Подпишись и читай
самые интересные
статьи первым!

Что такое электричество.


Warning : strtotime(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in on line 56

Warning : date(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in /var/www/vhosts/сайт/htdocs/libraries/joomla/utilities/date.php on line 198

Каждый из нас ещё из школьного курса помнит, что электрический ток – направленное движение электрических частиц под воздействием электрического поля. Такими частицами могут быть электроны, ионы и т. д. Тем не менее, несмотря на простую формулировку, многие признаются, что не до конца знают, что же такое электричество, из чего оно состоит, как и, вообще, почему работает вся электротехника.

Для начала стоит обратиться к истории этого вопроса. Впервые термин «электричество» появился ещё в 1600 году в сочинениях английского естествоиспытателя Уильяма Гилберта. Он изучал магнитные свойства тел, в своих сочинениях затрагивая магнитные полюса нашей планеты, описывал несколько опытов с наэлектризованными телами, которые сам провёл.

Об этом можно прочитать в его труде «О магните, магнитных телах и о большом магните - Земле». Главным выводом его работы был такой, что многие тела и вещества могут наэлектризоваться, из-за чего у них появляются магнитные свойства. Его исследования применялись при создании компасов и во многих других областях.

Но Ульям Гилберт отнюдь не является первым, кто обнаружил подобные свойства тел, он просто первый, кто стал изучать их. Ещё в 7 веке до нашей эры греческий философ Фалес заметил, что янтарь, потёртый о шерсть, приобретает удивительные свойства – он начинает притягивать к себе предметы. Знания об электричестве ещё на протяжении нескольких веков так и оставались на этом уровне.

Такое положение оставалось вплоть до 17-18 веков. Это время можно назвать рассветом науки об электричестве. Ульям Гилберт был первым, после него этим вопросом занимались множество других учёных со всего мира: Франклин, Кулон, Гальвани, Вольт, Фарадей, Ампер, а также, русский учёный Василий Петров, открывший в 1802 году вольтову дугу.

Все эти учёные сделали выдающиеся открытия в области электричества, которые положили основу для последующего изучения этого вопроса. С тех пор электричество перестало быть чем-то загадочным, но, несмотря на большие достижения в этом вопросе, загадок и неясностей оставалось ещё очень много.

Самым главным вопросов, как и всегда, был: как же использовать все эти достижения на благо человечества? Потому что, несмотря на значительные успехи в области изучения природы электричества, до внедрения его в жизнь было ещё далеко. Оно всё ещё казалось чем-то загадочным и недостижимым.

Это можно сравнить с тем, как сейчас учёные всего мира изучают космос и ближайшую планету Марс. Уже получено множество сведений, установлено, что до него можно долететь и даже высадиться на поверхность и прочее, но до реального достижения подобных целей пока ещё очень много работы.

Говоря о природе электричества, нельзя не упомянуть о самом главном проявлении его в природе. Ведь именно там человек столкнулся с ним впервые, именно в природе он начал его изучать и старался понять, и делал первые попытки приручить и извлечь пользу для себя.

Конечно, когда мы говорим о природном проявлении электричества, то каждому на ум приходят молнии. Хотя сначала ещё было не понятно, что они собой представляют, а их электрическая природа была установлена только в 18 веке, когда началось активное изучение этого феномена в совокупности с ранее полученными знаниями. Кстати, по одной из версий, именно молнии повлияли на появления жизни на Земле, потому что без них бы не начался бы синтез аминокислот.

Внутри тела человека также есть электричество, без него бы не работала нервная система, а нервный импульс возникает в результате кратковременного напряжения. В океанах и морях живёт множество рыб, которые используют электричество для охоты и защиты. К примеру, электрический угорь может достигать напряжения до 500 Вольт, а у ската мощность разрядов составляет примерно 0,5 киловатт.

Некоторые виды рыб создают вокруг себя легкое электрическое поле, которое искажается от всех предметов в воде, так они могут с лёгкостью ориентироваться даже в очень мутной воде и имеют преимущества перед другими рыбами.

Так что с древних времён электричество часто встречалось в природе, без него невозможно было бы появление человека, а многие животные используют его для нахождения пропитания. Впервые человек столкнулся с этими явлениями именно в природном проявлении, это и подталкивало его на дальнейшие изучения.

Практическое применение электричества

Со временем человек продолжал накапливать знания об этом удивительном феномене. Электричество нехотя раскрывало свои тайны перед ним. Примерно с середины 19 века электричество начало проникать в жизнь человеческой цивилизации. В первую очередь оно стало использоваться для освещения, когда была изобретена лампочка. С его помощью стали передавать информацию на большие расстояния: появилось радио, телевидение, телеграф и т.д.

Но отдельное внимание заслуживает появление различных механизмов и устройств, которые приводились в движение с помощью электричества. И по сей день трудно представить работу какого-либо прибора или машины без электричества. Вся бытовая техника в современном доме работает только на электричестве.

Большим прорывом были и достижения в области добывания электричества, так начали создаваться всё более мощные электростанции, генераторы; для хранения были придуманы аккумуляторные батареи.

Электричество помогло сделать множество других открытий, оно помогает в науке и при исследовании новых вопросов. Некоторые технологии работают на основе электрических свойств, они используются в медицине, промышленности и, конечно, в быту.

Так что же такое электричество?

Как бы странно это не звучало, но повсеместное использование электричества не делает его более понятным. Все знают основные принципы работы, техники безопасности и всё. Одни люди признаются, что вообще не представляют, что такое электричество, другие не знают, почему оно работает именно так, а не иначе, третьи не понимают разницы между напряжением, мощностью и сопротивлением и подобных примеров множество.

Проще всего понять природу электричества на молекулярном уровне. Все вещества состоят из молекул, все молекулы состоят из атомов, а каждый атом же, состоит из ядра, вокруг которого вращаются электроны.

Электроны и являются «переносчиками» электричества, а электрический ток – это непрерывное перемещение большого количества таких электронов.

Электротехника достигла больших успехов за время своего развития, однако, по-прежнему изучение её природы требует больших усилий, ведь многие задачи до сих пор остаются нерешёнными или те решения, которые найдены, не столь эффективны, как могли бы быть. В основе всего лежит превращение сил. Электрическую энергию сегодня можно легко преобразовать в световую, используя для освещения, с её помощью можно двигать различные механизмы и прочее.

Другой особенностью и главным преимуществом электрической перед другими видами энергии является её распространённость, неограниченность в пространстве. Электричество непрерывно сопровождает человека во всех сферах его жизни, считается примером эволюции и взглядов в будущее, а процесс развития техники непрерывно связан с развитием науки и новыми достижениями.

Это расширяет возможности человека, совершенствует его инструменты и гарантирует ему постоянное развитие и движение вперёд в будущее, а многие задачи со временем уже перестают казаться невыполнимыми.


Warning : strftime(): It is not safe to rely on the system"s timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone "UTC" for now, but please set date.timezone to select your timezone. in /var/www/vhosts/сайт/htdocs/libraries/joomla/utilities/date.php on line 250

Физика электричества - это то, с чем приходится сталкиваться каждому из нас. В статье мы рассмотрим основные понятия, связанные с ней.

Что такое электричество? Для человека непосвященного оно ассоциируется со вспышкой молнии или с энергией, питающей телевизор и стиральную машину. Он знает, что электропоезда используют О чем еще он может рассказать? О нашей зависимости от электричества ему напоминают линии электропередач. Кто-то сможет привести и несколько других примеров.

Однако с электричеством связано немало других, не столь очевидных, но повседневных явлений. Со всеми ними нас знакомит физика. Электричество (задачи, определения и формулы) мы начинаем изучать еще в школе. И узнаем много интересного. Оказывается, бьющееся сердце, бегущий спортсмен, спящий ребенок и плавающая рыба - все вырабатывает электрическую энергию.

Электроны и протоны

Определим основные понятия. С точки зрения ученого, физика электричества связана с движением электронов и других заряженных частиц в различных веществах. Поэтому научное понимание природы интересующего нас явления зависит от уровня знаний об атомах и составляющих их субатомных частицах. Ключом к этому пониманию служит крошечный электрон. Атомы любого вещества содержат один или более электронов, движущихся по различным орбитам вокруг ядра подобно тому, как планеты вращаются вокруг Солнца. Обычно в атоме равно количеству протонов в ядре. Однако протоны, будучи значительно тяжелее электронов, можно считать как бы закрепленными в центре атома. Этой предельно упрощенной модели атома вполне достаточно, чтобы объяснить основы такого явления, как физика электричества.

О чем еще необходимо знать? Электроны и протоны имеют одинаковый по величине (но разного знака), поэтому они притягиваются друг к другу. Заряд протона является положительным, а электрона - отрицательным. Атом, имеющий электронов больше или меньше, чем обычно, называется ионом. Если в атоме их недостаточно, то он называется положительным ионом. Если же он содержит их избыток, то его называют отрицательным ионом.

Когда электрон покидает атом, тот приобретает некоторый положительный заряд. Электрон, лишенный своей противоположности - протона, либо движется к другому атому, либо возвращается к прежнему.

Почему электроны покидают атомы?

Это объясняется несколькими причинами. Наиболее общая состоит в том, что под воздействием импульса света или какого-то внешнего электрона движущийся в атоме электрон может быть выбит со своей орбиты. Тепло заставляет атомы колебаться быстрее. Это означает, что электроны могут вылететь из своего атома. При химических реакциях они также перемещаются от атома к атому.

Хороший пример взаимосвязи химической и электрической активности дают нам мышцы. Их волокна сокращаются при воздействии электрического сигнала, поступающего из нервной системы. Электрический ток стимулирует химические реакции. Они-то и приводят к сокращению мышцы. Внешние электрические сигналы нередко используются для искусственного стимулирования мышечной активности.

Проводимость

В некоторых веществах электроны под действием внешнего электрического поля движутся более свободно, чем в других. Говорят, что такие вещества обладают хорошей проводимостью. Их называют проводниками. К ним относится большинство металлов, нагретые газы и некоторые жидкости. Воздух, резина, масло, полиэтилен и стекло плохо проводят электричество. Их называют диэлектриками и используют для изоляции хороших проводников. Идеальных изоляторов (абсолютно не проводящих тока) не существует. При определенных условиях электроны можно удалить из любого атома. Однако обычно эти условия столь трудно выполнить, что с практической точки зрения подобные вещества можно считать непроводящими.

Знакомясь с такой наукой, как "Электричество"), мы узнаем, что существует особая группа веществ. Это полупроводники. Они ведут себя отчасти как диэлектрики, а отчасти - как проводники. К ним, в частности, относятся: германий, кремний, окись меди. Благодаря своим свойствам полупроводник находит множество применений. Например, он может служить электрическим вентилем: подобно клапану велосипедной шины он позволяет зарядам двигаться только в одном направлении. Такие устройства называются выпрямителями. Они используются и в миниатюрных радиоприемниках, и на больших электростанциях для преобразования переменного тока в постоянный.

Тепло представляет собой хаотичную форму движения молекул или атомов, а температура - мера интенсивности этого движения (у большинства металлов с понижением температуры движение электронов становится более свободным). Это означает, что сопротивление свободному движению электронов падает с уменьшением температуры. Другими словами, проводимость металлов возрастает.

Сверхпроводимость

В некоторых веществах при очень низких температурах сопротивление потоку электронов исчезает полностью, и электроны, начав движение, продолжают его неограниченно. Это явление называется сверхпроводимостью. При температуре несколько градусов выше абсолютного нуля (— 273 °С) она наблюдается в таких металлах, как олово, свинец, алюминий и ниобий.

Генераторы Ван де Граафа

В школьную программу входят различные опыты с электричеством. Существует можество видов генераторов, об одном из которых нам хотелось бы подробнее рассказать. Генератор Ван де Граафа используется для получения сверхвысоких напряжений. Если предмет, содержащий избыток положительных ионов, поместить внутрь контейнера, то на внутренней поверхности последнего появятся электроны, а на внешней - такое же количество положительных ионов. Если теперь коснуться внутренней поверхности заряженным предметом, то на него перейдут все свободные электроны. На внешней же положительные заряды останутся.

В положительные ионы от источника наносятся на ленту конвейера, проходящего внутри металлической сферы. Лента связана с внутренней поверхностью сферы с помощью проводника в виде гребня. Электроны стекают с внутренней поверхности сферы. На внешней же стороне ее появляются положительные ионы. Эффект можно усилить, используя два генератора.

Электрический ток

В школьный курс физики входит и такое понятие, как электрический ток. Что же это такое? Электрический ток обусловлен движением электрических зарядов. Когда электрическая лампа, соединенная с батареей, включена, ток течет по проводу от одного полюса батареи к лампе, затем через ее волосок, вызывая его свечение, и возвращается назад по второму проводу к другому полюсу батареи. Если выключатель повернуть, то цепь разомкнется - движение тока прекратится, и лампа погаснет.

Движение электронов

Ток в большинстве случаев представляет собой упорядоченное движение электронов в металле, служащем проводником. Во всех проводниках и некоторых других веществах всегда происходит какое-то случайное их движение, даже если ток не протекает. Электроны в веществе могут быть относительно свободны или сильно связаны. Хорошие проводники имеют свободные электроны, способные перемещаться. А вот в плохих проводниках, или изоляторах, большинство этих частиц достаточно прочно связано с атомами, что препятствует их движению.

Иногда естественным или искусственным путем в проводнике создается движение электронов в определенном направлении. Этот поток и называют электрическим током. Он измеряется в амперах (А). Носителями тока могут служить также ионы (в газах или растворах) и «дырки» (нехватка электронов в некоторых видах полупроводников. Последние ведут себя как положительно заряженные носители электрического тока. Чтобы заставить электроны двигаться в том или ином направлении, необходима некая сила. В природе ее источниками могут быть: воздействие солнечного света, магнитные эффекты и химические реакции. Некоторые из них используются для получения электрического тока. Обычно для этой цели служат: генератор, использующий магнитные эффекты, и элемент (батарея), действие которого обусловлено химическими реакциями. Оба устройства, создавая заставляют электроны двигаться в одном направлении по цепи. Величина ЭДС измеряется в вольтах (В). Таковы основные единицы измерения электричества.

Величина ЭДС и сила тока связаны между собой, как давление и поток в жидкости. Водопроводные трубы всегда заполнены водой под определенным давлением, но вода начинает течь, только когда открывают кран.

Аналогично может быть соединена с источником ЭДС, но ток в ней не потечет до тех пор, пока не будет создан путь, по которому могут двигаться электроны. Им может быть, скажем, электрическая лампа или пылесос, выключатель здесь играет роль крана, «выпускающего» ток.

Соотношение между током и напряжением

По мере роста напряжения в цепи растет и ток. Изучая курс физики, мы узнаем, что электрические цепи состоят из нескольких различных участков: обычно это выключатель, проводники и прибор - потребитель электричества. Все они, соединенные вместе, создают сопротивление электрическому току, которое (при условии постоянства температуры) для этих компонентов не изменяется со временем, но для каждого из них различно. Поэтому, если одно и то же напряжение применить к лампочке и к утюгу, то поток электронов в каждом из приборов будет различен, поскольку различны их сопротивления. Следовательно, сила тока, протекающего через определенный участок цепи, определяется не только напряжением, но и сопротивлением проводников и приборов.

Закон Ома

Величина электрического сопротивления измеряется в омах (Ом) в такой науке, как физика. Электричество (формулы, определения, опыты) - обширная тема. Мы не будем выводить сложные формулы. Для первого знакомства с темой достаточно того, что было сказано выше. Однако одну формулу все-таки стоит вывести. Она совсем несложная. Для любого проводника или системы проводников и приборов соотношение между напряжением, током и сопротивлением задается формулой: напряжение = ток х сопротивление. Это математическое выражение закона Ома, названного так в честь Георга Ома (1787-1854 гг.), который первым установил взаимосвязь этих трех параметров.

Физика электричества - очень интересный раздел науки. Мы рассмотрели лишь основные понятия, связанные с ней. Вы узнали, что такое электричество, как оно образуется. Надеемся, эта информация вам пригодится.

Одной из важнейших вех в истории планеты является изобретение электричества. Именно это открытие помогает и по сей день развиваться нашей цивилизации. Электричество - один из наиболее экологичных Кому принадлежит открытие этого явления? Каким образом электричество получают и применяют? Можно ли самостоятельно создать гальванический элемент?

История изобретения электричества кратко

Электричество было обнаружено еще в 7 веке до нашей эры древнегреческим философом Фалесом. Он выяснил, что натертый шерстью янтарь способен притягивать меньшие по массе предметы.

Однако масштабные эксперименты с электричеством начинаются в эпоху возрождения в Европе. В 1650 г. магдебургским бургомистром фон Герике была построена электростатическая установка. В 1729 г. Стивеном Греем был поставлен опыт по на расстояние. В 1747 издал очерк, где была собраны все известные факты об электричестве и выдвинуты новые теории. В 1785-м был открыт закон Кулона.

1800 год стал переломным: итальянец Вольт изобретает первый источник постоянного тока. В 1820-м датским ученым Эрстедом было обнаружено предметов. Годом позднее Ампер выяснил, что магнитное поле создается электрическим током, но не статическими зарядами.

Такие великие исследователи, как Гаусс, Джоуль, Ленц, Ом внесли неоценимый вклад в изобретение электричества. Год 1830-й также стал важным, ведь Гауссом была разработана теория и разработка двигателя, работающего на токе, принадлежит Майклу Фарадею.

В конце 19 века опыты с электричеством проводились многими учеными, в их числе Лачинов, Герц, Томсон, Резерфорд. В начале 20 века появилась теория квантовой электродинамики.

Электричество в природе

Открытие и изобретение электричества произошло уже очень давно. Однако ранее считалось, что в природе его просто нет. Но американец Франклин выяснил, что такое явление, как молния, имеет чисто электрическую природу. Долгое время его точка зрения отвергалась научным сообществом.

Электричество имеет огромное значение в природе. Многие ученые полагают, что благодаря разрядам молний осуществился синтез аминокислот, в результате чего на Земле зародилась жизнь. Без нервных импульсов невозможно функционирование организма ни одного животного. Существуют разновидности морских организмов, которые применяют электричество как средство для обороны, нападения, ориентации в пространстве и поиска пищи.

Получение электричества

Изобретение электричества оказало влияние на научно-технический прогресс. Для получения электроэнергии создаются вот уже на протяжении многих десятилетий электростанции. Электричество создается с помощью генераторов энергии, а затем оно передается по ЛЭП. Принцип создания тока заключается в переводе механической энергии в электрическую. Электростанции подразделяются на следующие типы:

  • атомные;
  • ветровые;
  • гидроэнергетические;
  • приливно-отличные;
  • солнечные;
  • тепловые.

Применение электричества

Изобретение электричества по праву является величайшим открытием, ведь без него становится невозможной современная жизнь. Оно имеется почти в каждом доме и применяется для освещения, обмена информацией, приготовления пищи, обогрева, функционирования бытовых приборов. Также электроэнергия необходима для движения трамваем, троллейбусов, метро, электропоездов. Работа компьютера, сотового телефона тоже невозможна без электричества.

Любопытный опыт

Оказывается, гальванический элемент можно изготовить самостоятельно, и делается это достаточно просто. Такой способ получил известность в начале 20 века.

Для начала необходимо пополам разрезать достаточно острым ножом лимон посередине. Крайне нежелательно снимать или срывать перегородки между дольками. После этого нужно к каждой дольке подсоединить поочередно небольшой кусок проволоки, размером около 2 сантиметров. В ячейках должны чередоваться медная и цинковая проволоки. Затем следует концы торчащих проволок последовательно соединить металлической проволокой меньшего диаметра. Таким образом можно получить элемент питания. Как проверить, работает ли он? Для этого можно замерить напряжение вольтметром.

Одним из важнейших открытий в истории человечества стало изобретение электричества. Дата открытия точно неизвестна. Однако эксперименты начал проводить еще древнегреческий ученый Фалес. Активное изучение электричества началось в эпоху возрождения. Без него невозможна деятельность ни одного живого организма. Сегодня без этого изобретения мы практически не можем представить свою жизнь. Люди уже давно научились получать, передавать и использовать электроэнергию.

Этот термин в основном используется для описания электрической энергии, электрической силы и электричества самого по себе. Электрическая – это наиболее разносторонне применяемый тип энергий из всех используемых человечеством. Она используется для освещения, обогрева, охлаждения, передвижения, связи и других повседневных целей.

Электричество наиболее просто описать с помощью теории атомного строения материи. Согласно ей, наименьшей структурной единицей вещества является . В центре атома находится ядро, которое в свою очередь состоит из протонов и нейтронов. Протоны обладают энергией, которую принято называть положительной. Нейтрона не обладают зарядом и остаются нейтрально заряженными. Вокруг ядра вращаются , которые имеют отрицательный заряд. Количество электронов равно количеству протонов, поэтому атом в сумме имеет нейтральный заряд. Однако в некоторых ситуациях атом может получать дополнительные электроны или терять их. В этом случае он становится положительно или отрицательно заряженным и тогда он будет называться .

Электрический заряд (ион) помещенный рядом с одним или несколькими другими будет испытывать электрические силы. Один из основных законов электричества состоит в притяжении разно заряженных зарядов и отталкивании одноименно заряженных зарядов. Область пространства, в котором заряды взаимодействуют друг с другом называют . Обычно электрическое поле изображается в виде линий, которые носят название силовых . Эта линия показывает направление, по которому следовал бы положительный заряд к отрицательному.

Когда , которые образуют какой-либо материальный объект теряют свои электроны, объект становится отрицательно заряженным. В этом случае он будет отталкиваться от отрицательно заряженных объектов и притягиваться к положительно заряженным.
Существует термин «статическое электричество», которое возникает, когда объект имеет положительный или отрицательный заряд, но не втекают и не вытекают из него. Если такой объект прикоснется к другому объекту, который нейтрально заряжен, либо положительно заряжен, то он потеряет часть или весь свой заряд.
Электрический ток возникает, когда есть поток электрически заряженных . В качестве таких частиц чаще всего выступают электроны. Некоторые электрические токи состоят из отрицательных и положительных ионов. По всеобщему соглашению направлением электрического тока называется направление, противоположное движению электронов. обладает энергией, которая может быть преобразована в тепловую, световую или другой вид энергии.
Электрический ток в металлическом проводнике представляет собой движение от отрицательного полюса к положительному. В повседневно используемых электрических устройствах протекают миллиарды и миллиарды электронов каждую секунду. Однако отдельные электроны преодолевают расстояние со скоростью лишь около 14 см в час. Основная их сила в их числе!
Существую два основных вида тока: постоянный и переменный. Постоянный ток течет в одном постоянном направлении. Переменный ток течет попеременно в каждую сторону. В бытовой электрической сети течет переменный ток и направление его движения меняется 50 раз в секунду.
Переменный ток обладает рядом преимуществ: его параметры могут быть легко изменены, т.е. его легко трансформировать. Кроме того, устройства для переменного тока сделать и спроектировать гораздо проще, чем для постоянного. В тоже время постоянный проще хранить, поэтому те устройства которые питаются от батареек и аккумуляторов работают преимущественно на постоянном токе.
по некоторым материалам течет более легко, чем по другим. Другими словами разные материалы обладают разным электрическим сопротивлением. Материалы с небольшим сопротивлением называются проводниками. Практически все металлы являются проводниками, так как их легко теряют и принимают . , которые также обладают низким сопротивлением, называют электролитами.
Наряду с проводниками существуют диэлектрики, которые имеют высокое электрическое сопротивление. К ним относятся резина, бумага, древесина и мн. др. Несмотря на то что диэлектрики плохо проводят ток, они также широко используются в электрической технике. Например диэлектрики используются для изоляции проводов.
Материалы с сопротивлением между проводниками и диэлектриками называются полупроводниками. Они широко используются при построении электронных схем.

Среди жителей планеты найти таких, которые не имеют понятия об электричестве, трудно. Но вот тех, кто знает, когда и кто открыл электричество, из чего оно состоит, кто сделал важное и полезное для человечества открытие, мало. Потому стоит разобраться, что представляют собой электрические явления и кому мы обязаны их открытием.

Вконтакте

Когда и как было открыто

История открытия этого явления была очень длительной. Само слово придумал греческий ученый Фалес. Оно стало производным от понятия «электрон», которое переводится как «янтарь». Появился этот термин до нашей эры, благодаря Фалесу, заметившему свойство янтаря после того, как его потереть, притягивать легкие предметы.

Произошло это за семь столетий до н.э. Фалес проводил много опытов, изучая увиденное. Это были первые опыты с зарядами в мире. На этом его наблюдения и закончились. Далее он не смог продвинуться, но именно этот ученый считается основоположником теории электроэнергии , ее первооткрывателем, хотя как наука это явление не получило развития. Его наблюдения были надолго забыты, не вызвав интереса у ученых.

Первые опыты

В середине XVII столетия Отто Герике занялся научным исследованием наблюдений Фалеса. Немецкий ученый сконструировал первый прибор в форме вращающегося шара, который он зафиксировал на железном штифте.

После его смерти исследования продолжили другие ученые:

  • немецкие физики Бозе и Винклер;
  • англичанин Хоксби.

Они усовершенствовали прибор, изобретенный Генрике, и открыли некоторые другие свойства явления. Первые опыты, проводимые с помощью этого аппарата, послужили толчком для новых изобретений.

История открытия

Дальнейшее развитие теория электричества получила несколько столетий спустя. Создал теорию У. Гильберт, который заинтересовался подобными явлениями.

В начале 18века было доказано, что получаемое при трении разных материалов электричество бывает разное. А в 1729 г. голландец Мушенбрук обнаружил, что если стеклянную банку залепить с обеих сторон листиками станиоля, там будут накапливаться электроэнергия.

Это явление получило название лейденской банки .

Важно! УченыйБ. Франклин первым предположил, что существуют положительные и отрицательные заряды.

Он смог пояснить процесс лейденской банки, доказав, что обкладку банки можно «заставить» электризоваться разными по знаку зарядами. Франклин занимался изучением атмосферных электрических явлений. Почти одновременно с ним подобные исследования вели русский физик Г. Рихман и ученый М.В. Ломоносов. Тогда же был изобретен громоотвод , действие которого пояснялось возникновением разности напряжений.

А. Вольт (1800 год) создал гальваническую батарею, составив ее из круглых серебряных пластин, между которыми он расположил размоченные соленой водой бумажные кусочки. Химическая реакция внутри батареи вырабатывала электрический заряд.

Начало 1831 г. ознаменовалось тем, что Фарадей создал электрический генератор, действие которого основано было на открытом этим ученым .

Немало электрических приборов создал известный ученый Никола Тесла в XX тысячелетии. Основные события в развитии электричества можно изложить в таком хронологическом порядке:

  • 1791 г. - ученый Л. Гальвани открыл зарядов по проводникам, т.е. электрический ток;
  • 1800 г. – представлен генератор тока А. Вольтом;
  • 1802 г. - Петров открыл электродугу;
  • 1827 г. - Дж. Генри сконструировал изоляцию проводов;
  • 1832 г. - член академии Петербурга Шиллинг показал электрический телеграф;
  • 1834 г. - академик Якоби создал электродвигатель;
  • 1836 год - С. Морзе запатентовал телеграф;
  • 1847 г. - Сименс предложил резиновый материал для изоляции проводов;
  • 1850 год - Якоби изобрел буквопечатающий телеграф;
  • 1866 г. - Сименс предложил динамо-машину;
  • 1872 г. - А.Н. Лодыгин создал лампу накаливания, где использовал угольную нить;
  • 1876 г - изобретен телефон;
  • 1879 год - Эдисон разработал систему электроосвещения, используемую до сих пор;
  • 1890 год - стал стартовым относительно широкого применения электроприборов в быту;
  • 1892 г. - появились первые бытовые приборы, используемые хозяйками на кухне;

Перечень открытий можно продолжить. Но все они были уже основаны на предыдущих.

Первые опыты с электричеством

Впервые опыты с зарядами были проведены в 1729 г. англичанином С. Греем. Во время этих опытов ученый установил: не все предметы передают электрический заряд . С середины 1833 г. серьёзными исследованиями этой области науки занялся француз Ш. Дюфе. Повторив опыты Фалеса и Гильберта, он подтвердил существование двух видов заряда.

Важно! С конца 18 столетия началась новая эра достижений науки. Россиянин В. Петров открыл «Вольтову дугу». Жан А. Нолле сконструировал первый электроскоп, который послужил впоследствии прообразом электрокардиографа. А 1809 год ознаменовался важным открытием: английский ученый Деларю изобрел первую лампочку накаливания, давшую толчок в промышленном применении открытых законов физики.

Явления в природе, связанные с электричеством

Природа богата явлениями электрической природы. Примерами таких явлений, которые связаны с электричеством, служат северное сияние, молния и др.

Северное сияние

Верхние слои воздушной оболочки часто накапливают мелкие частички, прилетающие из космоса. Их столкновение с атмосферой и пылью вызывает свечение на небе, которое сопровождают сполохи. Такое явление наблюдают жители полярных районов. Назвали это явление полярным сиянием . Северное свечение длится порой несколько суток, переливаясь разными цветами.

Молния

Перемещаясь с атмосферными потоками, кучевые облака вызывают трение капель и ледяных кристаллов. В результате трения в облаках накапливаются заряды. Это приводит к образованию между облаками и землей гигантских искр. Это и есть молнии. Они сопровождаются раскатами грома.

Накопление электрических зарядов в воздухе иногда вызывает образование небольших светящихся шариков или крупных искр. Эти шары и искры названы шаровым молниями. Они перемещаются с воздухом, взрываясь от контакта с отдельными предметами. Такие молнии нередко вызывают ожоги и гибель живых существ и людей, возгорание предметов. Точно объяснить причины появления молний ученые пока не могут.

Огни святого Эльма

Так называют явление, знакомое плававшим на парусниках морякам с древности. Они радовались, когда видели свечение мачт в непогоду. Моряки считали, что огни свидетельствуют о покровительстве святого Эльма.

Свечение можно наблюдать в грозу на высоких шпилях. Огоньки выглядят как свечи и кисти голубого или светло-фиолетового оттенка. Длина этих огней иногда достигает метра. Сияние порой сопровождает шипение или негромкий свист.

Моряки пытались отломить часть мачты вместе с огнем. Но это никогда не удавалось, поскольку огонь «перетекал» на мачту и поднимался по ней вверх. Пламя это холодное, от него не происходит возгорания, оно не обжигает руки. И гореть может несколько минут, иногда около часа. Современные ученые установили, что эти огни имеют электрическую природу.

Когда появилось электричество в России

Даты, когда в России началась эра использования электроэнергии, называют разные. Все зависит от критерия, по которому ее устанавливают.

Многие соотносят это событие с 1879 годом. В Петербурге тогда были установлены электрические фонари на Литейном мосту . Но есть люди, которые считают датой появления в России электричества начало 1880 года – дату создания электрического отдела в Российском техническом обществе.

Знаковой датой также можно полагать май 1883 г., время, когда рабочие выполнили иллюминацию кремлевского двора к церемонии коронования Александра ІІІ. Для этого на Софийскую набережную установили электростанцию. А чуть позже электрифицировали главную улицу в Петербурге и Зимний.

Через три года в Российской империи создали «Общество электроосвещения», которое занялось разработкой плана установки фонарей на улицах Москвы и Санкт-Петербурга. А еще через пару лет начинается всюду по империи строительство и оснащение электростанций.

Из чего состоит электроэнергия

Все, что окружает нас, в том числе и люди, состоит из атомов. Атом же состоит из положительно заряженного ядра. Вокруг этого ядра вращаются отрицательно заряженные частицы, которые называются электронами. Эти частицы нейтрализуют положительный заряд ядра. Потому атом имеет нейтральный заряд. Образуется электричество направленным перемещением электронов из одного атома на другой. Такое действие можно осуществить с помощью генератора, трения или химической реакции.

Внимание! Процесс основан на свойстве притяжения частиц, имеющих разные заряды, и отталкивания одинаковых зарядов. В результате возникает ток, который может передаваться через проводники (чаще всего металлы). Материалы, которые не способны передавать ток, называются изоляторами. Хорошие изоляторы – это дерево, пластмассовые и эбонитовые предметы.

Как образуется разное электричество

Электроэнергия бывает разной природы: . Кроме того, есть еще статическое электричество. Оно образуется при нарушении равновесия зарядов внутри атомов, как уже было сказано ранее.

В быту человеку постоянно приходится сталкиваться с ним, поскольку одежда синтетической природы есть в каждом доме. А она во время трения накапливает заряд. Некоторые предметы одежды при раздевании или одевании дают такой эффект.

Об этом сигнализируют искры и треск. Источники статического электричества находятся в каждой квартире. Это бытовые электроприборы и компьютеры, электризующие мельчайшую пыль, которая оседает на полу, поверхностях мебели и одежде. Она оказывает отрицательное действие на здоровье людей.

Важно! Для получения электроэнергии создают магнитное поле. Оно притягивает электроны, заставляя их двигаться по проводнику. Этот процесс перемещения частиц называется электрическим током. При стационарном магнитном поле ток течет по проводнику постоянный.

Наука электродинамика

Теория электричества содержит законы, охватывающие огромное количество электромагнитных явлений и законов взаимодействий.

Это связано с тем, что все тела состоят из заряженных частиц . Взаимодействие между ними намного сильнее гравитационных. И в настоящее время эта наука является наиболее полезной для человечества.

Основателем науки признан ученый Гильберт. До 1600 г. наука эта была на уровне знаний Фалеса. Гильберт попытался построить теорию электричества.

До него замеченные греческим ученым свойства притяжения считались только забавным фактом. Гильберт свои наблюдения проводил, используя электроскоп. Его исследования и научные основания стали основополагающим этапом в науке. А само название стало применяться с 1650 г.

Современная наука об электрических явлениях и законах называется электродинамикой . Сейчас трудно себе представить жизнь без электроэнергии. С помощью электрического тока созданы многие приборы, помогающие передавать информацию на огромные расстояния, даже в . Технический прогресс позволил поставить его на службу всему человечеству, все больше открывая тайны этого природного явления. Но все же в этой области науки еще содержится много неизведанного.

Откуда появилось электричество

Кто изобрел электричество



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме