систему двух уравнений с двумя неизвестными, из решения которых определяются и уд. .

Рассмотренный подход позволяет учесть в расчете влияние концентрации кислорода в помещении на процесс горения. Безусловно этот подход является в достаточной приближенным и вынужденным, поскольку более точное моделирование процесса горения, особенно в рамках интегральной модели наталкивается на ряд принципиальных трудностей. Как показали пробные расчеты и их сравнение с данными экспериментов, изложенный метод дает удовлетворительную для инженерной практики точность и может быть использован в случаях, когда более строгий подход не является необходимым.

Для расчета естественного газообмена в получены соотношения для случая, когда g m g в. Ниже эти соотношения приведены в формализованном виде:

где в i - ширина i-того проема; Y hi и Y bi - высота его нижнего и верхнего срезов.

Суммирование производится по всем открытым проемам, а высота нейтральной плоскости рассчитывается по формуле

где h - половина высоты помещения. Формальный параметр Z i определяется следующим образом:

Если горючим веществом является жидкость, площадь горения полагается неизменной и равной площади ее зеркала. В случае твердого материала задаются его линейные размеры и считается, что горение начинается в центре заданного прямоугольника. Если обозначить V л - мгновенное значение линейной скорости распространения пламени, то радиус зоны горения r г определяет уравнение причем r г (0)=0.

Если величина r г не превышает половину минимального размера, то из площади круга вычитается площадь соответствующих сегментов. Момент, когда значение r г становится равным полудиагонали заданного прямоугольника, расположение горючей нагрузки, считается моментом полного охвата пламенем всей горючей нагрузки и далее площадь горения считается неизменной. Так как F гор и уд известны, то полная скорость газификации рассчитывается, как их производная. В случае нестационарного горения жидкости полученное назначение умножается на величину, учитывающую эту нестационарность .

при < cт, где cт - время стабилизации горения.

Для расчета среднеобъемной температуры используются уравнения состояния

Т m =Р m /g m R m (2.19)

Степень черноты задымленной среды в помещении рассчитывается по известной формуле:

где l - средняя длина пути луча, определяется соотношением

где - эмпирический коэффициент для пересчета оптического диапазона в диапазон инфракрасных волн.

Для численной реализации модели использован метод Рунге-Кутта - Фельберга 4-5 порядка точности с переменным шагом. В качестве основы взята подпрограмма решения систем обыкновенных дифференциальных уравнений, доработанная с целью улучшения эксплуатационных характеристик.

Разработанная на кафедре инженерной теплофизики и гидравлики учебная компьютерная программа INTMODEL реализует описанную выше математическую модель и предназначена для расчета динамики пожара жидких и твердых горючих веществ и материалов в помещении имеющем от 1 до 9 проемов вертикальных ограждающих конструкций.

От известных аналогов программа отличается тем, что позволяет учитывать вскрытие проемов, работу систем механической вентиляции, и объемного тушения пожара инертным газом, а так же учитывает кислородный баланс пожара, позволяет рассчитывать концентрацию окиси и двуокиси углерода, задымленность помещения и дальность видимости в нем.

Александренко М.В. 1 , Акулова М.В. 2 , Ибрагимов А.М. 3

1 Студент,

Ивановский государственный политехнический университет

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПОЖАРА

Аннотация

В статье рассмотрено – виды математических моделей пожара и их область применения. Математическое моделирование позволяет спрогнозировать динамику пожара в помещениях зданий различного назначения, а следовательно позволяет вывести исследование пожарной опасности объектов на качественно новый этап развития, обеспечить переход от сравнительных методов к прогнозным, учитывающим условия эксплуатации объекта.

Ключевые слова: математическая модель, пожар.

Alexandrenko M.V. 1 , Akulova M.V. 2 , Ibragimov A.M. 3

Ivanovo State Polytechnic University

MATHEMATICAL MODELLING OF THE FIRE

Abstract

The article considers types of mathematical models of the fire and their scope. Mathematical modeling allows to predict dynamics of the fire in rooms of buildings of different function and consequently allows to bring research of fire danger of objects to qualitatively new stage of development, to provide transition from comparative methods to expected, considering object service conditions.

Keywords : mathematical model, fire.

Моделирование представляет собой метод исследования свойств одного объекта посредством изучения свойств другого объекта, более удобного для исследования и находящегося в определенном соответствии с первым объектом. То есть при моделировании экспериментируют не с самим объектом, а с его заменителем, который называют моделью .

Моделирование пожара в помещениях основано на представлении пожара как физического явления передачи тепла и массы в соответствующих условиях его развития. Условия развития пожара характеризуются видом пожарной нагрузки и конструктивно-планировочными характеристиками здания (помещения).

По типу математического аппарата различают следующие модели: детерминированные; вероятностные; смешанные (детерминированные – вероятностные); имитационные.

Наиболее эффективным инструментом прогноза и изучения пожаров являются детерминированные математические модели.

Наряду с детерминированным моделированием следует отметить и вероятностные оценки распространения пожара на основе статистической обработки данных по реальным пожарам.

Приведём краткую характеристику каждой из моделей.

  1. Детерминированные математические модели

Все многообразие детерминированных математических моделей развития пожара в помещениях (внутренние пожары) можно разделить на три группы:

–интегральные (модели первого поколения);

–зонные (модели второго поколения);

–полевые (CFD) (модели третьего поколения).

1.1. Интегральные математические модели

Интегральный (однозонный) метод является наиболее простым методом моделирования пожаров. Суть интегрального метода заключается в том, что состояние газовой среды оценивается через осредненные по всему объему помещения термодинамические параметры. Соответственно температура ограждающих конструкций и другие подобные параметры оцениваются как осредненные по поверхности. На основе интегрального метода были разработаны, в частности, рекомендации .

Область применения интегрального метода, в которой предсказанные моделью параметры пожара можно интерпретировать как реальные, практически ограничивается объемными пожарами, когда из-за интенсивного перемешивания газовой среды локальные значения параметров в любой точке близки к среднеобъемным. За пределами возможностей интегрального метода оказывается моделирование пожаров, не достигших стадии объемного горения, и особенно моделирование процессов, определяющих пожарную опасность при локальном пожаре. Наконец, в ряде случаев даже при объемном пожаре распределением локальных значений параметров пренебрегать нельзя.

1.2. Зонные математические модели

Развитие пожара можно описать достаточно детально с помощью зонных (зональных) моделей, основанных на предположении о формировании в помещении двух слоев: верхнего слоя продуктов горения (задымленная зона) и нижнего слоя невозмущенного воздуха (свободная зона). Таким образом, состояние газовой среды в зональных моделях оценивается через осредненные термодинамические параметры не одной, а нескольких зон, причем межзонные границы обычно считаются подвижными.

Однако при создании зонных моделей необходимо делать большое количество упрощений и допущений, основанных на априорных предположениях о структуре потока. Такая методика не применима в тех случаях, когда отсутствует полученная из пожарных экспериментов информация об этой структуре и, следовательно, нет основы для зонного моделирования. Кроме того, часто требуется более подробная информация о пожаре, чем осредненные по слою (зоне) значения параметров.

1.3. Полевые математические модели

Полевые модели, обозначаемые в зарубежной литературе аббревиатурой CFD (computational fluid dynamics), являются более мощным и универсальным инструментом, чем зональные; они основываются на совершенно ином принципе. Вместо одной или нескольких больших зон в полевых моделях выделяется большое количество (обычно тысячи или десятки тысяч) маленьких контрольных объемов, никак не связанных с предполагаемой структурой потока. Для каждого из этих объемов с помощью численных методов решается система уравнений в частных производных, выражающих принципы локального сохранения массы, импульса, энергии и масс компонентов. Таким образом, динамика развития процессов определяется не априорными предположениями, а исключительно результатами расчета.

Естественно, что такие модели, по сравнению с интегральными и зональными, требуют значительно больших вычислительных ресурсов. Однако в последние двадцать лет, в связи с быстрым развитием компьютерной техники, полевые модели из чисто академической концепции превратились в важный практический инструмент.

В настоящее время создан целый ряд компьютерных программ, реализующих полевой метод моделирования, которые достаточно точно описывают поля скоростей, температур и концентраций на начальной стадии пожара.

  1. Вероятностные математические модели

Вероятностная модель – модель, которая в отличие от детерминированной модели содержит случайные элементы. Таким образом, при задании на входе модели некоторой совокупности значений, на ее выходе могут получаться различающиеся между собой результаты в зависимости от действия случайного фактора.

С помощью вероятностного моделирования и программ вероятностного анализа безопасности возможно подсчитать вероятность риска пожаров с учетом человеческого фактора, определять приоритетные направления уменьшения величины риска пожаров. Представляется возможным учесть все важные причины пожаров и факторы, которые оказывают содействие распространению или усложняют тушение пожара, и, путем создания и изучения модели, выявлять дефициты пожарной безопасности по аналогии с моделированием безопасности сложных систем.

  1. Смешанные (детерминированные – вероятностные) математические модели

В последнее время в безопасности жизнедеятельности все шире стали применять детерминировано-вероятностные модели катастроф, а также комплексный физико-математический метод исследования катастроф с использованием современной компьютерной техники и оригинальных лабораторных установок. Детерминированно-вероятностная модель прогноза пожаров учитывает сценарий совместного появления антропогенной нагрузки и грозовой активности, метеорологические условия.

  1. Имитационные математические модели

Имитационное моделирование представляет интерес в исследовании сложных систем при априорной неопределенности. В модели может быть задано вероятное протекание пожара, вероятные законы распределения и распространения тепловых потоков, имитируется процесс работы конструкций.

Моделирование пожара в помещении и оценка его воздействия на строительные конструкции состоит из следующих основных этапов:

Анализ конструктивно-планировочных характеристик помещения;

Определение вида, количества и размещения пожарной нагрузки;

Определение вида возможного пожара и его базовых параметров;

Выбор метода расчета и проведение расчета, оценка вероятностных характеристик пожара;

Анализ огнестойкости конструкций, определение эквивалентной продолжительности стандартного испытания.

Заключение

Математическое моделирование позволяет спрогнозировать динамику пожара в помещениях зданий различного назначения, а следовательно позволяет вывести исследование пожарной опасности объектов на качественно новый этап развития, обеспечить переход от сравнительных методов к прогнозным, учитывающим условия эксплуатации объекта. Это можно считать ещё одним шагом на пути решения проблемы обеспечения пожарной безопасности здания или сооружения в целом, и строительных конструкций в частности.

Литература

  1. Клуб студентов «Технарь». Конспекты по математическим моделям [Электронный курс] URL: http://www.c-stud.ru (дата обращения 10.03.2015)
  2. Расчет необходимого времени эвакуации людей из помещений при пожаре: Рекомендации. – М.: ВНИИПО МВД СССР, 1989. – 22 с.
  3. Методические рекомендации «Применение полевого метода математического моделирования пожара в помещениях.
  4. ГОСТ 12.1.004-91* Пожарная безопасность. Общие требования.
  5. СНиП 21-01-97* Пожарная безопасность зданий и сооружений.

References

  1. Club of students “Technician”. Abstracts on mathematical models of URL: http://www.c-stud.ru (date of the address 10.03.2015)
  2. Calculation of necessary time of evacuation of people from rooms at the fire: Recommendations. – M.: VNIIPO MVD USSR, 1989. – 22 s.
  3. Methodical recommendations “Application of a field method of mathematical modeling of the fire in rooms.
  4. GOST 12.1.004-91 * Fire safety. General requirements.
  5. SNiP 21-01-97 * Fire safety of buildings and constructions.

Уравнения пожара описывают в самом общем виде изменение среднеобъемных параметров состояния газовой среды в помещении в течение времени (в процессе развития пожара). Эти уравнения были сформулированы в 1976г. проф. Ю.А. Кошмаровым (статья "Развитие пожара в помещении" в научном сборнике ВНИИПО МВД СССР "Горение и проблемы тушения пожаров". М.: ВНИИПО МВД СССР, 1977).

Уравнения пожара являются обыкновенными дифференциальными уравнениями. Они вытекают, как и большинство уравнений математической физики, из фундаментальных законов природы - первого закона термодинамики для открытой термодинамической системы и закона сохранения массы. Подробный вывод этих уравнений приведен в учебнике Ю.А. Кошмарова и М.П. Башкирцева "Термодинамика и теплопередача в пожарном деле" (М., ВИПТШ МВД СССР, 1987). Ограничимся здесь кратким изложением рассуждений, используемых при выводе уравнений пожара.

Первое уравнение - уравнение материального баланса пожара в помещении - вытекает из закона сохранения массы. Применительно к газовой среде, заполняющей помещение, этот закон можно сформулировать так: изменение массы газовой среды в помещении за единицу времени равно алгебраической сумме потоков массы через границы рассматриваемой термодинамической системы. Под границей системы здесь подразумевается воображаемая контрольная поверхность, ограничивающая пространство, внутри которого заключена рассматриваемая газовая среда. На рис. 1.1 эта поверхность условно показана пунктирной линией. Часть этой поверхности совпадает с поверхностью ограждений (стены, пол, потолок). Там, где находятся проемы, эта поверхность является воображаемой. Объем пространства, заключенный внутри этой поверхности, называется свободным объемом помещения и обозначается буквой V. Введем следующие обозначения:

а) G B - расход поступающего воздуха из окружающей атмосферы в помещение, который имеет место в рассматриваемый момент времени процесса развития пожара, кг∙с -1 ;

б) G Г - расход газов, покидающих помещение через проемы в рассматриваемый момент времени, кг∙с -1 ;

в) ψ - скорость выгорания (скорость газификации) горючего материала в рассматриваемый момент времени, кг∙с -1 ;

г) ρ m V - масса газовой среды, заполняющей помещение в рассматриваемый момент времени, кг.

За малый промежуток времени, равный dx , будет иметь место малое изменение массы газовой среды. В то же время можно считать, что значения G Г , G B и ψ в течение этого малого промежутка времени остаются практически неизменными. С учетом вышесказанного уравнение материального баланса для газовой среды в помещении записывается следующим образом:



где левая часть уравнения есть изменение массы газовой среды за единицу времени в интервале, равном . Правая часть есть алгебраическая сумма потоков массы.

Уравнение (2.24) называется уравнением материального баланса пожара.

Аналогичные рассуждения позволяют получить дифференциальные уравнения баланса массы кислорода, баланса продуктов горения и баланса оптического количества дыма. Уравнение баланса массы кислорода:

Уравнение баланса токсичного продукта горения:

Уравнение баланса оптического количества дыма:

В этих уравнениях использованы следующие обозначения: ρ 1 , - среднеобъемная парциальная плотность кислорода, кг·м -3 ; ρ 2 - среднеобъемная парциальная плотность токсичного продукта горения, кг·м -3 ; μ м - объемная оптическая концентрация дыма, Нп·м -1 .

В правой части уравнения (2.25) - уравнения баланса массы кислорода - использованы, кроме ранее указанных, следующие обозначения: х 1в - массовая доля кислорода в поступающем воздухе; средняя массовая доля кислорода в помещении; L 1 - стехиометрический коэффициент для кислорода (количество кислорода, необходимое для сгорания единицы массы горючего материала), кг∙кг -1 ; η - коэффициент полноты сгорания; n 3 , - коэффициент, учитывающий отличие концентрации кислорода в уходящих газах от среднеобъемной концентрации кислорода.

В правой части уравнения (2.26) - уравнения баланса токсичного продукта горения - использованы, кроме ранее указанных, следующие обозначения: L 2 - стехиометрический коэффициент для продукта горения (количество продукта горения, образующегося при сгорании единицы массы горючего материала), кг∙кг -1 ; средняя массовая доля токсичного газа в помещении; п 2 - коэффициент, учитывающий отличие концентрации токсичного газа в уходящих газах от среднеобъемной концентрации этого газа.

В правой части уравнения (1.36) - уравнения баланса оптического количества дыма - использованы, кроме ранее указанных, следующие обозначения: n 3 - коэффициент, учитывающий отличие оптической концентрации дыма в уходящих газах от среднеобъемного значения оптической концентрации дыма; F w - площадь поверхности ограждений (потолка, пола, стен), м 2 ; к с - коэффициент седиментации частиц дыма на поверхностях ограждающих конструкций, Нп·с -1 . Коэффициент седиментации по физическому смыслу есть скорость осаждения частиц дыма.

На основе первого закона термодинамики выводится уравнение энергии пожара. Рассматриваемая термодинамическая система, т.е. газовая среда внутри контрольной поверхности, характеризуется тем, что она не совершает работы расширения. Кинетическая энергия видимого движения газовой среды в помещении пренебрежимо мала по сравнению с ее внутренней энергией. Потоки массы через некоторые участки контрольной поверхности (проемы) характеризуются тем, что в них удельная кинетическая энергия газа пренебрежимо мала по сравнению с удельной энтальпией.

С учетом всего сказанного получается следующее уравнение энергии пожара:

Левая часть этого уравнения есть скорость изменения внутренней тепловой энергии газовой среды в помещении за единицу времени в рассматриваемый малый промежуток времени dτ, т.е.

В правой части уравнения (2.28) первый член представляет собой количество тепла, поступающего за единицу времени в газовую среду в результате горения (скорость тепловыделения). Второй член есть поток энергии в помещение, поступающий вместе с продуктами газификации (пиролиз, испарение) горючего материала. Здесь величина i r - энтальпия этих продуктов. Третий член представляет собой сумму внутренней тепловой энергии поступающего за единицу времени воздуха и работы проталкивания, которую совершает внешняя атмосфера. Четвертый член есть сумма внутренней тепловой энергии, которую уносят за единицу времени уходящие газы, и работы выталкивания, которую совершает рассматриваемая термодинамическая система. Пятый член представляет собой тепловой поток, поглощаемый ограничивающими конструкциями и излучаемый через проемы.

Представленные выше пять дифференциальных уравнений содержат шесть неизвестных функций – p m (τ), p m (τ), Т m (τ), р 1 (τ), р 2 (τ) и m m (τ) . Эту систему уравнений дополняет алгебраическое уравнение - усредненное уравнение состояния (2.19).

Начальные значения для этих функций задаются условиями, которые имеют место в помещении перед началом пожара, т.е.

Представленная здесь система уравнений описывает свободное развитие пожара. Развитие пожара называют свободным, если не осуществляется тушение, т.е. если помещение не подаются огнетушащие вещества. Эффекты, обусловленные подачей огнетушащих веществ в объем помещения, можно учесть путем введения в дифференциальные уравнения дополнительных членов. Например, при тушении инертными газами (аргон, азот, диоксид углерода) уравнение материального баланса пожара записывается следующим образом:

где G o в - массовый расход подачи огнетушащего вещества, кг∙с -1 . Соответствующим образом изменяются в этом случае и остальные дифференциальные уравнения пожара.

Как уже говорилось, в уравнениях пожара искомыми (неизвестными) функциями являются среднеобъемные параметры газовой среды, а независимой переменной является время. Кроме этих переменных величин, уравнения содержат целый ряд других физических величин, которые можно разделить на две группы. К первой группе относятся величины, заданные условиями однозначности, которые представляют собой сведения о размерах помещения (объем V и поверхность ограждений F w) и свойствах горючего материала (теплота сгорания Q р н, стехиометрические коэффициенты L 1 , L 2 , дымообразующая способность D, энтальпия продуктов горения i n . Ко второй группе относятся те величины, которые зависят, помимо всего прочего, от параметров состояния среды в помещении. К этим величинам относятся массовые расходы поступающего через проемы воздуха G B и уходящих через проемы газов G Г , тепловой поток, поглощаемый ограждающими конструкциями и излучаемый через проемы Q w , коэффициент полноты сгорания η, скорость тепловыделения ηQ p н ψ. Для вычисления значений физических величин, относящихся ко второй группе, необходимо располагать дополнительными уравнениями.

Конкретный вид дополнительных уравнений установлен путем привлечения сведений из теории конвективного и лучистого теплообмена, теории газообмена помещения с окружающей атмосферой через проемы из-за различия плотностей наружного воздуха и газовой среды внутри помещения, теории горения.

В заключение необходимо сделать некоторые замечания по поводу общих положений, касающихся сущности описания пожара на уровне осредненных параметров состояния.

В интегральной математической модели мы оперируем с интегральными характеристиками термодинамической системы. Этот подход не требует каких-либо допущений и оговорок о том, как распределены локальные значения термодинамических параметров состояния по объему помещения. Здесь не уместны оговорки такого, например, типа: "предположим, что температурное поле является однородным", или часто используемое выражение о "размазанности" того или иного параметра состояния газовой среды.

Естественным является вопрос о том, как определить значение того или иного термодинамического параметра состояния в заданной точке объема помещения, если будет известно среднеобъемное значение. К этому вопросу мы вернемся в параграфах, посвященных интегральной математической модели пожара.

Здесь лишь отметим, что процесс развития пожара в помещении можно расчленить на ряд характерных временных этапов. Каждому этапу присущи характерные законы распределения локальных термодинамических параметров состояния внутри помещения. Это обстоятельство используется для ответа на поставленный здесь вопрос.

Зонные математические модели в чаще всего используются для исследования динамики опасных факторов пожара в начальной стадии пожара. В начальной стадии распределение параметров состояния газовой среды по объему помещения характеризуется большой неоднородностью (неравномерностью). В этот период (отрезок) времени пространство внутри помещения можно условно поделить на ряд характерных зон с существенно различающимися температурами и составами газовых сред. Границы этих зон по мере развития пожара не остаются неизменными и неподвижными. В течение времени геометрическая конфигурация зон меняется и сглаживается контрастное различие параметров состояния газа в этих зонах. В принципе, пространство внутри помещения можно разбить на любое число зон. В этой главе рассмотрим простейшую зонную модель пожара, которая применима при условиях, когда размеры очага горения значительно меньше размеров помещения.

Процесс развития пожара можно представить следующим образом. После воспламенения горючих веществ образующиеся газообразные продукты устремляются вверх, образуя над очагом горения конвективную струю. Достигнув потолка помещения, эта струя растекается, образуя припотолочный слой задымленного газа. В течение времени толщина этого слоя увеличивается.

В соответствии с вышесказанным в объеме помещения можно выделить три характерные зоны: конвективную колонку над очагом пожара, припотолочный слой нагретого газа и воздушную зону с практически неизменными параметрами состояния, равными своим начальным значениям. Математическая модель пожара, базирующаяся на разбиении пространства на характерные области, получила название трехзонной модели. Схема этой модели показана на рис. 1.2.

Рис. 1.2. Схема зонной модели пожара в помещении

Достигнув потолка помещения, продукты горения растекаются под ним в виде радиальной струи, температура и скорость в которой по мере удаления от оси уменьшаются за счет тепло массообмена с окружающей средой и строительными конструкциями. После достижения радиальной струей стен помещения начинается образование нагретого припотолочного слоя дыма, толщина которого увеличивается вследствие поступления в слой смеси продуктов горения и воздуха ив конвективной колонки.

Таким образом, процесс задымления помещения при пожаре можно разбить на два этапа. На первом этапе происходит растекание нагретого дыма под потолком помещения в виде радиальной струи, на втором этапе рост толщины нагретого слоя дыма, включающего радиальную струю и верхнюю часть конвективной колонки. Соответственно в объеме помещения можно выделить следующие характерные зоны: факел пламени с конвективной колонкой над ним, припотолочный слой нагретого дыма и воздушную зону с практически неизменной температурой. Эти зоны особенно отчетливо наблюдаются при локальных пожарах, когда размеры очага горения значительно меньше размеров помещения.



Зонные математические модели учитывают существование в помещении перечисленных зон. Эти модели точнее отражают реальную физическую картину локального пожара по сравнению с интегральными моделями и, следовательно, дают более полные и достоверные результаты расчета. Это достигается, прежде всего, тем, что в зонных моделях усреднение термодинамических параметров среды производится не по объему всего помещения, а по объему более однородных зон. Если же размеры очага горения сравнимы с размерами помещения, потоки газов могут практически полностью перемешивать среду в помещении (объемный пожар). В таком случае физическая картина процесса ближе к интегральной модели, и соответственно интегральная модель дает более корректные результаты. Поэтому интегральные модели обычно используются для решения задач, связанных с развитой стадией пожара (например, обеспечения огнестойкости строительных конструкций), а зонные модели нашли свое основное применение при решении задачи обеспечения безопасности людей и других задач, связанных с начальной стадией пожара.

При разработке зонных математических моделей развития пожара в помещении параметры очага горения и конвективной колонки, как правило, задаются в виде полуэмпирических зависимостей, полученных в результате предварительного теоретического анализа и обработки экспериментальных данных. С помощью зонных моделей рассчитываются усредненные параметры припотолочного слоя дыма и высота свободной границы (границы раздела между этим слоем и слоем чистого воздуха) в зависимости от времени. Расчет производится путем интегрирования балансовых уравнений припотолочного слоя дыма с учетом начальных условий.

Ниже сформулированы основные уравнения зонной математической модели пожара в помещении.

Уравнение баланса массы . При отсутствии проемов в верхней части помещения и без учета механической вентиляции уравнение баланса массы припотолочного слоя дыма записывается в виде

M - масса слоя дыма, кг;

τ - время с момента возникновения пожара, с;

G - массовый расход газов, поступающих в слой из конвективной колонки или непосредственно из очага горения, кг/с.

Если свободная граница находится ниже основания очага, будет справедливым очевидное равенство G = Ψ (где Ψ - массовая скорость газификации горючей нагрузки, кг/с). При τ = 0 уравнению баланса массы отвечает начальное условие M (0) = 0.

Уравнение баланса энергии . Численные оценки показывают, что лучистый теплообмен слоя дыма с факелом пламени и ограждающими конструкциями в нижней зоне помещения мал по сравнению с тепловыми потоками, поступающими из конвективной колонки и отводимыми в ограждающие конструкции в верхней зоне помещения. Поэтому исходное уравнение сохранения энергии припотолочного слоя дыма при отсутствии вентиляции можно записать в следующем виде:

U - внутренняя энергия слоя дыма, Дж;

Q - тепловой поток, подводимый из конвективной колонки или непосредственно из очага горения, кг/с;

Q - тепловой поток, отводимый в ограждающие конструкции, Вт;

P - статическое давление газов в задымленном слое, Па;

V - объем задымленного слоя, м 3 .

Если свободная граница находится ниже основания очага, то

Q = ( Q - I )ψ,

- массовая полнота сгорания;

Q - низшая теплота сгорания ГН, Дж/кг;

I - энтальпия продуктов газификации ГН, Дж/кг.

Если же свободная граница находится выше основания очага, то

Q = C T G ,

где C и T изобарная теплоемкость и температура газов в конвективной колонке на высоте свободной границы, Дж/(кг·К) и К соответственно.

Используя соотношения термодинамики, уравнение возможно преобразовать к конечному виду

(С Р /R ) (dV / d )= Q - Q ,

где C и T - изобарная теплоемкость и приведенная газовая постоянная задымленного слоя, Дж/(кг·К). При τ = 0 этому уравнению отвечает начальное условие V (0) = 0. Как показывают численные оценки, значения С Р и R в данном уравнении допустимо принять постоянными и равными значениям этих параметров для нормальной атмосферы.

Дополнительные соотношения . Уравнения позволяют рассчитать изменение во времени массы M и объема V задымленного слоя, если определить соотношения для входящих в эти уравнения неизвестных переменных G , T , Ψ и (так как значения , Q , и C могут считаться постоянными, а величиной I можно пренебречь). Кроме того, необходимо задать соотношения для расчета основных параметров - высоты свободной границы Y и температуры слоя дыма T .

Из теории стационарной свободной конвективной струи имеем

G =Ψ + 0,21(Y - Y ) ((1 – χ ) g Q / (C T )) ,

T = ((1 – χ ) g Q / (C G )) + T ,

Для интегрирования системы уравнений пожара с заданными начальными условиями можно использовать стандартную программу (метод Рунге - Кутта) с автоматическим выбором шага интегрирования. Шаг интегрирования выбирается в соответствии с погрешностью интегрирования. Как правило, следует задавать очень невысокую погрешность.

Перед тем как приступить к численному решению системы уравнений, описывающих пожар при указанных выше условиях, целесообразно привести уравнения пожара к безразмерному виду.

2. Расчет динамики опасных факторов пожара в помещении


САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ГПС МЧС РОССИИ ______________________________ _________________________

Кафедра Правового и Кадрового обеспечения

КОНТРОЛЬНАЯ РАБОТА

по курсу: «Физико-химические основы развития и тушения пожаров»

Тема: Исходные понятия и общие сведения об опасных факторах пожара и методах их прогнозирования.

                Выполнил: студент института заочного и дистанционного обучения Гр. № 508
                зачетная книжка № в-0876
                специальность 280104.65
Габдуллин Динар Дамирович

Санкт-Петербург
2011г.

Содержание
Введение………………………………………………………… ……………… 3стр.
Опасные факторы пожара ………………………………………… ………... 4стр.
Пламя как опасный фактор пожара…………………………………………… 4стр.
Искры как опасный фактор пожара…………………………………………… 4стр.
Повышенная температура как опасный фактор пожара……………………. 5стр.
Дым как опасный фактор пожара……………………………………………... 5стр.
Пониженная концентрация кислорода как опасный фактор пожара……….. 5стр.
Концентрация токсичных веществ как опасный фактор пожара…………... 5стр.
Разрушение конструкций как опасный фактор пожара…………………….. 6стр.
Отравление угарным газом как опасный фактор пожара…………………… 6стр.
Методы прогнозирования пожара ………………………………………….. 7стр.
Классификация интегральных математических моделей пожара…………... 7стр.
Интегральная модель пожара………………………………………………….. 9стр.
Зонная модель пожара…………………………………………………………. 9стр.
Полевой (дифференциальный) метод расчета……………………………….. 11стр
Критерии выбора моделей пожара для расчетов…………………………….. 12стр
Заключение…………………………………………………… ………………… 13стр
Список использованной литературы………………………………………….. 14стр

Введение

Изучение дисциплины «Прогнозирование опасных факторов пожара» направлена на теоретическую и практическую подготовку дипломированного специалиста, пожарной охраны, с целью проведения грамотного научно обоснованного прогнозирования динамики опасных факторов пожара (ОФП) в помещениях (зданиях, сооружениях), а также для проведения исследований реально произошедших пожаров при их экспертизе.
Цель данной работы – получение слушателями знаний и навыков по прогнозированию критических ситуаций, которые могут возникнуть в ходе пожара и использование этой информации для профилактики пожаров, обеспечения безопасности людей и личной безопасности при тушении пожаров, анализе причин и условий возникновения и развития пожаров.
По окончании изучения работы обучающиеся получат общие сведения об опасных факторах пожара, методах их прогнозирования, узнают физические закономерности распространения пламени и развитие пожара на объектах различного назначения.

Опасные факторы пожара

Пожар - неконтролируемое горение, причиняющее материальный ущерб, вред жизни и здоровью граждан, интересам общества и государства.

Опасные факторы пожара (ОФП), воздействие которых приводит к травме, отравлению или гибели человека, а также к материальному ущербу.

Опасными факторами пожара (ОФП), воздействующими на людей, являются: открытый огонь и искры; повышенная температура окружающей среды, предметов и т. п.; токсичные продукты горения, дым; пониженная концентрация кислорода; падающие части строительных конструкций, агрегатов, установок и т.п.

К основные опасным факторам пожара относятся : повышенная температура, задымление, изменение состава газовой среды, пламя, искры, токсичные продукты горения и термического разложения, пониженная концентрация кислорода. Величины параметров ОФП принято рассматривать прежде всего с точки зрения их вреда для здоровья и опасности для жизни человека при пожаре.

К вторичным проявлениям ОФП относятся: осколки, части разрушившихся аппаратов, агрегатов, установок, конструкций;
радиоактивные и токсичные вещества и материалы, выпавшие из разрушенных аппаратов, оборудования;
электрический ток, возникший в результате выноса напряжения на токопроводящие части конструкций и агрегатов;

Пламя как опасный фактор пожара

Пламя чаще всего поражает открытые участки тела. Очень опасны ожоги, получаемые от горящей одежды, которую трудно потушить и сбросить. Особенно легко воспламенятся одежда из синтетических тканей. Температурный порог жизнеспособности тканей человека составляет 45 °C.

Искры как опасный фактор пожара

Самое частое и, вместе с тем банальное - это когда «из искры возгорится пламя»: здесь враг виден, если можно так выразиться - в лицо. Маленькая искра, перерастающая в открытое пламя - и, как следствие, большие неприятности: лесные и степные пожары, пожары в сельскохозяйственных и промышленных постройках, административных зданиях, жилых помещениях, движимом имуществе. Как правило, огромные материальные убытки. Однако что касается людей, то открытый огонь на них редко воздействует, людей поражают преимущественно испускаемые пламенем лучистые потоки, поражающие открытые участки тела. Весьма опасны ожоги от горящей одежды, особенно из синтетических тканей, которая трудно тушится и так же трудно сбрасывается.

Повышенная температура как опасный фактор пожара

Следующий фактор пожара - повышенная температура окружающей среды - может как усугубить действие предыдущего, так и выступить самостоятельным источником материальных убытков и физических страданий людей, вызванных пожаром от самовозгорающихся предметов и материалов. Наибольшая опасность для людей исходит от нагретого воздуха, который при вдыхании, обжигает верхние дыхательные пути и приводит к удушью и смерти. К летальному исходу приводит и вызванный этим фактором пожара перегрев, из-за чего из организма интенсивно выводятся соли, нарушается деятельность сосудов и сердца. Достаточно побыть несколько минут в среде с температурой в 100 °С - как сразу же теряется сознание и наступает смерть. Вместе с тем, губительное влияние на человека оказывает и продолжительное облучение инфракрасными лучами с интенсивностью около 540 Вт/м. Также при повышенной температуре окружающей среды часты ожоги кожи.

Дым как опасный фактор пожара

Особо опасным фактором пожара является дым, которого, как известно, без огня не бывает. При этом основной вред в этом случае может исходить не так от огня, как от дыма, который буквально «косит» попавших в сферу его распространения. Вещества, которые входят в состав дыма, в зависимости от того, продуктами горения каких материалов они являются, могут быть настолько ядовитыми, что смерть тех, кто лишь сделал один глоток отравленной смеси, наступает практически мгновенно. А ещё вследствие задымления теряется видимость, что затрудняет процесс эвакуации людей, делает её неуправляемой, потому что движения в дыму становятся хаотичными, эвакуируемые перестают чётко видеть указатели выходов и сами эвакуационные выходы, тогда как успешная эвакуация при пожаре возможна лишь при беспрепятственном передвижении людей.

Пониженная концентрация кислорода как опасный фактор пожара

Пониженная концентрация кислорода всего лишь на 3 процента нарушает мозговую деятельность человека и оказывает ухудшающее воздействие на двигательные функции его организма и, во многих случаях, становится причиной смерти людей. Потому пониженную концентрацию кислорода в условиях пожара также относят к его особо опасным факторам.

Концентрация токсичных веществ как опасный фактор пожара

Также особо опасным фактором пожара является повышенная концентрация токсичных продуктов термического разложения и горения. Губительное воздействие пылающих, горячих, тлеющих, просто сверх допустимой меры нагретых полимерных и синтетических материалов всё в больших масштабах и разнообразиях отмечается в последнее время, когда на рынок строительных и отделочных изделий вышли сотни до этого не известных и никогда прежде не применявшихся материалов с не до конца изученными свойствами или не ко всякому использованию пригодные. Из токсичных продуктов горения наиболее опасными признан оксид углерода, который, вступая со скоростью в двести-триста раз большей, нежели кислород, в реакцию с гемоглобином крови, приводит организм к кислородному голоданию. Вследствие чего человек от нахлынувшего головокружения цепенеет, его охватывает равнодушие, депрессия, он становится безучастным к опасности, движения его раскоординируются, и в результате - остановка дыхания и смертельный исход.

Разрушение конструкций как опасный фактор пожара

Разрушение конструкций это еще один из опасных факторов пожара приводящих к травмам увечьям и гибели людей находящихся в зоне разрушения.
В первые 10-20 минут пожар распространяется вдоль горючего материала и в это время помещение заполняется дымом. Температура воздуха поднимается в помещении до 250-300 градусов. Через 20 минут начинается объёмное распространение пожара.
Спустя ещё 10 минут наступает разрушение остекления. Увеличивается приток свежего воздуха, резко прогрессирует развитие пожара и температура достигает 900 градусов.
После того, как выгорают основные вещества, конструкция здания теряет свою несущую способность и в это время происходит обрушение выгоревших конструкций.

Отравление угарным газом как опасный фактор пожара

Отравление угарным газом это одна из основных причин отравления или гибели людей на пожаре. При отравлении угарным газом возникает острое патологическое состояние, развивающееся в результате попадания угарного газа в организм человека, является опасным для жизни и здоровья, и без адекватной медицинской помощи может привести к летальному исходу.
Угарный газ попадает в атмосферный воздух при любых видах горения. Угарный газ активно связывается с гемоглобином, образуя карбоксигемоглобин, и блокирует передачу кислорода тканевым клеткам, что приводит к гипоксии гемического типа. Угарный газ также включается в окислительные реакции, нарушая биохимическое равновесие в тканях.

Методы прогнозирования пожара

Классификация интегральных математических моделей пожара

Современные научные методы прогнозирования Опасных Факторов Пожара основываются на математическом моделировании, т.е. на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменение параметров состояния среды в помещении в течение времени, а также изменение параметров состояния ограждающих конструкций этого помещения и различных элементов технологического оборудования.
Методы прогнозирования ОФП различают в зависимости от вида математической модели пожара. Математические модели пожара в помещении условно делятся на три класса (три вида): интегральные, зонные, полевые (дифференциальные).
1. Интегральная модель пожара позволяет получить информацию, т.е. сделать прогноз, о средних значениях параметров состояния среды в помещении для любого момента развития пожара. При этом для того, чтобы сопоставлять (соотносить) средние (т. е. среднеобъемные) параметры среды с их предельными значениями в рабочей зоне, используются формулы, полученные на основе экспериментальных исследований пространственного распределения температур, концентраций продуктов горения, оптической плотности дыма и т. д.
2. Зонная модель позволяет получить информацию о размерах характерных пространственных зон, возникающих при пожаре в помещении, и средних параметров состояния среды в этих зонах. В качестве характерных пространственных зон можно выделить, например, припотолочную область пространства, в начальной стадии пожара, область восходящего над очагом горения потока нагретых газов и область незадымленной холодной части пространства.
3. Полевая дифференциальная модель позволяет рассчитать для любого момента развития пожара значения всех локальных параметров состояния во всех точках пространства внутри помещения.
Перечисленные модели отличаются друг от друга объемом той информации, которую они могут дать о состоянии газовой среды в помещении и взаимодействующих с нею конструкций на разных этапах (стадиях) пожара. В этом отношении наиболее детальные сведения можно получить с помощью полевой модели.
В математическом отношении три вышеназванных вида моделей пожара характеризуются разным уровнем сложности.
Интегральная модель пожара в своей основе представлена системой обыкновенных дифференциальных уравнений. Искомыми функциями выступают среднеобъемные параметры состояния среды, независимым аргументом является время.
Основу зонной модели пожара в общем случае составляет совокупность нескольких систем обыкновенных дифференциальных уравнений. Параметры состояния среды в каждой зоне являются искомыми функциями, а независимым аргументом является время. Искомыми функциями являются также координаты, определяющие положение границ характерных зон.
Наиболее сложной в математическом отношении является полевая модель. Ее основу составляет система уравнений в частных производных, описывающих пространственно-временное распределение температур и скоростей газовой среды в помещении, концентраций компонентов этой среды (кислород, оксид и диоксид углерода и т.д.), давлений и плотностей. Эти уравнения включают реологический закон Стокса, закон теплопроводности Фурье, закон диффузии, закон радиационного переноса и т.п. В более общем случае к этой системе уравнений добавляется дифференциальное уравнение теплопроводности, описывающее процесс нагревания ограждающих конструкций. Искомыми функциями в этой модели являются плотность и температура среды, скорость движения газа, концентрации компонентов газовой среды, оптическая плотность дыма (натуральный показатель ослабления света в дисперсной среде) и т.д. Независимыми аргументами являются координаты х, у, z и время т.

Для прогнозирования опасных факторов пожара в настоящее время используются интегральные (прогноз средних значений параметров состояния среды в помещении для любого момента развития пожара), зонные (прогноз размеров характерных пространственных зон, возникающих при пожаре в помещении и средних значений параметров состояния среды в этих зонах для любого момента развития пожара. Примеры зон – припотолочная область, восходящий на очагом горения поток нагретых газов и область незадымленной холодной зоны) и полевые (дифференциальные) модели пожара (прогноз пространственно-временного распределения температур и скоростей газовой среды в помещении, концентраций компонентов среды, давлений и плотностей в любой точке помещения).

Для проведения расчетов, необходимо проанализировать следующие данные:
- объемно-планировочных решений объекта;
- теплофизических характеристик ограждающих конструкций и размещенного на объекте оборудования;
- вида, количества и расположения горючих материалов;
- количества и вероятного расположения людей в здании;
- материальной и социальной значимости объекта;
- систем обнаружения и тушения пожара, противодымной защиты и огнезащиты, системы обеспечения безопасности людей.
При этом учитывается:
- вероятность возникновения пожара;
- возможная динамика развития пожара;
- наличие и характеристики систем противопожарной защиты (СППЗ);
- вероятность и возможные последствия воздействия пожара на людей, конструкцию здания и материальные ценности;
- соответствие объекта и его СППЗ требованиям противопожарных норм.

Далее необходимо обосновать сценарий развития пожара. Формулировка сценария развития пожара включает в себя следующие этапы:
- выбор места расположения первоначального очага пожара и закономерностей его развития;
- задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, задание состояния проемов);
- задание параметров окружающей среды и начальных значений параметров внутри помещений.

Интегральная модель пожара

Интегральная математическая модель пожара описывает в самом общем виде процесс изменения во времени состояния газовой среды в помещении.
С позиций термодинамики газовая среда, заполняющая помещение с проемами (окна, двери и т.п.), как объект исследования есть открытая термодинамическая система. Ограждающие конструкции (пол, потолок, стены) и наружный воздух (атмосфера) является внешней средой по отношению в этой термодинамической системе. Эта система взаимодействует с внешней средой путем тепло- и массообмена. В процессе развития пожара через одни проемы выталкивается из помещения нагретые газы, а через другие поступает холодных воздух. Количество вещества, т.е. масса газа в рассматриваемой термодинамической системе, в течении времени изменяется. Поступление холодного воздуха обусловлено работой проталкивания, которую совершает внешняя среда. Термогазодинамическая система в свою очередь совершает работу, выталкивая нагретые газы во внешнюю атмосферу. Эта термодинамическая система взаимодействует также с ограждающими конструкциями путем теплообмена. Кроме того, в эту систему с поверхности горящего материала (т.е. из пламенной зоны) поступает вещество в виде газообразных продуктов горения.
Состояние рассматриваемой термодинамической системы изменяется в результате взаимодействия с окружающей средой. В интегральном методе описания состояния термодинамической системы, коей является газовая среда в помещении, используются «интегральные» параметры состояния – такие, как масса всей газовой среды и ее внутренняя тепловая энергия. Отношение этих двух интегральных параметров позволяет оценивать в среднем степень нагретости газовой среды. В процесс развития пожара, значения указанных интегральных параметров состояния изменяются.

Зонная модель пожара

Зонный метод расчета динамики ОФП основан на фундаментальных законах природы – законах сохранения массы, импульса и энергии. Газовая среда помещений является открытой термодинамической системой, обменивающейся массой и энергией с окружающей средой через открытые проемы в ограждающих конструкциях помещения. Газовая среда является многофазной, т.к. состоит из смеси газов (кислород, азот, продукты горения и газификация горючего материала, газообразное огнетушащие вещество) и мелкодисперсных частиц (твердых или жидких) дыма и огнетушащих веществ.
В зонной математической модели газовый объем помещения разбивается на характерных зоны, в которых для описания тепломассобмена используются соответствующие уравнения законов сохранения. Размеры и количество зон выбирается таким образом, что бы в пределах каждой из них неоднородность температурных и других полей параметров газовой среды были возможно минимальными, или из каких-то других предположений, определяемых задачами исследования и расположением горючего материала.
Наиболее распространенной является трехзонная модель, в которой объем помещения разбит на следующие зоны: конвективная колонка, припотолочный слой и зона холодного воздуха, рис. 1.

Рисунок 1

В результате расчета по зонной модели находятся зависимости от времени следующих параметров тепломассообмена:
- среднеобъемных значений температуры, давления, массовых концентраций кислорода, азота, огнетушащего газа и продуктов горения, а также оптической плотности дыма и дальности видимости в нагретом задымленном припотолочном слое в помещении;
- нижнюю границу нагретого задымленного припотолочного слоя;
- распределение по высоте колонки массового расхода, осредненных по поперечному сечению колонки величин температуры и эффективной степени черноты газовой смеси;
- массовых расходов истечения газов наружу и притока наружного воздуха внутрь через открытые проемы;
- тепловых потоков, отводящих в потолок, стены и пол, а также излучаемых через проемы;
- температуры (температурных полей) ограждающих конструкций.

Полевой (дифференциальный) метод расчета

Полевой метод является наиболее универсальным из существующих детерминистических методов, поскольку он основан на решении уравнений в частных производных, выражающих фундаментальные законы сохранения в каждой точке расчетной области. С его помощью можно рассчитать температуру, скорость, скорость, концентрации компонентов смеси и т.п.в каждой точки расчетной области, см. рис. 2. В связи с этим полевой метод может использоваться:
для проведения научных исследований в целях выявления закономерностей развития пожара;
для проведения сравнительных расчетов в целях апробации и совершенствования менее универсальных и зональных и интегральных моделей, проверки обоснованности и их применения;
Выбора рационального варианта противопожарной защиты конкретных объектов:
моделирования распространения пожара в помещениях высотой более 6м.

Рисунок 2

В своей основе полевой метод не содержит никаких априорных допущений о структуре течения, и связи с этим принципиально применим для рассмотрения любого сценарий развития пожара.
Вместе с тем, следует отметить, что его использование требует значительных вычислительных ресурсов. Это накладывает ряд ограничений на размеры рассматриваемой системы и снижает возможность проведения многовариантных расчетов. Поэтому, интегральный и зональный методы моделирования также являются важным инструментами в оценке пожарной опасности объектов в тех случаях, когда они обладают достаточной информативностью и сделанные при их формулировке допущения не противоречат картине развития пожара.
Однако, на основе проведенных исследований, можно утверждать, что поскольку априорные допущения зонных моделей могут приводить к существенным ошибкам при оценке пожарной опасности объекта, предпочтительно использовать полевой метод моделирования в следующих случаях:
для помещений сложной геометрической конфигурации, а также для помещений с большим количеством внутренних преград;
помещений, в которых один из геометрических размеров гораздо больше остальных;
помещений, где существует вероятность образования рециркуляционных течений без формирования верхнего прогретого слоя (что является основным допущением классических зонных моделей);
в иных случаях, когда зонные и интегральные модели являются недостаточно информативными для решения поставленных задач, либо есть основании считать, что развитие пожара может существенно отличаться от априорных допущений зональных и интегральных моделей пожара.

Критерии выбора моделей пожара для расчетов

В соответствии с проектом документа «Методика оценки рисков для общественных зданий» для описания термогазодинамических параметров пожара применяются три основных группы детерминистических моделей: интегральные, зонные (зональные) и полевые.
Выбор конкретной модели расчета времени блокирования путей эвакуации следует осуществлять исходя из следующих предпосылок:
интегральный метод:

    для зданий и сооружений, содержащих развитую систему помещений малого объема простой геометрической конфигурации
    проведении имитационного моделирования для случаев, когда учет стохастического характера пожара является более важным, чем точное и детальное прогнозирование его характеристик;
    для помещений, где характерный размер очага пожара соизмерим с характерным размером помещения;
зональный метод:
    для помещений и систем помещений простой геометрической конфигурации, линейные размеры которых соизмеримы между собой;
    для помещений большого объема, когда размер очага пожара существенно меньше размеров помещения;
    для рабочих зон, расположенных на разных уровнях в пределах одного помещения (наклонный зрительный зал кинотеатра, антресоли и т.д);
полевой метод:
- для помещений сложной геометрической конфигурации, а также помещений с большим количеством внутренних преград (атриумы с системой галерей и примыкающих коридоров, многофункциональные центры со сложной системой вертикальных и горизонтальных связей и т.д.);
- для помещений, в которых один из геометрических размеров гораздо больше (меньше) остальных (тоннели, закрытые автостоянки большой площади и.т.д.);
и т.д.................

Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме