Подпишись и читай
самые интересные
статьи первым!

Проверка гипотез о равенстве средних. Критерии согласия

Проверка равенства среднего определенному значению.

Выборки извлечены из совокупности, имеющей нормальное распределение, данные независимы.

Критериальное значение вычисляется по формуле:

где N - размер выборки;

S 2 - эмпирическая дисперсия выборки;

А - предполагаемая величина среднего значения;

X- среднее значение.

Число степеней свободы для t-критерия V = n-1.

Нулевая гипотеза

Н 0: X = А против Н А: X≠А. Нулевая гипотеза о равенстве средних отвергается, если по абсолютной величине критериальное значение больше верхней α/2 % точки t-распределения взятого с V степенями свободы, то есть при │t│> t vα/2 .

Н 0: Х< А против Н А: X > А. Нулевая гипотеза отвергается, если критериальное значение больше верхней α% точки t-распределения взятого с V степенями свободы, то есть при │t│> t vα .

Н 0: Х>А против H А: X < А. Нулевая гипотеза отвергается, если критериальное значение меньше нижней α% точки t-распределения, взятого с V степенями свободы.

Критерий устойчив при малых отклонениях от нормального распределения.

Пример

Рассмотрим пример, представленный на рис. 5.10. Допустим, что нам необходимо проверить гипотезу о равенстве среднего для выборки (ячейки 123:130) величине 0,012.

Сначала находим среднее выборки (=СРЗНАЧ(123:130) в I31) и дисперсию (=ДИСП(I23:I30) в I32). После этого рассчитываем критериальное (=(131-0,012)*КОРЕНЬ(133)/132) и критическое (=СТЬЮДРАСПОБР(0,025;133-1)) значения. Поскольку критериальное значение (24,64) больше критического (2,84), то гипотеза о равенстве среднего 0,012 отвергается.

Рисунок 5.10 Сравнение среднего значения с константой

1. проверить гипотезы о средних и дисперсиях с помощью параметрических критериев Фишера и Кохрена (таблица 5.4);

2. проверить гипотезу о равенстве средних при неравных дисперсиях выборок (для этого в одной из выборок своего варианта убрать 1 или 2 значения) (таблица 5.4);

3. проверить гипотезу о равенстве среднего заданному значению А (таблица 5.5) и данные из 1-го столбца по варианту.

Таблица 5.4

Варианты заданий

Данные эксперимента
Вариант
2,3 2,6 2,2 2,1 2,5 2,6
1,20 1,42 17,3 23,5 2,37 2,85 35,2 26,1 2,1 2,6
5,63 5,62 26,1 27,0 5,67 2,67 35,9 25,8 5,1 5,63
2,34 2,37 23,9 23,3 2,35 2,34 33,6 23,8 2,34 2,38
7,71 7,90 28,0 25,2 2,59 2,58 35,7 26,0 7,63 7,6,1
1,2 1,6 1,7 2,6 1,9 2,8
1,13 1,15 21,6 21,2 2,13 2,16 31,7 1,12 1,12
1,45 1,47 24,7 24,8 2,45 2,47 34,8 24,5 1,49 1,45
3,57 3,59 25,9 25,7 2,55 2,59 36,0 25,7 3,58 3,58
3,3 3,6 2,5 2,4 3,4 3,5
Данные эксперимента
Вариант
7,3 7,6 12,2 12,1 3,5 4,6
6,20 6,42 217,3 230,5 12,37 12,85 75,2 86,1 3,1 4,6
7,63 5,62 264,1 278,0 15,67 14,67 75,9 75,8 5,1 5,63
6,34 5,37 233,9 236,3 12,35 12,34 73,6 73,8 3,34 4,38
7,71 7,90 281,0 255,2 12,59 12,58 85,7 86,0 3,63 4,6,1
6,2 6,6 11,7 12,6 3,9 4,8
4,13 4,15 251,6 261,2 12,13 12,16 71,7 5,12 4,12
5,45 6,47 244,7 247,8 12,45 12,47 74,8 84,5 3,49 4,45
5,57 5,59 250,9 255,7 12,55 12,59 86,0 85,7 3,58 3,58
5,3 5,6 12,5 12,4 3,4 3,5

Таблица 5.5

Значение А

Варианты
2,2 2,2 2,2 6,5 12,2 3,5

В качестве исходных данных в задании можете использовать свои экспериментальные данные.

Отчет должен содержать расчеты статистических характеристик.

Контрольные вопросы:

1. Какие статистические задачи решаются при исследовании технологических процессов производства пищевой промышленности?

2. Каким образом сравниваются статистические характеристики случайных величин?

3. Уровень значимости и доверительная вероятность при достоверности оценки экспериментальных данных.

4. Как осуществляется проверка статистических гипотез с помощью критериев согласия?

5. От чего зависит мощность критерия согласия для анализа экспериментальных выборок?

6. Каким образом осуществояется подбор критерия для решения задач анализа технологических процессов производства пищевых продуктов?

7. Каким образом осуществляется классификация критериев согласия для анализа выборок результатов исследований технологических процессов производства пищевых продуктов?

8. Какие требования предъявляются к выборкам резльтатов исследований технологических процессов производства пищевых продуктов?

Рассмотрим две независимые выборки x 1, x 2 , ….. , x n и y 1 , y 2 , … , y n , извлеченные из нормальных генеральных совокупностей с одинаковыми дисперсиями , причем объемы выборок соответственно n и m, а средние μ x , μ y и дисперсия σ 2 неизвестны. Требуется проверить основную гипотезу Н 0: μ x =μ y при конкурирующей Н 1: μ x μ y .

Как известно, выборочные средние и будут обладать свойствами: ~N(μ x , σ 2 /n), ~N(μ y , σ 2 /m).

Их разность - нормальная величина со средним и дисперсией , так что

~ (23).

Допустим на время, что основная гипотеза Н 0 верна: μ x –μ y =0. Тогда и, деля величину на ее стандартное отклонение, получим стандартную нормальную сл. Величину ~N(0,1).

Раньше отмечалось, что сл. величина распределена по закону с (n-1)-ой степенью свободы, a - по закону с (m-1) степенью свободы. С учетом независимости этих двух сумм, получаем, что их общая сумма распределена по закону с n+m-2 степенями свободы.

Вспоминая п.7, видим, что дробь подчиняется t-распределенню (Стьюдента) с ν=m+n-2 степенями свободы: Z=t. Этот факт имеет место только тогда, когда истинна гипотеза Н 0 .

Заменяя ξ и Q их выражениями, получим развернутую форнулу для Z:

(24)

Сл.величина Z, называемая статистикой критерия, позволяет принять решение при такой последовательности действий:

1. Устанавливается область D=[-t β,ν , +t β,ν ], содержащая β=1–α площади под кривой t ν –распределения (табл.10).

2. Вычисляется по формуле (24) опытное значение Z on статистики Z, для чего вместо X 1 и Y 1 подставляются значения x 1 и y 1 конкретных выборок, а также их выборочные средние и .

3. Если Z on D, то гипотеза Н 0 считается не противоречащей опытным данным и принимается.

Если Z on D, то принимается гипотеза Н 1 .

Если гипотеза Н 0 верна, то Z подчиняется известному t ν –распределению с нулевым средним и с высокой вероятностью β=1–α попадает в D-область принятия гипотезы Н 0 . Когда наблюдаемое, опытное значение Z on попадает в D. Мы рассматриваем это как свидетельство в пользу гипотезы Н 0 .

Когда жe Z 0 n лежит за пределами D (как говорят, лежит в критической области К), что естественно, если верна гипотеза Н 1 , но маловероятно, если верна Н 0 , то нам остается отклонить гипотезу Н 0 , приняв H 1 .

Пример 31.

Сравниваются две марки бензина: А и В. На 11 автомашинах одинаковой мощности по кольцевому шассе испытан по разу Бензин марки А и В. Одна машина в пути вышла из строя н для нее данные по бензину В отсутствуют.

Расход бензина в пересчете на 100 км пути

Таблица 12

i
X i 10,51 11,86 10,5 9,1 9,21 10,74 10,75 10,3 11,3 11,8 10,9 n=11
У i 13,22 13,0 11,5 10,4 11,8 11,6 10,64 12,3 11,1 11,6 - m=10

Дисперсия расхода бензина марок А и В неизвестна и предполагается одинаковой. Можно ли при уровне значимости α=0,05 принять гипотезу о том, что истинные средние расходы μ А и μ В этих видов бензина одинаковы?

Решение. Проверку гипотезы Н 0: μ А -μ В =0 при конкурирующей. Н 1:μ 1 μ 2 делаем по пунктам:

1. Находим выборочные средние и сумму квадратов откло­нений Q.

;

;

2. Вычисляем опытное значение статистики Z

3. Находим из таблицы 10 t-распределения предел t β,ν , для числа степеней свободы ν=m+n–2=19 и β=1–α=0.95. В таблице 10 есть t 0.95.20 =2,09 и t 0.95.15 =2,13, но нет t 0.95.19 . Находим интерполяцией t 0.95.19 =2,09+ =2,10.

4. Проверяем, в какой из двух областей D или К лежит число Z on . Zon=-2,7 D=[-2,10; -2,10].

Поскольку наблюденное значение Z on лежит в критической области, К=R\D, то отбрасываем. Н 0 и приникаем гипотезу Н 1 . В этом случае про и говорят, что их разность значима. Если бы при всех условиях этого примера изменилось бы лишь Q, скажем, Q вдвое возросло, то изменился бы и наш вывод. Увеличение Q вдвое привело бы к уменьшению в раза величины Z on и тогда число Zon попало бы в допустимую область D, так что гипотеза H 0 выдержала бы проверку и была принята. В этом случае расхождение между и объяснялось бы естественным разбросом данных, а не тем, что μ А μ В.

Теория проверки гипотез весьма обширна, гипотезы могут быть о виде закона распределения, об однородности выборок, о независимости сл.величины и т.д.

КРИТЕРИЙ c 2 (ПИРСОНА)

Самый распространенный на практике критерий проверки простой гипотезы. Применяется, когда закон распределения неизвестен. Рассмотрим случайную величину X, над которой проведено n независимых испытаний. Получена реализация x 1 , x 2 ,...,x n . Необходимо проверить гипотезу о законе распределения этой случайной величины.

Рассмотрим случай простой гипотезы. Простая гипотеза проверяет согласование выборки с генеральной совокупностью, имеющей нормальное распределение (известное). По выборкам строим вариационный ряд x (1) , x (2) , ..., x (n) . Интервал разбиваем на подинтервалы. Пусть этих интервалов r. Тогда найдем вероятность попадания X в результате испытания в интервал Di, i=1 ,..., r в случае истинности проверяемой гипотезы.

Критерий проверяет не истинность плотности вероятности, а истинность чисел

С каждым интервалом Di свяжем случайное событие A i - попадание в этот интервал (попадание в результате испытания над X ее результата реализации в Di). Введем случайные величины. m i - количество испытаний из n проведенных, в которых произошло событие A i . m i распределены по биномиальному закону и в случае истинности гипотезы

Dm i =np i (1-p i)

Критерий c 2 имеет вид

p 1 +p 2 +...+p r =1

m 1 +m 2 +...+m r =n

Если проверяемая гипотеза верна, то m i представляет частоту появления события, имеющего в каждом из n проведенных испытаний вероятность p i , следовательно, мы можем рассматривать m i как случайную величину, подчиняющуюся биномиальному закону с центром в точке np i . Когда n велико, то можно считать, что частота распределена асимптотически нормально с теми же параметрами. При правильности гипотезы следует ожидать, что будут асимптотически нормально распределены

связанные между собой соотношением

В качестве меры расхождения данных выборки m 1 +m 2 +...+m r с теоретическими np 1 +np 2 +...+np r рассмотрим величину

c 2 - сумма квадратов асимптотически нормальных величин, связанных линейной зависимостью. Мы ранее встречались уже с аналогичным случаем и знаем, что наличие линейной связи привело к уменьшению на единицу числа степеней свободы.

Если проверяемая гипотеза верна, то критерий c 2 имеет распределение, стремящееся при n®¥ к распределению c 2 с r-1 степенями свободы.

Допустим, что гипотеза неверна. Тогда существует тенденция к увеличению слагаемых в сумме, т.е. если гипотеза неверна, то эта сумма будет попадать в некую область больших значений c 2 . В качестве критической области возьмем область положительных значений критерия


В случае неизвестных параметров распределения каждый параметр уменьшает на единицу количество степеней свободы для критерия Пирсона

Проверка однородности двух выборок производится с помощью критерия Стьюдента (или t – критерия). Рассмотрим постановку задачи проверки однородности двух выборок. Пусть произведено две выборки объемом и . Необходимо проверить нулевую гипотезу о том, что генеральные средние двух выборок равны. То есть, и . n 1

Прежде чем рассматривать методику решения задачи рассмотрим некоторые теоретические положения, используемые для решения задачи. Известный математик У.С. Госсет (ряд своих работ публиковал под псевдонимом Стьюдент) доказал, что статистика t (6.4) подчиняется определенному закону распределения, который в последствии был назван законом распределения Стьюдента (второе название закона – ”t – распределение”).

Среднее значение случайной величины X ;

Математическое ожидание случайной величины X ;

Среднеквадратичного отклонения среднего выборки объема n .

Оценка среднеквадратичного отклонения среднего рассчитывается по формуле (6.5):

Среднеквадратичного отклонения случайной величины X .

Распределение Стьюдента имеет один параметр – количество степеней свободы .

Теперь вернемся к исходной постановке задачи с двумя выборками и рассмотрим случайную величину равную разности средних двух выборок (6.6):

(6.6)

При условии выполнения гипотезы о равенстве генеральных средних справедливо (6.7):

(6.7)

Перепишем соотношение (6.4) применительно нашему случаю:

Оценка среднеквадратичного отклонения может быть выражена через оценку среднеквадратичного отклонения объединенной совокупности (6.9):

(6.9)

Оценка дисперсии объединенной совокупности может быть выражена через оценки дисперсии, рассчитанные по двум выборкам и :

(6.10)

С учетом формулы (6.10) соотношение (6.9) можно переписать в виде (6.11). Соотношение (6.9) является основной расчетной формулой задачи сравнения средних:

При подстановке значения в формулу (6.8) будем иметь выборочное значение t -критерия . По таблицам распределения Стьюдента при количестве степеней свободы и заданном уровне значимости можно определить . Теперь, если , то гипотеза о равенстве двух средних отвергается.

Рассмотрим пример выполнения расчетов для проверки гипотезы равенства двух средних в EXCEL. Сформируем таблицу данных (рис. 6.22). Данные сгенерируем с помощью программы генерации случайных чисел пакета ”Анализ данных”:

X1 выборка из нормального распределения с параметрами объемом ;

X2 выборка из нормального распределения с параметрами объемом ;

X3 выборка из нормального распределения с параметрами объемом ;

X4 выборка из нормального распределения с параметрами объемом .


Проверим гипотезу равенства двух средних (X1-X2), (X1-X3), (X1-X4). В начале рассчитаем параметры выборок признаков X1-X4 (рис. 6.23). Затем рассчитаем значение t - критерия. Расчеты выполнит с помощью формул (6.6) – (6.9) в EXCEL. Результаты расчетов сведем в таблицу (рис. 6.24).

Рис. 6.22. Таблица данных

Рис. 6.23. Параметры выборок признаков X1-X4

Рис. 6.24. Сводная таблица расчета значений t – критерия для пар признаков (X1-X2), (X1-X3), (X1-X4)

По результатам, приведенным в таблице на рис. 6.24 можно сделать заключение, что для пары признаков (X1-X2) гипотеза равенства средних двух признаков отвергается, а для пар признаков (X1-X3), (X1-X4) гипотезу можно считать справедливой.

Такие же результаты можно получить с помощью программы “Двухвыборочный t -тест с одинаковыми дисперсиями” пакета Анализ данных. Интерфейс программы приведен на рис. 6.25.

Рис. 6.25. Параметры программы “Двухвыборочный t - тест с одинаковыми дисперсиями”

Результаты расчетов проверки гипотез равенства двух средних пар признаков (X1-X2), (X1-X3), (X1-X4), полученные с помощью программы приведены на рис. 6.26-6.28.

Рис. 6.26. Расчет значения t – критерия для пары признаков (X1-X2)

Рис. 6.27. Расчет значения t – критерия для пары признаков (X1-X3)

Рис. 6.28. Расчет значения t – критерия для пары признаков (X1-X4)

Двухвыборочный t -тест с одинаковыми дисперсиями иначе называется t -тестом с независимыми выборками. Большое распространение так же получил t -тестом с зависимыми выборками. Ситуация, когда необходимо применять этот критерий возникает тогда, когда одна и та же случайная величина подвергается измерению дважды. Количество наблюдений в обоих случаях одинаково. Введем обозначения для двух последовательных измерений некоторого свойства одних и тех же объектови , , а разность двух последовательных измерений обозначим :

В этом случае формула для выборочного значения критерия приобретает вид:

, (6.13)

(6.15)

В этом случае количество степеней свободы . Проверку гипотезы можно выполнить с помощью программы “Парный двухвыборочный t -тест” пакета анализа данных (рис. 6.29).

Рис. 6.29. Параметры программы “Парный двухвыборочный t -тест”

6.5. Дисперсионный анализ –классификация по одному признаку (F - критерий)

В дисперсионном анализе проверяется гипотеза, которая является обобщением гипотезы равенства двух средних на случай, когда проверяется гипотеза равенства одновременно нескольких средних. В дисперсионном анализе исследуется степень влияния одного или нескольких факторных признаков на результативный признак. Идея дисперсионного анализа принадлежит Р. Фишеру. Он использовал его для обработки результатов агрономических опытов. Дисперсионный анализ применяется для установления существенности влияния качественных факторов на исследуемую величину. Английское сокращенное название дисперсионного анализа – ANOVA (analysis variation).

Общая форма представления данных с классификацией по одному признаку представлена в таблице 6.1.

Таблица 6.1. Форма представления данных с классификацией по одному признаку

Проверка статистических гипотез: гипотеза о равенстве средних для двух выборки

Работа носит вспомогательный характер, должна служить фрагментом других лабораторных работ.

Ни одно грамотное социологическое исследование не может обойтись без выдвижения гипотез. По большому счету можно вообще сказать, что главная его цель - это опровержение или подтверждение какого-либо предположения исследователя о социальной реальности на основе собранных им эмпирических данных. Мы выдвигаем гипотезу, собираем данные и делаем на основе статистического материала вывод. Но именно эта цепочка гипотеза-данные-вывод и содержит в себе массу вопросов, с которыми сталкивается практически любой начинающий исследователь. Основной из таких вопросов заключается в следующем: как перевести выдвинутую нами гипотезу на математический язык для того, чтобы ее потом можно было соотнести со статистическим массивом и, обработав с помощью методов математической статистики, опровергнуть или подтвердить? Здесь мы постараемся ответить на этот вопрос на примере проверки гипотез о равенстве средних.

Проверка статистических гипотез о равенстве средних

Под статистической гипотезой понимаются различного рода предположения относительно характера или параметров распределения случайной переменной, которые можно проверить, опираясь на результаты в случайной выборке.

Следует иметь в виду, что проверка статистической гипотезы имеет вероятностный характер. Также как мы никогда не можем на 100% быть уверены в том, что какой-либо выборочный параметр совпадает с параметром генеральной совокупности, мы никогда не можем абсолютно точно сказать, верна или ложна выдвинутая нами гипотеза.

Для того чтобы проверить статистическую гипотезу необходимо следующее:

1. Преобразовать содержательную гипотезу в статистическую: сформулировать нулевую и альтернативную статистические гипотезы.

2. Определить зависимые или независимые у нас выборки.

3. Определить объем выборок.

4. Выбрать критерий.

5. Выбрать уровень значимости, контролирующий допустимую вероятность ошибки первого рода, и определить область допустимых значений.

7. Отвергнуть или принять нулевую гипотезу.

Теперь рассмотрим каждый из шести пунктов более подробно.

Формулировка гипотезы

В статистических задачах часто бывает нужно сравнить средние двух разных выборок . Например, нас может интересовать разница средних зарплат мужчин и женщин, средних возрастов неких групп <А> и <В> и т.д. Или же, сформировав две независимые экспериментальные группы, мы можем сравнивать их средние с целью проверить, насколько различается, скажем, воздействие двух разных лекарств на кровяное давление или насколько размер группы влияет на отметки студентов. Иногда бывает так, что мы разбиваем совокупность на две группы попарно, то есть, имеем дело с близнецами, супружескими парами или одним и тем же человеком до и после какого-либо эксперимента и т.д. Чтобы стало более ясно, рассмотрим характерные примеры, где применяются различные критерии о равенстве средних.

Пример №1. Фирма разработала два разных препарата, понижающих давление (назовем их препараты Х и Y ) и хочет узнать различается или нет воздействие данных лекарств на больных, страдающих гипертонией. Из 50 человек с соответствующим заболеванием случайно выбираются 20 и случайно эти 20делятся на две группы по 10 человек. Первая группа в течение недели пользуется препаратом Х , вторая - препаратом Y . Затем у всех больных измеряется давление. Выдвигаемая содержательная гипотеза: препараты Х и Y по-разному влияют на кровяное давление больных .

Пример №2. Исследователь хочет узнать, как влияет продолжительность лекции на успеваемость студентов. Допустим, он избрал следующий путь: из 200 студентов случайно выбрал 50 человек и в течение месяца наблюдал за их успеваемостью. Далее он увеличил продолжительность лекций на 10 минут и в течение следующего месяца смотрел на успеваемость все тех же50 студентов. Потом он сравнил результаты каждого студента до и после увеличения продолжительности лекции. Выдвигаемая содержательная гипотеза: продолжительность лекции влияет на успеваемость студента .

Пример №3. Из 200 студентов случайно были выбраны 80 человек, и эти 80 человек разделили на две группы по 40. Одной группе задавали вопрос без установки: <Сколько вы готовы заплатить за натуральный йогурт?>, а второй группе задавали вопрос с установкой: <Сколько вы готовы заплатить за натуральный йогурт, если известно, что люди, потребляющие йогуртовые культуры, страдают на 10-15% меньше от заболеваний желудка?> Исследователь предполагал, что положительная информация о продукте, содержащаяся во втором вопросе, повлияет на респондента, и люди, отвечающие на вопрос с установкой, будут готовы заплатить за йогурт больше, нежели те, которым был предложен вопрос без установки. Выдвигаемая содержательная гипотеза: постановка вопроса влияет на ответ респондента .

Перед нами три примера, каждый из которых демонстрирует формулировку содержательной гипотезы. Теперь преобразуем наши содержательные гипотезы в статистические, но для начала немного скажем о статистических гипотезах в целом.

Наиболее частый подход к формулировке статистических гипотез - это выдвижение двух двусторонних гипотез :

Как видно из формулы, нулевая гипотеза говорит о том, что какой-либо параметр выборки или, скажем, разница между параметрами двух выборок равна некоему числу а . Альтернативная гипотеза утверждает обратное: интересующий нас параметр не равен а . Таким образом, данные две гипотезы содержат в себе все возможные варианты исходов.

Также возможна формулировка односторонних гипотез :

Иногда такие гипотезы оказываются более осмысленными. Обычно они имеют место в том случае, когда вероятность того, что наш параметр может оказаться больше (или меньше) а равна нулю, то есть такое невозможно.

Теперь сформулируем нулевую и альтернативную статистические гипотезы для наших трех примеров.

Таблица №1.

Пример №1

Пример №2

Пример №3

Препараты Х и Y по-разному влияют на кровяное давление больных

Продолжительность лекции влияет на успеваемость студентов

Постановка вопроса влияет на ответ респондента

Задача исследователя

4.Найти среднее арифметическое разностей для всех студентов, обозначаемое

Нулевая гипотеза

Смысл нулевой гипотезы

исредние генеральных совокупностей, из которых взяты выборки со среднимии. Нулевая гипотеза говорит о том, что влияние обоих лекарств на давление в среднем незначительно, и если даже выборочные средние не равны, то это объясняется лишь погрешностью выборки или иными не зависящими от нас причинами

Среднее разностей для студентов в генеральной совокупности. Нулевая гипотеза говорит о том, что на самом деле нет разницы между средним баллом студента до и после увеличения продолжительности лекции, и если даже выборочное среднее разностей отлично от нуля, то это объясняется лишь погрешностью выборки или иными не зависящими от нас причинами

Посколькусовпадает св примере №1, то объяснения можно найти в первой колонке (см. пример 1)

Альтернативная гипотеза

Вывод относительно содержательной гипотезы

Если мы принимаем нулевую гипотезу - препараты оказывают одинаковое влияние (разницы между средними нет), то мы отвергаем содержательную гипотезу, в противном случае - мы принимаем содержательную гипотезу

Если мы принимаем нулевую гипотезу - продолжительность лекции не влияет на успеваемость, то мы отвергаем содержательную гипотезу и наоборот

Если мы принимаем нулевую гипотезу - вопрос не влияет на выбор респондента, то мы отвергаем содержательную гипотезу и наоборот.

5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г. Лекция 6. Сравнение двух выборок 6-1. Гипотеза о равенстве средних. Парные выборки 6-2.Доверительный интервал для разности средних. Парные выборки 6-3. Гипотеза о равенстве дисперсий 6-4. Гипотеза о равенстве долей 6-5. Доверительный интервал для разности долей


2 Иванов О.В., 2005 В этой лекции… В предыдущей лекции мы проверяли гипотезу о равенстве средних двух генеральных совокупностей и построили доверительный интервал для разности средних для случая независимых выборок. Теперь мы рассмотрим критерий проверки гипотезы о равенстве средних и построим доверительный интервал для разности средних в случае парных (зависимых) выборок. Затем в секции 6-3 будет проверяться гипотеза о равенстве дисперсий, в секции 6-4 – гипотеза о равенстве долей. В заключение мы построим доверительный интервал для разности долей.


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве средних. Парные выборки Постановка проблемы Гипотезы и статистика Последовательность действий Пример


4 Иванов О.В., 2005 Парные выборки. Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух генеральных совокупностей. Выборки являются парными (зависимыми). 2. Обе выборки имеют объем n 30. Если нет, то обе выборки взяты из нормально распределенных генеральных совокупностей. Что мы хотим Проверить гипотезу о разности средних двух генеральных совокупностей:


5 Иванов О.В., 2005 Статистика для парных выборок Для проверки гипотезы используется статистика: где - разность между двумя значениями в одной паре - генеральное среднее для парных разностей - выборочное среднее для парных разностей - стандартное отклонение разностей для выборки - число пар


6 Иванов О.В., 2005 Пример. Тренинг студентов Группа из 15 студентов прошла тест до тренинга и после. Результаты теста в таблице. Проверим гипотезу для парных выборок на отсутствие влияния тренинга на подготовку студентов на уровне значимости 0,05. Решение. Подсчитаем разности и их квадраты. СтудентДоПосле Σ= 21 Σ= 145


7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145. 2,145."> 2,145."> 2,145." title="7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145."> title="7 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для df = 15 – 1=14 находим критическое значение t = 2,145 и записываем критическую область: t > 2,145.">




9 Иванов О.В., 2005 Решение Статистика принимает значение: Шаг 5. Сравним полученное значение с критической областью. 1,889


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Доверительный интервал для разности средних. Парные выборки Постановка задачи Метод построения доверительного интервала Пример


11 Иванов О.В., 2005 Описание проблемы Что мы имеем Имеем две случайные парные (зависимые) выборки объема n из двух генеральных совокупностей. Генеральные совокупности имеют нормальный закон распределения с параметрами 1, 1 и 2, 2 либо объемы обеих выборок 30. Что мы хотим Оценить среднее значение парных разностей для двух генеральных совокупностей. Для этого построить доверительный интервал для среднего в виде:






5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве дисперсий Постановка проблемы Гипотезы и статистика Последовательность действий Пример


15 Иванов О.В., 2005 В ходе исследования… Исследователю может понадобиться проверить предположение, о равенстве дисперсий двух изучаемых генеральных совокупностей. В случае, когда эти генеральные совокупности имеют нормальное распределение, для этого существует F-критерий, называемый также критерием Фишера. В отличие от Стьюдента, Фишер не работал на пивном заводе.


16 Иванов О.В., 2005 Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух нормально распределенных генеральных совокупностей. 2. Выборки являются независимыми. Это значит, что между субъектами выборок нет связи. Что мы хотим Проверить гипотезу о равенстве дисперсий генеральных совокупностей:














23 Иванов О.В., 2005 Пример Исследователь-медик хочет проверить, есть ли различие между частотой биения сердца курящих и некурящих пациентов (кол-во ударов в минуту). Результаты двух случайно отобранных групп приведены ниже. Используя α = 0,05, выясните, прав ли медик. КурящиеНе курящие


24 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице для количества степеней свободы числителя 25 и знаменателя 17 находим критическое значение f = 2,19 и критическую область: f > 2,19. Шаг 4. По выборке вычисляем значение статистики: 2,19. Шаг 4. По выборке вычисляем значение статистики:">




5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Гипотеза о равенстве долей Постановка проблемы Гипотезы и статистика Последовательность действий Пример


27 Иванов О.В., 2005 Вопрос Из 100 случайно отобранных студентов социологического факультета 43 посещают спецкурсы. Из 200 случайно отобранных студентов-экономистов 90 посещают спецкурсы. Отличается ли доля студентов, посещающих спецкурсы, на социологическом и экономическом факультетах? Похоже, что существенно не отличается. Как это проверить? Доля посещающих спецкурсы – доля признака. 43 – количество «успехов». 43/100 – доля успехов. Терминология такая же, как в схеме Бернулли.


28 Иванов О.В., 2005 Описание проблемы Что мы имеем 1. Две простые случайные выборки, полученные из двух нормально распределенных генеральных совокупностей. Выборки являются независимыми. 2. Для выборок выполнено np 5 и nq 5. Это означает, что, по крайней мере, 5 элементов выборки имеют изучаемое значение признака, и, по крайней мере, 5 не имеют. Что мы хотим Проверить гипотезу о равенстве долей признака в двух генеральных совокупностях:






31 Иванов О.В., 2005 Пример. Спецкурсы двух факультетов Из 100 случайно отобранных студентов социологического факультета 43 посещают спецкурсы. Из 200 студентов-экономистов 90 человек посещают спецкурсы. На уровне значимости = 0,05, проверьте гипотезу о том, что нет различия между долей посещающих спецкурсы на двух этих факультетах. 33 Иванов О.В., 2005 Решение Шаг 1. Основная и альтернативная гипотезы: Шаг 2. Задан уровень значимости =0,05. Шаг 3. По таблице нормального распределения находим критические значения z = – 1,96 и z = 1,96 строим критическую область: z 1,96. Шаг 4. По выборке вычисляем значение статистики.


34 Иванов О.В., 2005 Решение Шаг 5. Сравним полученное значение с критической областью. Полученное значение статистики не попало в критическую область. Шаг 6. Формулируем вывод. Нет оснований отвергнуть основную гипотезу. Доля посещающих спецкурсы не отличается статистически значимо.


5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г.5 ноября 2012 г Доверительный интервал для разности долей Постановка задачи Метод построения доверительного интервала Пример







Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме