Подпишись и читай
самые интересные
статьи первым!

Примеры решения биматричных игр. В матричной игре, зная стратегии каждого игрока и функцию выигрыша, цену игры в чистых стратегиях, можно найти

65. В графическом методе решения игр 3*3 для нахождения оптимальных стратегий игроков:
а) строится два треугольника (*ответ*)
б) строится один треугольник.
в) треугольники не строятся вовсе.
66. График нижней огибающей для графического метода решения игр 2*m представляет в общем случае функцию:
а) монотонно убывающую.
б) монотонно возрастающую.
в) немотонную.
67. Если в антагонистической игре на отрезке функция выигрыша 1-го игрока F(x,y) равна 2*x+C, то в зависимости от C:
а) седловых точек нет никогда.
б) седловые точки есть всегда (*ответ*)
в) иной вариант
68.Чем можно задать задачу принятия решения в условиях неопределенности на конечных множествах:
а) двумя матрицами.
б) выигрышами.
в) чем-то еще (*ответ*)
69. В антагонистической игре произвольной размерности выигрыш первого игрока - это:
а) число.
б) множество.
в) вектор, или упорядоченное множество.
г) функция (*ответ*)
70. В матричной игре 3*3 две компоненты смешанной стратегии игрока:
а) определяют третью (*ответ*)
б) не определяют.
71. Биматричная игра может быть определена:
а) двумя матрицами одинаковой размерности с произвольными элементами,
б) двумя матрицами не обязательно одинаковой размерности,
в) одной матрицей.
72. В матричной игре элемент aij представляет собой:
а) проигрыш 2-го игрока при использовании им j-й стратегии, а 2-м - i-й стратегии (*ответ*)
б) оптимальную стратегию 2-го игрока при использовании противником i-й или j-й стратегии,
в) выигрыш 1-го игрока при использовании им j-й стратегии, а 2-м - i-й стратегии,
73. Элемент матрицы aij соответствует седловой точке. Возможны следующие ситуации:
а) оптимальных.
б) чистых.
в) нет однозначного ответа (*ответ*)
84. Если в матрице все столбцы одинаковы и имеют вид (4 3 0 2), то какая стратегия оптимальна для 2-го игрока?
a)первая. б)третья. в)любая (*ответ*)
85. Какое максимальное число седловых точек может быть в игре размерности 3*3 (матрица может содержать любые числа):
а)3.
б)9.
в)27 (*ответ*)
86.Пусть в антагонистической игре X=(1;5)- множество стратегий 1-го
игрока, Y=(2;8)- множество стратегий 2-го игрока. Является ли пара (1,2)
быть седловой точкой в этой игре:
а) всегда.
б) иногда (*ответ*)
в) никогда.
87. Бывает ли в биматричной игре размерности 3*3 ровно 2 ситуации равновесия?
а) Всегда.
б) иногда (*ответ*)
в) никогда.
88. Пусть в матричной игре размерности 2*3 одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.3, x, x). Чему равно число x?
а)0.7 б)0.4 в)чему-то еще (*ответ*)
89. Матричная игра - это частный случай биматричной, при котором всегда справедливо:
а) матрица А равна матрице В, взятой с обратным знаком.
б) матрица A равна матрице В.
в) Произведение матриц А и В -единичная матрица..
90. В биматричной игре элемент by представляет собой:
а) выигрыш 2-го игрока при использовании им i-й стратегии, а 1-м - j-й стратегии,
б) оптимальную стратегию 2-го игрока при использовании противником i-й или j-й стратегии/
в) что-то иное (*ответ*)
91 .В биматричной игре элемент ац соответствует ситуации равновесия. Возможны следующие ситуации:
а) в столбце есть элементы, равные этому элементу (*ответ*)
б) этот элемент меньше некоторых в столбце.
в) этот элемент меньше всех в столбце.
92. В матричной игре, зная стратегии каждого игрока и функцию выигрыша,
цену игры в чистых стратегиях, можно найти:
а) всегда.
б) иногда (*ответ*)
в) вопрос некорректен.

Московский городской университет управления правительства Москвы

Факультет управления

Кафедра прикладной математики

Реферат

по учебной дисциплине

"Математические методы исследования систем управления"

На тему: "Биматричные игры. Поиск равновесных ситуаций"


1. Биматричные игры

Абсолютно любая управленческая деятельность не может существовать без конфликтных ситуаций. Это ситуации, где сталкиваются двое или больше сторон с разными интересами. Совершенно естественно, что каждая из сторон хочет решить конфликт в свою пользу и получить максимальную выгоду. Решение такой задачи может быть осложнено тем, что конфликтующая сторона не имеет полной информации о конфликте в целом. Иначе можно сказать, что в конфликтной ситуации необходимо принять оптимальное решение в условиях неопределённости.

Для решения такого рода задач используется математическое моделирование. Введём несколько основных понятий. Математическая модель конфликтной игрой называется игрой. Стороны конфликта – игроки, действие игрока – ход, совокупность ходов – стратегия, результат игры – выигрыш.

Обязательным моментом перед решением задачи является выявление определённых правил. Как правило, эти правила представляют собой совокупность требований и ограничений на действия игроков, обмен информацией игроков о действиях противников, функций выигрышей противников и т.п. Правила должны быть чёткими, иначе игра не состоится.

К настоящему времени существует несколько способов классификации игр. Основным является деление на бескоалиционные конечные парные игры с выигрышами (матричные, позиционные, биматричные) и коалиционные. В данном реферате мы рассмотрим биматричные игры.

Игры с фиксированной суммы – игры, в которых интересы игроков хоть и не совпадают, но не являются полностью противоположными. Частным случаем являются биматричные игры.

Биматричная игра – это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец – стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице – выигрыш игрока 2.)

Рассмотрим парную игру, в которой каждый из участников имеет следующие возможности для выбора своей линии поведения:

игрок А – может выбрать любую из стратегий А 1 , …, А m ;

игрок В – любую из стратегий В 1 , …, В n ;

Если игрок А выбрал стратегию А i , игрок В – В j , то в итоге выигрыш игрока А составит а ij , игрока В – b ij . Выигрыши игроков А и В можно записать в виде двух таблиц.

Таким образом, если интересы игроков различны, но не обязательно противоположны, для описания игры используются две платёжные матрицы. Данный факт и дал название подобным играм – биматричным.

2. Состояние равновесия в биматричных матрицах

Решением биматричной игры есть такое решение, которое в том или ином смысле устраивает обоих игроков. Данная формулировка очень расплывчата, что обуславливается тем, что в биматричных играх довольно трудно чётко сформулировать цели для игроков. Как один из возможных вариантов – желание игрока навредить своему сопернику в ущерб собственному выигрышу, или цель будет противоположна.

Обычно рассматриваются два подхода к решению биматричной игры. Первый – поиск равновесных ситуаций: ищутся условия, когда игра находится в некотором равновесии, которое невыгодно нарушать ни одному из игроков в отдельности. Второй – поиск ситуаций, оптимальных по Парето: нахождение условий, при которых игроки совместными усилиями не могут увеличить выигрыш одного игрока, не уменьшив при этом выигрыш другого.

Остановим своё внимание на первом подходе.

В данном подходе используются смешанные стратегии, т.е. случай, когда игроки чередуют свои чистые стратегии с определёнными вероятностями.

Пусть игрок А выбирает стратегию А 1 , с вероятностью р 1 , А 2 – р 2 , …, А m – p m , причём

Игрок В использует стратегию В 1 с вероятностью q 1 , B 2 – q 2 , …, B n – q n , причём

В качестве критерия "удачности" игры возьмём математические ожидания выигрыша игроков, которые вычисляются по формулам:


Таким образом, можно сформулировать основное определение:

Распределение вероятностей Р * (

) и Q () определяют равновесную ситуацию, если для любых других распределений P и Q одновременно выполнены следующие неравенства:

Если равновесная ситуация существует, то отклонение от неё невыгодно самому игроку.

Также справедлива теорема Дж. Нэша. Всякая биматричная игра имеет хотя бы одну равновесную ситуацию в смешанных стратегиях.

3. Общий принцип решения биматричных игр

В первое неравенство системы последовательно подставляются все чистые стратегии игрока А, при предположении, что В придерживается своей оптимальной стратегии. Во второе неравенство подставляются все чистые стратегии игрока В, при предположении, что А придерживается своей оптимальной стратегии.

Полученная система m+n неравенств, решение которой дает значение элементов оптимальных смешанных стратегий (P*,Q*) и платежи, получаемые игроками в точке равновесия.

Пример: борьба за рынок.


Решение задачи

v A =-10×1q 1 +2×1*(1-q 1)+(1-p 1)q 1 -(1-p 1)(1-q 1)=-14×1q 1 +3×1+2q 1 -1

v B =5×1q 1 -2×1*(1-q 1)-(1-p 1)q 1 +(1-p 1)(1-q 1)=9×1q 1 -3×1-2q 1 +1

p 1 =1 тогда v A =2-12q 1

-14×1q 1 +3×1+2q 1 -1

p 1 =0 тогда v A =-1+2q 1

-14×1q 1 +3×1+2q 1 -1

q 1 =1тогда v B =-1+6×1

9×1q 1 -3×1-2q 1 +1

q 1 =0 тогда v B =1–3×1

9×1q 1 -3×1-2q 1 +1

Cоставляем 4 системы, преобразовываем, получаем.

В играх с ненулевой суммой в выигрыше или проигрыше могут оказаться все участники игры. Биматричная игра – это конечная игра двух игроков с ненулевой суммой. В этом случае для каждой игровой ситуации A i B j каждый из игроков имеет свой выигрыш a ij для первого игрока и b ij – для второго игрока. К биматричной игре сводится, например, поведение производителей на рынках несовершенной конкуренции. С помощью онлайн-калькулятора можно найти решение биматричной игры , а также ситуации оптимальные по Парето и ситуации устойчивые по Нэшу .

Рассмотрим конфликтную ситуацию, в которой каждый из двух участников имеет следующие возможности для выбора своей линии поведения:

  • игрок А – может выбрать любую из стратегий А 1 ,…,А m ,
  • игрок В – любую из стратегий В 1 ,…,В n .

При этом их совместный выбор оценивается вполне определённо: если игрок А выбрал i-ю стратегию А i , а игрок В – k -ю стратегию В k , то в итоге выигрыш игрока А будет равен некоторому числу a ik , а выигрыш игрока В некоторому, вообще говоря, другому числу b ik .
Последовательно перебирая все стратегии игрока А и все стратегии игрока В, мы сможем заполнить их выигрышами две таблицы.

Первая из таблиц описывает выигрыш игрока А, а вторая – выигрыш игрока В. Обычно эти таблицы записывают в виде матрицы.
Здесь А – платёжная матрица игрока А, В – платёжная матрица игрока В.

Таким образом, в случае, когда интересы игроков различны (но не обязательно противоположны) получаются две платёжные матрицы: одна – матрица выплат игроку А, другая – матрица выплат игроку В. Поэтому совершенно естественно звучит название, которое обычно присваивается подобной игре – биматричная .

Равновесие Нэша – равновесие, когда каждый участник игры выбирает стратегию, которая является для него оптимальной при условии, что остальные участники игры придерживаются определенной стратегии.
Равновесие Нэша не всегда является наиболее оптимальным для участников. В этом случае говорят, что равновесие не является Парето-оптимальным .
Чистая стратегия – определенная реакция игрока на возможные варианты поведения других игроков.
Смешанная стратегия – вероятностная (не определенная точно) реакция игрока на поведение других игроков.

Пример №1 . Борьба за рынки сбыта.
Фирма а намерена сбыть партию товара на одном из двух рынков, контролируемых более крупной фирмой b . С этой целью она проводит подготовительную работу, связанную с определенными затратами. Если фирма b разгадает, на каком из рынков фирма а будет продавать свой товар, она примет контрмеры и воспрепятствует "захвату" рынка (этот вариант означает поражение фирмы а); если нет, то фирма а одерживает победу. Предположим, что для фирмы а проникновение на первый рынок более выгодно, чем проникновение на второй, но и борьба на первом рынке требует от нее больших средств. Например, победа фирмы а на первом рынке приносит ей вдвое большую прибыль, чем победа на втором, но зато поражение на первом рынке полностью ее разоряет.
Составим математическую модель этого конфликта, считая фирму а игроком 1 и фирму b игроком 2. Стратегии игрока 1: А 1 – проникновение на рынок 1, А 2 – проникновение на рынок 2; стратегии игрока 2: В 1 – контрмеры на рынке 1, В 2 – контрмеры на рынке 2. Пусть для фирмы а ее победа на 1-м рынке оценивается в 2 единицы, а победа на 2-м рынке – в 1 единицу; поражение фирмы а на 1-м рынке оценивается в -10, а на 2-м в -1. Для фирмы b ее победа составляет соответственно 5 и 1 единицу, а поражение -2 и -1. Получаем в итоге биматричную игру Г с матрицами выигрышей
.
По теореме эта игра может иметь либо чистые, либо вполне смешанные ситуации равновесия. Ситуаций равновесия в чистых стратегиях здесь нет. Убедимся теперь, что данная игра имеет вполне смешанную ситуацию равновесия. Находим , .
Итак, рассматриваемая игра имеет единственную ситуацию равновесия (x 0 ;y 0), где , . Она может быть реализована при многократном повторении игры (то есть при многократном воспроизведении описанной ситуации) следующим образом: фирма а должна использовать чистые стратегии 1 и 2 с частотами 2/9 и 7/9, а фирма b – чистые стратегии 1 и 2 с частотами 3/14 и 11/14. Любая из фирм, отклонившись от указанной смешанной стратегии, уменьшает свой ожидаемый выигрыш.

Пример №2 . Найти ситуации оптимальные по Парето и ситуации устойчивые по Нэшу для биматричной игры.

Пример №3 . Имеются 2 фирмы: первая может произвести одно из двух изделий А 1 и А 2 , вторая – одно из двух изделий B 1 , B 2 . Если первая фирма произведет продукцию A i (i = 1, 2), а вторая - B j (j = 1, 2), то прибыль этих фирм (зависящая от того, являются ли эти изделия взаимодополняющими или конкурирующими), определяется таблицей №1:

В 1 В 2
А 1 (5, 6) (3, 2)
А 2 (2, 1) (5, 3)
Считая, что фирмы заключают между собой соглашение, определить справедливое распределение прибыли, используя арбитражное решение Нэша.

Биматричные игры

Абсолютно любая управленческая деятельность не может существовать без конфликтных ситуаций. Это ситуации, где сталкиваются двое или больше сторон с разными интересами. Совершенно естественно, что каждая из сторон хочет решить конфликт в свою пользу и получить максимальную выгоду. Решение такой задачи может быть осложнено тем, что конфликтующая сторона не имеет полной информации о конфликте в целом. Иначе можно сказать, что в конфликтной ситуации необходимо принять оптимальное решение в условиях неопределённости.

Для решения такого рода задач используется математическое моделирование. Введём несколько основных понятий. Математическая модель конфликтной игрой называется игрой. Стороны конфликта - игроки, действие игрока - ход, совокупность ходов - стратегия, результат игры - выигрыш.

Обязательным моментом перед решением задачи является выявление определённых правил. Как правило, эти правила представляют собой совокупность требований и ограничений на действия игроков, обмен информацией игроков о действиях противников, функций выигрышей противников и т.п. Правила должны быть чёткими, иначе игра не состоится.

К настоящему времени существует несколько способов классификации игр. Основным является деление на бескоалиционные конечные парные игры с выигрышами (матричные, позиционные, биматричные) и коалиционные. В данном реферате мы рассмотрим биматричные игры.

Игры с фиксированной суммы - игры, в которых интересы игроков хоть и не совпадают, но не являются полностью противоположными. Частным случаем являются биматричные игры.

Биматричная игра - это конечная игра двух игроков с ненулевой суммой, в которой выигрыши каждого игрока задаются матрицами отдельно для соответствующего игрока (в каждой матрице строка соответствует стратегии игрока 1, столбец - стратегии игрока 2, на пересечении строки и столбца в первой матрице находится выигрыш игрока 1, во второй матрице - выигрыш игрока 2.)

Рассмотрим парную игру, в которой каждый из участников имеет следующие возможности для выбора своей линии поведения:

игрок А - может выбрать любую из стратегий А 1 , …, А m ;

игрок В - любую из стратегий В 1 , …, В n ;

Если игрок А выбрал стратегию А i , игрок В - В j , то в итоге выигрыш игрока А составит а ij , игрока В - b ij . Выигрыши игроков А и В можно записать в виде двух таблиц.

Таким образом, если интересы игроков различны, но не обязательно противоположны, для описания игры используются две платёжные матрицы. Данный факт и дал название подобным играм - биматричным.

Состояние равновесия в биматричных матрицах

Решением биматричной игры есть такое решение, которое в том или ином смысле устраивает обоих игроков. Данная формулировка очень расплывчата, что обуславливается тем, что в биматричных играх довольно трудно чётко сформулировать цели для игроков. Как один из возможных вариантов - желание игрока навредить своему сопернику в ущерб собственному выигрышу, или цель будет противоположна.

Обычно рассматриваются два подхода к решению биматричной игры. Первый - поиск равновесных ситуаций: ищутся условия, когда игра находится в некотором равновесии, которое невыгодно нарушать ни одному из игроков в отдельности. Второй - поиск ситуаций, оптимальных по Парето: нахождение условий, при которых игроки совместными усилиями не могут увеличить выигрыш одного игрока, не уменьшив при этом выигрыш другого.

Остановим своё внимание на первом подходе.

В данном подходе используются смешанные стратегии, т.е. случай, когда игроки чередуют свои чистые стратегии с определёнными вероятностями.

Пусть игрок А выбирает стратегию А 1 , с вероятностью р 1 , А 2 - р 2 , …, А m - p m , причём

Игрок В использует стратегию В 1 с вероятностью q 1 , B 2 - q 2 , …, B n - q n , причём

В качестве критерия "удачности" игры возьмём математические ожидания выигрыша игроков, которые вычисляются по формулам:

Таким образом, можно сформулировать основное определение:

Распределение вероятностей Р * () и Q () определяют равновесную ситуацию, если для любых других распределений P и Q одновременно выполнены следующие неравенства:

Если равновесная ситуация существует, то отклонение от неё невыгодно самому игроку.

Также справедлива теорема Дж. Нэша. Всякая биматричная игра имеет хотя бы одну равновесную ситуацию в смешанных стратегиях.

Тесты для итогового контроля

1. Антагонистическая игра может быть задана:

а) множеством стратегий обоих игроков и седловой точкой.

б) множеством стратегий обоих игроков и функцией выигрыша первого игрока.

2. Цена игры существует для матричных игр в смешанных стратегиях всегда.

а) да.

3.Если в матрице выигрышей все столбцы одинаковы и имеют вид (4 5 0 1), то какая стратегия оптимальна для 1-го игрока?

а) первая.

б)вторая.

в)любая из четырех.

4.Пусть в матричной игре одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.4, 0, 0.6). Какова размерность этой матрицы?

а) 2*3.

в) другая размерность.

5. Принцип доминирования позволяет удалять из матрицы за один шаг:

а) целиком строки.

б) отдельные числа.

6.В графическом методе решения игр 2*m непосредственно из графика находят:

а) оптимальные стратегии обоих игроков.

б) цену игры и оптимальные стратегии 2-го игрока.

в) цену игры и оптимальные стратегии 1-го игрока.

7.График нижней огибающей для графического метода решения игр 2*m представляет собой в общем случае:

а) ломаную.

б) прямую.

в) параболу.

8. В матричной игре 2*2 две компоненты смешанной стратегии игрока:

а) определяют значения друг друга.

б) независимы.

9. В матричной игре элемент aij представляет собой:

а) выигрыш 1-го игрока при использовании им i-й стратегии, а 2-м – j-й стратегии.

б) оптимальную стратегию 1-го игрока при использовании противником i-й или j-й стратегии.

в) проигрыш 1-го игрока при использовании им j-й стратегии, а 2-м – i-й стратегии.

10.Элемент матрицы aij соответствует седловой точке. Возможны следующие ситуации:

а) этот элемент строго меньше всех в строке.

б) этот элемент второй по порядку в строке.

11. В методе Брауна-Робинсон каждый игрок при выборе стратегии на следующем шаге руководствуется:

а) стратегиями противника на предыдущих шагах.

б) своими стратегиями на предыдущих шагах.

в) чем-то еще.

12. По критерию математического ожидания каждый игрок исходит из того, что:

а) случится наихудшая для него ситуация.

в) все или некоторые ситуации возможны с некоторыми заданными вероятностями.

13. Пусть матричная игра задана матрицей, в которой все элементы отрицательны. Цена игры положительна:

б) нет.

в) нет однозначного ответа.

14. Цена игры - это:

а) число.

б) вектор.

в) матрица.

15.Какое максимальное число седловых точек может быть в игре размерности 5*5 (матрица может содержать любые числа) :

16. Пусть в матричной игре размерности 2*3 одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.3, x, 0.5). Чему равно число x?

в) другому числу.

17. Для какой размерности игровой матрицы критерий Вальда обращается в критерий Лапласа?

в)только в других случаях.

18. Верхняя цена игры всегда меньше нижней цены игры.

б) нет.

б) вопрос некорректен.

19. Какие стратегии бывают в матричной игре:

а) чистые.

б) смешанные.

в) и те, и те.

20. Могут ли в какой-то антагонистической игре значения функции выигрыша обоих игроков для некоторых значений переменных равняться 1?

а) всегда.

б) иногда.

в) никогда.

21.Пусть в матричной игре одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.4, 0.1,0.1,0.4). Какова размерность этой матрицы?

в) иная размерность.

22. Принцип доминирования позволяет удалять из матрицы за один шаг:

а) целиком столбцы,

б) отдельные числа.

в) подматрицы меньших размеров.

23. В матричной игре 3*3 две компоненты смешанной стратегии игрока:

а) определяют третью.

б) не определяют.

24. В матричной игре элемент aij представляет собой:

а) проигрыш 2-го игрока при использовании им j-й стратегии, а 2-м – i-й стратегии .

б) оптимальную стратегию 2-го игрока при использовании противником i-й или j-й стратегии,

в) выигрыш 1-го игрока при использовании им j-й стратегии, а 2-м – i-й стратегии,

25. Элемент матрицы aij соответствует седловой точке. Возможны следующие ситуации:

а) этот элемент больше всех в столбце.

б) этот элемент строго больше всех по порядку в строке.

в) в строке есть элементы и больше, и меньше, чем этот элемент.

26. По критерию Вальда каждый игрок исходит из того, что:

а) случится наиболее плохая для него ситуация.

б) все ситуации равновозможны.

в) все ситуации возможны с некоторыми заданными вероятностями.

27. Нижняя цена меньше верхней цены игры:

б) не всегда.

в) никогда.

28. Сумма компонент смешанной стратегия для матричной игры всегда:

а) равна 1.

б) неотрицательна.

в) положительна.

г) не всегда.

29. Пусть в матричной игре размерности 2*3 одна из смешанных стратегий 1-го игрока имеет вид (0.3, 0.7), а одна из смешанных стратегий 2-го игрока имеет вид (0.2, x, x). Чему равно число x?



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме