Подпишись и читай
самые интересные
статьи первым!

Изучение геометрических параметров токарного резца. Конструкция и геометрия токарных резцов

Лабораторная работа 6

Тема: Геометрические параметры токарных резцов.

Цель работы: приобрести практические навыки измерения углов токарных резцов.

Необходимое оборудование, инструменты и материалы:

    Универсальный угломер.

    Измерительные инструменты: линейка (металлическая, масштабная), штангенциркуль.

    Подставка или плита.

    Плакат "Способы измерения углов".

    Резцы: а) проходной, б) отрезной.

Пояснения к работе

Геометрические параметры ревущих инструментов оказывают существенное влияние на увеличение режимов резания, а, следовательно, на увеличение производительности труда, что является основной задачей, поставленной перед промышленностью решением КПСС и правительством. Для полного использования режущих свойств резца необходимо придать его ревущей части рациональную форму, которая получается заточкой резца, а следовательно, углами резца. Бели-чина углов определяется их измерением. Правильно выбранные геометрические размеры обеспечивают стойкость и производительность режущего инструмента.

Режущая часть резца выполняется в виде клина, как наивыгоднейшая форма, и в ней различают следующие углы (Рис. 1):

1. Главные, рассматриваемые в главной секущей плоскости:

 - главный передний угол (угол между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания и проходящей через главную режущую кромку).

 - задний главный угол (угол между касательной к главной задней поверхности резца в рассматриваемой точке режущей кромки и плоскостью резания, при плоской задней поверхности резца - угол между главной задней поверхностью резца и плоскостью резания).

 - угол заострения (угол между передней и главной заднее поверхностями резца).

 - угол резания (угол между передней поверхностью резца и плоскостью резания).

При положительном значении угла между углами существуют следующие зависимости:

 +  + = 90 ;  + = ; = 90 -

При отрицательном значении угла  угол  > 90 градусов.

2. Вспомогательные углы, рассматриваемые во вспомогательной секущей плоскости:

 1 – вспомогательный передний угол

 1 - вспомогательный задний угол.

3. Углы в плане:

 - главный угол в плане (угол между проекцией главной режущей кромки на основную плоскость и направлением подачи).

 1 - вспомогательный угол в плане (угол между проекцией вспомогательной режущей кромки на основную плоскость и направлением подачи).

 - угол при вершине в плане (угол между проекциями режущих кромок на основную плоскость).

4. Угол наклона главной режущей кромки  (угол, заключенный между главной режущей кромки и линией, проведённой через вершину резца параллельно основной плоскости) Рис. 2.

Для измерения углов используются различной конструкции угломеры:

1. Универсальный угломер Семенова (Рис. 3).

2. Универсальный угломер (Ленинградский механический техникум)

3. Универсальный угломер Спиридовича.

4. Настольный угломер конструкции МИ 3.

Универсальный угломер Семенова предназначен для измерения наружных и внутренних углов, а также высот. Используется для измерения углов. Состоит из сектора, или основания 5, на котором нанесена основная градусная шкала - 6. По сектору перемещается пластина - 4 с нониусом, на котором с помощью державки - 3 закрепляется угольник - 2, связанный со съемной лекальной линейкой – 1.

Основная шкала угломера градуирована в пределах 0 - 130 град., но различными переустановками измерительных деталей достигайся измерение углов 0 - 320 град.. Точность отсчёта по нониусу составляет 2 -5 мин., а по градусной шкале 10 - 30 мин.. Метод измерения сводится к установке измеряемых поверхностей между подвижной линейкой сектора - 5 и подвижной лекальной линейкой № - 1 таким образом, чтобы образовался необходимый контакт, т.е. невидимый или видимый равномерный просвет.

Задание

На плиту или подставку установить токарный резец.

1. Линейкой измерить длину резца - l , а штангенциркулем сечение Н и В.

2. С помощью угломера определить углы -

3. Сделать эскизы сечений режущей чисти резцов.

4. Данные измерений занести в таблицу:

Наименование резца

 1

 1

 1

5. Сделать выводы, т.е. определить, для каких работ предназначены данные резцы.

6. Дать ответы на тестовые задания.

Форма отчета

Отчет по лабораторной работе оформляется на листе (формат А4) и должен содержать: наименование и цель работы, указание об оборудовании, инструментах и материалах, эскизы измеряемых резцов, эскизы сечений режущей части резцов с буквенным обозначением углов, сводную таблицу всех измерений, назначение исследуемых резцов, выполнить тестовые задания.

Рис. 3Универсальный угломер Д. С. Семенова.

Тестовые задания

Выберите правильный ответ:

Угол, расположенный между передней поверхностью резца и плоскостью, перпендикулярной плоскости резания, это угол –

  1. передний

    заостренный

4. угол резания

Выберите правильный ответ:

Угол, расположенный между передней поверхностью и задней поверхностями резца является

    передним углом

    задним углом

    углом заострения

4. углом резания

Выберите правильный ответ:

При увеличении переднего угла  угол резания  ...

1. уменьшается

2. увеличивается

3. остается неизменным

Выберите правильный ответ:

Сумма углов в плане  +  1 +  = ?

Выберите правильный ответ:

При заточке заднего угла  = 10°, переднего угла  = 10°, угол заострения  равен:

У
становите соответствие:

Углы: Ответ:

1. передний  -

2. заострения  -

3. угол резания  -

4. задний угол  -

Выберите правильный ответ:

Угол, расположенный между главной режущей кромкой и вспомогательной режущей кромкой на основную плоскость резца - это:

1. главный угол в плане

2. вспомогательный угол в плане

3. угол при вершине

Выберите правильный ответ:

Угол, расположенный между задней поверхностью резца и плоскостью резания это угол –

2. передний

3. заостренный

4. угол резания

Выберите правильный ответ:

Угол, расположенный между передней поверхностью и плоскостью резания, это угол –

1. передний

2. заострения

4. угол резания

Выберите правильный ответ:

При увеличении переднего и заднего угла угол заострения...

1. уменьшается

2. увеличивается

3. остается неизменным



Стр.

Предисловие ………………………………………………………………...


1

Лабораторная работа № 1. Определение геометрических параметров режущей части резцов ……………………………………………………...

2

Лабораторная работа № 2. Определение сил резания при точении …….

15

3

Лабораторная работа № 3. Определение температуры при резании металлов …………………………………………………………………….

4

Лабораторная работа № 4. Определение деформации стружки при резании металлов …………………………………………………………...

Приложения ………………………………………………………………...

46

Литература ………………………………………………………………….

55
ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ

Настоящее руководство предназначено для лабораторных занятий студентов, обучающихся по специальности «Технология машиностроения» по курсу «Резание металлов».

Лабораторные работы должны способствовать закреплению теоретических знаний, полученных во время изучения курса, и развитию у студентов навыков самостоятельной работы.

Выполнение лабораторных работ позволит студентам изучить оборудование, инструменты, измерительные приборы. Составление отчетов по лабораторным работам научит студентов обобщать опытные данные, проводить графоаналитическую обработку и анализировать результаты.

Все работы составлены по единому плану: цель, краткие теоретические сведения, порядок выполнения работы, указания по составлению отчета и контрольные вопросы. По каждой работе студент сдает зачет, руководствуясь приведенными контрольными вопросами.

Сборник составлен Буровой Н.М. и Логуновой Э.Р. и является дополненным и переработанным изданием сборника лабораторных работ по курсу «Технология конструкционных материалов» Буровой Н.М. 1985г.

^ ЛАБОРАТОРНАЯ РАБОТА №1

ОПРЕДЕЛЕНИЕ ГЕОМЕТРИЧЕСКИХ ПАРАМЕТРОВ

РЕЖУЩЕЙ ЧАСТИ РЕЗЦОВ

Цель работы : Практическое ознакомление с основными типами резцов, конструкцией и геометрией режущих элементов, средствами и техникой измерения отдельных конструктивных и геометрических параметров.

^ Изучение основных типов резцов

Резцы классифицируют по следующим признакам:


  1. По виду оборудования: токарные, строгальные, долбежные (рисунок 1).

  2. По выполняемым переходам: проходные, подрезные, упорно-подрезные, отрезные, резьбовые, расточные, фасочные, фасонные (см. рисунок 1).

  3. По способу изготовления: цельные, с приваренной головкой, с приваренной или припаянной пластинкой, с механическим креплением режущей пластинки (рисунок 2, а).

  4. По форме рабочей части: прямые, отогнутые, изогнутые, оттянутые (рисунок 2, б).
Резцы, у которых ось в плане и в боковом виде прямая, называются прямыми; резцы, ось которых в плане отогнута или изогнута, называются отогнутыми или изогнутыми. Резцы, рабочая часть которых тоньше стержня, называются оттянутыми.

  1. По направлению подачи: правые и левые (рисунок 3).

^ Конструктивные и геометрические параметры

резцов

Резец (рисунок 4) состоит из рабочей части 1 и крепежной части (стержня или тела резца) 2.

Рабочая часть резца образуется специальной заточкой и ограничена тремя поверхностями (см. рисунок 4):

передней 3, по которой в процессе резания сходит стружка;

главной задней 4, обращенной к поверхности резания и

вспомогательной задней 5, обращенной к обработанной поверхности детали. Режущие кромки, производящие реза­ние, получаются в результате пересечения трех плоскостей. Глав­ная режущая кромка 8 образуется пересечением передней и главной задней поверхностей, а вспомогательная режущая кромка 7 – пере­сечением передней и вспомогательной задней поверхностей. Место пересечения главной и вспомогательной режущих кромок называется вершиной резца 6.



Рисунок 3. Правые и левые резцы

Рисунок 4. Элементы резца

Углы резца

Исходной базой для измерения углов являются:

основная плос­кость – плоскость, параллельная направлениям продольной и попе­речной подач,

плоскость резания – плоскость, касательная к по­верхности резания и проходящая через главную режущую кромку (рисунок 5, а), а так же

главная секущая плоскость – плоскость перпендикулярная проекции главной режущей плоскости на основную плоскость.

^ Главные углы

Главные углы резца измеряются в главной секущей плоскости N N , проведенной перпендикулярно к проекции главной режущей кромки на основную плоскость (рисунок 5, б).

^ Главный передний угол γ

Главный задний угол α – угол между задней поверхностью лез­вия к плоскостью резания.

Угол резания δ – угол между передней поверхностью лезвия и плоскостью резания.

Угол заострения β – угол между передней и задней поверхнос­тями лезвия.

Между углами существуют следующие зависимости:


При отрицательных значениях угла γ угол резания δ > 90°.

^ Вспомогательные углы

Вспомогательные углы резца измеряются во вспомогательной плоскости N 1 N 1 проведенной перпендикулярно вспомогательной режущей кромке на основную плоскость (см. рисунок 5, б).

^ Вспомогательный угол γ 1 – угол между передней поверхностью лезвия и плоскостью, параллельной основной.

Вспомогательный угол α 1 – угол между вспомогательной задней поверхностью лезвия и плоскостью, проходящей через вспомогательную режущую кромку перпендикулярно к основной плоскости.



Рисунок 5. Геометрия резца: а) схема обработки детали; б) углы резца.

^ Углы в плане

Углы в плане измеряются в основной плоскости.

Главный угол в плане φ (см. рисунок 5, б) образован проекцией главной режущей кромки на основную плоскость и направлением подачи.

^ Вспомогательный угол в плане φ 1 образован проекцией вспомогательной режущей кромки на основную плоскость и направлением подачи.

Угол при вершине резца ε образован проекциями главной и вспомогательной режущих кромок на основную плоскость.

Сумма этих углов в плане равна 180°.

^ Угол наклона главной режущей кромки

Угол наклона главной режущей кромки λ (см. рисунок 5 вид А) измеряется в плоскости резания. Это угол между режущей кромкой и горизонталью, проведенной через вершину резца.

Угол λ считается отрицательным, когда вершина резца является наивысшей точкой режущей кромки; равным нулю – при главной режущей кромке, параллельной основной плоскости, и положительным, ког­да вершина резца является наивысшей точкой режущей кромки.

^ Изучение методов контроля геометрических параметров резцов

Сечение тела резца B x Н (см. рисунок 4) измеряется штангенцир­кулем, а геометрические параметры – универсальным и настольным угломерами.

Универсальными угломерами измеряются углы в плане: главный φ и вспомогательный φ 1 . На рисунке 6 показано измерение угла универ­сальным угломером.

Универсальный настольный угломер (рисунок 7) применяется для из­мерения углов резца – переднего γ, заднего главного α и вспомогательного α 1 , главного в плане φ и вспомогательного в плане φ 1 и наклона главной режущей кромки λ.

Угломер состоит из основания 1 и стойки 2, по которой перемещается устройство, состоящее из блока 3, трех шкал с измерительными линейками 4. Это устройство перемещается на стойке по шпоночному пазу, поворачивается вокруг стойки и закрепляется в любом положении по высоте фиксатором 6. Измерительные ножи шкал имеют винты, позволяющие фиксировать требуемое их положение по отношению к измеряемой поверхности. Основание угломера снабжено линейкой 5, служащей для правильной установки резца при измере­нии углов φ и φ 1 .



Рисунок 6. Измерение главного угла в плане φ универсальным угломером.

Для измерения переднего угла γ используется измерительная линейка 4 (рисунок 7, б).

Линейка настраивается "на глаз" перпендикулярно главной ре­жущей кромке до соприкосновения с передней поверхностью резца. При этом указатель измерительной линейки, отклоняясь влево от нуля, показывает положительное значение угла γ. При отрицательном значении γ отсчет угла производится вправо от нуля. Измерение заднего угла α производится аналогично переднему. В этом случае измерительная линейка доводится до полного контакта с главной задней поверхностью. Отсчет значения угла α производится вправо от нуля.

Для измерения главного и вспомогательного углов в плане φ и φ 1 используется измерительная линейка 4 (рисунок 7, б). Резец устанавливается на основании 1 до соприкосновения с направляющей линейкой 5, а шкальное устройство поворачивается на стойке 2 в требуемое положение до соприкосновения измерительной линейки в пер­вом случае с главной, во втором – со вспомогательной режущей кромкой. Отсчет значения угла φ производится влево от нуля, а φ 1 – вправо от нуля.

Для измерения угла наклона главной режущей кромки применяет­ся измерительная линейка 4 (рисунок 7, а). Шкала поворачивается на стойке 2 в требуемое положение до соприкосновения с вершиной резца. При этом положение главной режущей кромки устанавливается параллельно измерительной плоскости линейки. При повороте изме­рительной линейки до соприкосновения с главной режущей кромкой указатель фиксирует значение угла наклона λ. При отсчете угла λ вправо от нуля получают его отрицательные значения, а влево от нуля – положительные.



Рисунок 7. Универсальный настольный угломер для углов призматических резцов: а) измерение угла λ; б) измерение углов γ и α; в) измерение углов φ и φ 1 .

^ Указания по выполнение работы

1 Ознакомиться с основными типами резцов, их конструктивными и геометрическими параметрами.

2 Выполнить эскизы заданного резца со всеми необходимыми сечениями.

3 Ознакомится со способами измерения геометрических параметров резца и провести эти измерения у заданного измерения.

4 Вычертить схему обработки для заданного резца.

Все данные занести в отчет.

^ Форма отчета

Данные резца

Результаты измерений углов резца, град.

Эскиз заданного резца с указанием положения секущих плоскостей, конфигураций сечений в этих плоскостях и геометрических параметров.

Схема обработки заданным резцом с указанием векторов скорости υ и подачи S.

Контрольные вопросы:


  1. Классификация резцов.

  2. Элементы резцов.

  3. Углы резца в статике: главные, вспомогательные, в плане, наклона главной режущей кромки.

  4. Методы контроля геометрических параметров.

  5. Схемы обработки различными токарными резцами.

^ ЛАБОРАТОРНАЯ РАБОТА № 2

ОПРЕДЕЛЕНИЕ СИЛ РЕЗАНИЯ ПРИ ТОЧЕНИИ

Цель работы : ознакомление с устройством и работой динамометра ДК – 1 и установление влияния режимов резания на величину составляющих сил резания при продольном точении.

^ Силы резания при точении

При точении на резец действует сила резания Р, представляющая собой равнодействующую сил, действующих на режущий инструмент, направление действия силы Р зависит от конкрет­ных условий работы.

Для удобства рассмотрения действия этой силы и использования в расчетах ее принято раскладывать на три составляющие (рисунок 1).

Рисунок 1. Силы резания при точении.

Сила Р Z – главная составляющая силы резания (касательная составляющая силы резания), совпадающая по направленно со скоростью главного движения резания в вершине лезвия.

Сила Р Y – радиальная составляющая силы резания, направленная по радиусу главного вращательного движения резания в вершине резания.

Сила P X – осевая составляющая силы резания, параллельная оси главного вращательного движения резания.

Величины перечисленных составляющих силы резания необходимо знать при определении мощности электродвигателя станка, расчете и проверке механизмов коробки скоростей и коробки подач, расчете режущего инструмента, при определении жесткости узлов станка и приспособлений, анализе условий вибрации.

В некоторых случаях при назначении режимов резания проверяют прочность и жесткость детали.

Величины составляющих силы резания, в зависимости от глубины резания t (в мм) и подачи S (мм/об), можно определить по эмпирическим формулам:

, Н

, Н (1)

где C P – коэффициенты, зависящие от физико-механических свойств материала заготовки и условий обработки;

X P и Y P – показатели степеней;

K P – поправочные коэффициенты, зависящие от конкретных условий обработки.

Так как методика исследования всех трех зависимостей (1) одна и та же, то целесообразно ограничиться изучением влияния эле­ментов режимов резания на величину только главной составляющей сил резания Р Z , а остальные составляющие вычислить по ориен­тировочным соотношениям:


(2)

Эти соотношения получены при обработке стали 45 без охлаждения для резцов с передним углом γ = 15°, главным углом в плане φ = 45°, углом наклона главной режущей кромки λ = 0.

Равнодействующая сил резания Р определяется как диагональ параллелепипеда, построенного на составляющих силах:


(3)

В данной работе измерение Р Z производится динамометром ДК – 1 (рисунок 2).

^ Работа динамометра

Динамометр ДК – 1 (см. рисунок 2) устанавливается на верхних салазках суппорта токарного станка вместо резцедержателя и закрепляется болтом, пропущенным через отверстие А.

Резец закрепляется в державке 2, которая соединена с корпусом 1 динамометра при помощи двух упругих (торсионных) брусков квадратного сечения 3. Под действием силы Р Z резец слегка отжимается вниз, скручивая торсионные бруски. При этом конец длинной планки 4, приваренной к державке 2, поднимается, нажимая стержнем 5 на ножку индикатора 6.

Перемещение ножки индикатора пропорционально деформации торсионных брусков 3 и, следовательно, касательной составляющей сил резания Р Z . Цена деления индикатора определяется предварительным тарированием.

Для устранения влияния неизбежных колебаний планки 4 на ножку индикатора предусмотрено простое демпфирующее устройство, включающее в себя насаженный на стержень 5 поршень 7 с двумя малыми отверстиями. Поршень помещен в цилиндре, заполненном вязким маслом.


Рисунок 2. Динамометр ДК – 1:

1 – корпус динамометра; 2 – державка; 3 – торсионный брусок; 4 – планка; 5 – стержень; 6 – индикатор; 7 – поршень.

Цель работы: изучение типов, конструкции и геометрических параметров токарных резцов и приобретение навыков измерения их геометрических параметров.

Теоретические основы основные типы токарных резцов

Резец – это однолезвийный инструмент для обработки с поступательным или вращательным движением резания и возможностью подачи в любом направлении (ГОСТ 25761-83).

Токарные резцы являются наиболее распространенным и простым видом режущего инструмента. Под действием режущего инструмента обрабатываемая заготовка приобретает заданную конфигурацию, размеры и качественные характеристики поверхностного слоя.

При обработке резанием на обрабатываемой заготовке различают следующие поверхности (рис. 1):

Рис. 1. Поверхности обрабатываемой заготовки

обрабатываемую поверхность – поверхность, которая будет удалена (1 );

обработанную поверхность – поверхность, полученная после снятия стружки (2 );

поверхность резания – поверхность, образуемая на обрабатываемой заготовке непосредственно режущей кромкой резца (3 ).

Токарные резцы классифицируют по виду и характеру обработки, форме рабочей части, направлению подачи, материалу рабочей части, способу изготовления, сечению крепежной части, установке относительно заготовки.

По виду обработки различают проходные резцы, применяемые для наружного точения (прямые, отогнутые, упорные) (рис. 2, а, б, в ); подрезные (рис. 2, г ) – для подрезания торцов и обработки ступенчатых поверхностей; расточные (рис. 2, д ) – для растачивания отверстий, предварительно просверленных или полученных штамповкой или литьем; отрезные (рис. 2, е ) – для отрезки заготовок и точения прямоугольных канавок; резьбовые (рис. 1, ж ) – для нарезания резьбы; контурного точения (рис. 2, з ) – для работы на станках с копировальными устройствами и станках с ЧПУ; фасонные (рис. 2, и) – для выполнения фасонных работ.

Рис. 2. Типы токарных резцов:

а, б, в – проходные, соответственно прямой, отогнутый, упорный;

г – подрезной; д – расточной; е – отрезной; ж – резьбовой;

з – контурного точения; и – фасонный; Н – высота; В – ширина;

L – длина резца; l – длина рабочей части; d – диаметр крепежной части

По характеру обработки резцы бывают черновые и чистовые.

По форме рабочей части резцы могут быть прямые, отогнутые вправо или влево, оттянутые вверх или вниз и изогнутые.

По направлению продольной подачи резцы делят на правые и левые. Правые резцы работают справа налево (от задней бабки к передней), левые – в обратном направлении.

По материалу рабочей части резцы разделяют на резцы из быстрорежущей стали, с пластинками твердого сплава, режущей керамикой, со вставками из композитов и алмаза, а также непосредственно с кристаллами алмаза. Углеродистые и легированные инструментальные стали для изготовления токарных резцов применяют редко.

По способу изготовления резцы бывают цельные (головка и тело сделаны из одного материала), составные (с приваренной или припаянной рабочей частью), сборные (с механическим креплением пластин). Широко применяют резцы с механическим креплением сменных многогранных пластин (СМП), имеющих различную форму (трех-, четырех-, пяти-, шестигранных и т. п.) и предназначенных для разных типов резцов и условий резания. К их достоинствам относятся высокие механические свойства и быстрота смены пластины без потери установленного размера. При помощи твердосплавных пластин значительно проще получить необходимые геометрические параметры режущей части.

По сечению крепежной части резцы делят на стержневые, призматические и круглые (дисковые). Стержневые резцы в свою очередь могут иметь прямоугольное, квадратное и круглое сечения. Круглые и призматические резцы обычно бывают фасонные и резьбовые.

По установке относительно заготовки различают радиальные (наиболее часто применяемые) и тангенциальные резцы.

Рис. 3. Элементы токарного резца:

1 – рабочая часть; 2 – крепежная часть (стержень); 3 – вершина резца

Наиболее распространены стержневые резцы (рис. 3). Они состоят из рабочей части 1 , содержащей лезвие, и крепежной части (стержня) 2 , используемой для установки в резцедержателе станка.

На лезвии различают переднюю поверхность Аγ (по которой сходит стружка), главную Аα и вспомогательную Аα 1 задние поверхности (обращенные к заготовке), главную К и вспомогательную К 1 режущие кромки (образованные пересечением передней и задних поверхностей) и вершину резца 3 (в точке пересечения главной и вспомогательной режущих кромок).

Для определения числовых значений угловых параметров элементов лезвия принята прямоугольная система координат. Статическая система координат (ССК) с началом в рассматриваемой точке режущей кромки ориентирована относительно направления скорости главного движения резания (ГОСТ 25762–83).

Рис. 4. Геометрические параметры токарного резца

При определении углов резца используют следующие плоскости: основную Рν , резания Рп и рабочую Рs (рис. 4). Основная плоскость Рν проходит через точку режущей кромки перпендикулярно вектору скорости главного движения. В ней располагаются векторы движений продольной и поперечной подач.

Плоскость резания Рп – плоскость, касательная к главной режущей кромке в рассматриваемой точке и перпендикулярная основной плоскости. Вспомогательная плоскость резания проходит аналогично через вспомогательную режущую кромку.

Рабочая плоскость Рs образована векторами скорости главного движения и движения подачи и проходит через вершину резца.

Углы резца рассматривают в главной Рτ и вспомогательной Р´τ секущих плоскостях, перпендикулярных соответственно линиям пересечения главной и вспомогательной плоскостей резания с основной плоскостью.

В главной секущей плоскости Рτ рассматривают следующие углы: передний угол γ - угол между передней поверхностью, на которую сходит стружка, и основной плоскостью Рν . С увеличением переднего угла γ уменьшается работа резания и снижается шероховатость обработанной поверхности; угол заострения β - угол между передней и главной задней поверхностями резца, определяющий прочность режущей части; главный задний угол α - угол между главной задней поверхностью резца и плоскостью резания Рп .

Сумма углов α + β + γ = 90º . Сумму углов α и β называют углом резания и обозначают δ .

Во вспомогательной секущей плоскости Р´τ рассматривают вспомогательный задний угол α 1 . У отогнутых проходных резцов этот угол обычно равен главному заднему углу α .

Задние углы α и α 1 уменьшают трение между задними поверхностями инструмента и поверхностью обрабатываемой заготовки, что приводит к снижению силы резания и уменьшению износа резца, однако чрезмерное увеличение заднего угла приводит к ослаблению лезвия. При обработке стальных и чугунных деталей рекомендуется задние углы выполнять в пределах 6...12°.

В основной плоскости (при виде сверху на резец, установленный в суппорте токарного станка) рассматривают углы в плане.

Главный угол в плане φ – угол между проекциями на основную плоскость плоскости резания и рабочей плоскости. Главный угол в плане φ влияет на силы резания. При обработке деталей малой жесткости угол φ = 90º. В этом случае радиальная сила, вызывающая изгиб детали, минимальна.

В зависимости от условий работы принимают φ = 30...90°. При обработке на универсальных токарных станках чаще всего φ = 45°. У проходных, подрезных и большинства отрезных резцов φ = 90°. У резцов для растачивания глухих отверстий φ > 90°, а для растачивания сквозных отверстий φ = 45...60°.

Вспомогательный угол в плане φ 1 – угол между проекциями на основную плоскость вспомогательной плоскости резания и рабочей плоскости. Наиболее распространенный вспомогательный угол в плане φ 1 = 12...15°.

Угол вершины ε – угол между проекциями главной и вспомогательной плоскостей резания на основную плоскость.

Сумма углов φ + φ 1 + ε = 180º.

Угол наклона главной режущей кромки λ – угол в плоскости резания между главной режущей кромкой и основной плоскостью. Этот угол влияет на направление схода стружки. Угол λ считают положительным, когда вершина резца является низшей точкой режущей кромки (рекомендуется для черновой обработки, так как стружка сходит на обработанную поверхность); равным нулю, когда главная режущая кромка лежит в основной плоскости (стружка сходит на резец – принимается наиболее часто), и отрицательным, когда вершина является высшей точкой режущей кромки (стружка сходит на обрабатываемую поверхность – у резцов для чистовой обработки).

Расточной резец широко применяется в машиностроении и производстве. Их используют для обработки сквозных и глухих отверстий на токарной группе станков. Резцы расточные токарные помогают достичь более точных результатов в работе, а также создают высокую частоту обработки. Инструментом последовательно снимаются слои металла, что помогает расширить обрабатываемое отверстие до нужных размеров. Благодаря точному оборудованию, результат можно регулировать в пределах десятых долей миллиметра. Если резец для расточки хорошо заточен и находится в исправном состоянии, то он может работать с различными металлами, так как он всегда должен быть более жестким, чем деталь. Для надежности, всегда требуется проверять его закрепление, так как неправильное положение может привести к поломке самого инструмента или браку обработки детали.

Основной упор в данном резце сделан на высокую производительность в работе. Как правило, расточной резец снимает относительно небольшие слои, которые помогают расширить отверстие, так что здесь важна скорость и точность, что в свою очередь отображается на геометрии изделия. Рабочая поверхность сделана клинообразной формы, так как это помогает лучше врезаться в слой материала и деформировать его, снимая стружку должной толщины. Постепенное скалывание верхнего слоя материала доводит заготовку до необходимого состояния. Действующим стандартом, по которому изготавливается резец расточной, является ГОСТ 18872-73, что предназначен для изделий из быстрорежущей стали, наименьший диаметр которых достигает 14 мм. Если же инструмент предназначается для глухих отверстий, диаметр которых составляет до 6 мм, то это уже будет ГОСТ 18873-72. Если расточной резец изготавливается из твердосплавного состава, то здесь будет актуальным ГОСТ 18882-73 для сквозных отверстий и ГОСТ 18883-72 – для глухих, соответственно.

фото:расточные токарные резцы по металлу

Виды расточных резцов

Расточной резец может быть выполнен в нескольких вариантах. Быстрорежущий вид служит для обработки различных легких материалов и соответствующих сплавов, куда можно отнести алюминий, фторопласт, текстолит и другие материалы.

Для более крепких и тяжелых составов применяются монолитные, резец расточной твердосплавный или со вставками пластин из твердых сплавов. Такие изделия уже могут работать с бронзой, сырой сталью, нержавейкой, калеными сортами стали и другими материалами.

Все эти разновидности в свою очередь разделяются и по виду державки, которая может быть квадратной или круглой. Помимо этого, есть еще разделение по назначению. Согласно выполняемым функциям выпускают расточной резец для глухих отверстий, которые применяется не только для обработки внутренних стенок отверстия, но и занимается проточкой дна, вместе с последующей его шлифовкой. Также встречается резец расточной проходной, который используется для сквозных отверстий. Он работает с деталями цилиндрической формы, или имеющими сквозные дырки.

Сейчас оказываются весьма популярной такая разновидность как расточной резец со сменными пластинками. Они имеют различные профили и формы, а главное, что в комплекте к ним идет набор запасных частей, которые могут использоваться для крепежа рабочих пластин и державок. Износившиеся пластины можно быстро заменить.

Основные размеры

Расточные резцы для токарных станков, которые предназначены для работы со сквозными и глухими отверстиями, изготовляются согласно определенным стандартам размеров.

Высота,мм Ширина,мм Длина,мм
16 16 140
16 16 170
20 20 140
20 20 170
20 20 200
25 25 200
25 25 240
32 25 280

Геометрические параметры расточного резца

Геометрия рабочей части изделия состоит из трех основных углов, которые в своей сумме всегда образуют 90 градусов. Сюда входит:

  • Главный задний угол, который образуется между плоскостью резания и задней поверхностью инструмента. Он уменьшает трение между деталью и задней поверхностью. Чем больше этот угол, тем меньше шероховатость поверхности, которая поддается обработке. Соответственно, чем тверже металл, тем меньше должен быть этот угол.
  • Угол заострения, который замеряется между передней и задней поверхностью инструмента. Он влияет на прочность изделия, так что чем он больше, тем надежнее будет расточной резец.
  • Главный передний, который замеряется между передней поверхностью инструмента и то плоскостью, которая располагается перпендикулярно от поверхности резания. С его помощью можно повлиять на размер деформации снимаемого слоя.

фото:геометрия расточного резца

Выбор расточного резца

Расточной резец выбирается согласно тому, с какими материалами он будет работать. В первую очередь – это тип, для глухих или наружных отверстий. Далее очень важно смотреть по материалу, который подвергается обработке. Если основной геометрический принцип у данной разновидности примерно одинаковый, то материалы изготовления будут различными.

«Совет профессионалов! Ни в коем случае не стоит использовать изделия из быстрорежущей стали для обработки нержавеющей стали, бронзы и изделий из каленых сортов металла. Это приведет к быстрому износу, так что здесь лучше применять только изделия из твердосплавных материалов»

Не стоит также забывать и о размерах, так как некоторые резцы просто физически не смогут проникнуть в отверстие. Для постоянной активной работы желательно иметь набор из нескольких изделий или выбрать вид со сменными пластинами. Для обработки глухих отверстий, специалисты подбираются изделия в два раза меньше по диаметру, чем обрабатываемое отверстие.

Режимы резания расточными резцами

Выбор режима резания во многом зависит от расточки резца, диаметра отверстия, вида материала и прочих факторов. В зависимости от диаметра обрабатываемого отверстия при работе со сквозными отверстиями, резец требуется устанавливать ниже или выше их центра. В то же время, при работе с глухими отверстиями, резец внутренний расточной ставится четко по центру, чтобы не было бобышек в торце.

Маркировка

Существует несколько основных марок резцов, отличных по размеру и составу. К примеру, Т15К6 – материал изготовления относится к титановольфрамовой твердосплавной группе с 15%-ным содержанием карбида титана и 6%-ным содержанием кобальта.

Производители

  • TaeguTec (Южная Корея);
  • УкрМетиз (Украина);
  • Киржачский инструментальный завод (Россия);
  • ЧИЗ (Украина);
  • Intertool (Китай).

Расточные упорные резцы:Видео

Практическая работа №4

« Расчет токарных резцов »

Цель работы: научиться рассчитывать токарные резцы на прочность и жесткость по максимально допустимым нагрузкам; пользоваться стандартами для выбора основных размеров токарных резцов; работать с таблицами справочной литературы для выбора геометрических параметров инструмента.

Краткая теоретическая справка

По форме, конструкции и виду обработки различают токарные резцы призматические, общего назначения и фасонные. Призматические токарные резцы делят на проходные прямые (правые и левые), упорные, расточные для сквозных и глухих отверстий, подрезные (торцовые), отрезные, галтельные, затыловочные, резьбовые и специальные.

Рабочая часть резцов в большинстве случаев представляет собой пластину из твёрдого сплава, которую крепят на резцах следующими способами: напайкой непосредственно на корпус; механически; с помощью сил резания; механическим креплением вставки с напаянной пластиной.

Геометрические элементы лезвия определяют по справочникам по обработке металлов резанием. Основные размеры токарных резцов общего назначения приведены в стандартах.

Технические требования к резцам, оснащённым пластинами из твёрдых сплавов, приведены в ГОСТ 5688 – 81, к резцам из быстрорежущей стали – в ГОСТ 10047 – 82.

Преобладает прямоугольная форма сечения державки резцов, при которой врезание пластины меньше «ослабляет» корпус. Корпус с квадратной формой сечения лучше сопротивляется сложному изгибу и применяется для расточных и

револьверных резцов, а также в других случаях, когда расстояние от линии центров станка до опорной поверхности резца недостаточно велико. Корпус с круглой формой сечения применяют для расточных резьбовых, токарно-затыловочных резцов, так как он позволяет осуществлять поворот резца и изменять углы его заточки.

Размеры поперечного сечения корпуса резца выбирают в зависимости от силы резания, материала корпуса, вылета резца и других факторов. Нормализованные размеры поперечного сечения корпуса резцов выбирают по таблице 1.

Таблица 1. Размер сечений корпусов резцов, мм

h x b = 1

h x b = 1,2

h x b = 1,6

h x b = 2

Ширину b или диаметр d поперечного сечения корпуса резца можно определить по формулам:

    при квадратном сечении (h = b )

    при прямоугольном сечении (h 1,6b )

;

    при круглом сечении

,

где P z главная составляющая силы резания, Н; l – вылет резца, мм; σ и.д – допустимое напряжение при изгибе материала корпуса, мПа; для корпуса из незакалённой углеродистой стали σ и.д = 200 … 300 МПа, для корпуса из углеродистой стали, подвергнутой термической обработке по режиму быстрорежущей стали, σ и.д можно максимально увеличить в 2 раза, при прерывистом процессе снятия стружки и скоростном резании принимают σ и.д = 100…150 МПа.

При расчёте отрезных резцов на прочность учитывают, что опасным сечением отрезного резца является место перехода от рабочей части к корпусу.

.

Максимальная нагрузка, допускаемая прочностью резца при известных размерах сечения корпуса резца:

    для резца прямоугольного сечения

P z доп =
;

    для резца круглого сечения

P z доп =
.

Максимальная нагрузка, допускаемая жёсткостью резца, определяется с учётом допустимой стрелы прогиба резца

P z жёст = ,

где f допустимая стрела прогиба резца при предварительном точении, f = 0,1 мм, при окончательном точении f = 0,05 мм; Е – модуль упругости материала резца для углеродистой стали Е = 1,9 · 10 5  2,15 · 10 5 МПа;

J – момент инерции сечения корпуса (для прямоугольного сечения , для круглого сечения 0,05d 4 );

l – расстояние от вершины резца до рассматриваемого (опасного) сечения (вылет резца), мм.

Необходимо, чтобы сила P z была меньше максимально допустимых нагрузок P z доп и P z жёст или равна им: P z P z доп; P z P z жёст.

Задание для аудиторной работы

Рассчитать и сконструировать составной токарный проходной резец с пластиной из твёрдого сплава для чернового обтачивания вала. Диаметр заготовки D; припуск на обработку (на сторону) h, подача на оборот S 0 мм/об, вылет резца l мм.

Пример решения:

Заготовка из стали 45 с σ в = 750 МПа. Диаметр заготовки D = 80 мм, припуск на обработку (на сторону) h = 3,5 мм, подача на оборот S 0 = 0,2 мм/об, вылет резца l = 60 мм

    В качестве материала для корпуса резца выбираем углеродистую сталь 50 с σ в = 650 МПа и допустимым напряжением на изгиб σ и.д = 200 МПа

    Главная составляющая силы резания:

где K Pz = 1 – суммарный поправочный коэффициент.

    При условии, что h ≈ 1,6b , ширина прямоугольного сечения корпуса резца:

Принимаем ближайшее большее сечение корпуса (b = 16 мм). Руководствуясь приведёнными соотношениями, получим высоту корпуса резца h = 1,6b = 1,6 · 16 = 25,6 мм. Принимаем h = 25 мм.

    Проверяем прочность и жёсткость корпуса резца.

Максимальная нагрузка, допускаемая прочностью резца:

Максимальная нагрузка, допускаемая жёсткостью резца;

где f = 0,1 · 10 -3 м (≈0,1 мм) – допускаемая стрела прогиба резца при черновом точении; Е = 2 · 10 5 МПа = 2 · 10 11 Па = 20000 кгс/мм 2 – модуль упругости материала корпуса резца; l = 60 мм – вылет резца; J – момент инерции прямоугольного сечения корпуса;

Резец обладает достаточными прочностью и жёсткостью, так как P z доп P z P z жёст (5550 4170

    Основные размеры принимаем по стандарту: рабочая высота резца h=25 мм, ширина державки резца в=16 мм, высота державки h в =20 мм, длина резца L=125 мм. Выбираем материал резца: для пластины – твердый сплав Т15К6, форма

II ГОСТ 19042 – 80, для клина штифта – сталь 40Х, для винта – сталь 45, головку винта подвергнуть термообработке до HRC 30 – 35.

Технические требования по резцу выбираем по ГОСТ 20872-80.

Варианты к заданию:

№ вари-анта

Материал заготовки

Сталь 20  в =500МПа

Серый чугун НВ 160

Сталь жаропрочная 12Х18Н9Т

Серый чугун НВ 220

Сталь 38Х  в =680МПа

Серый чугун НВ 170

Сталь 40ХН  в =700МПа

Серый чугун НВ 210

Сталь Ст5  в =600МПа

Серый чугун НВ 180

Контрольные вопросы

    По каким признакам подразделяются токарные резцы?

    Какими способами крепится пластина из твердого сплава?

    Как выбираются размеры поперечного сечения корпуса резца?

    Формула для определения максимальной нагрузки, допускаемой прочностью резца.

    Формула для определения максимальной нагрузки, допускаемой жесткостью резца.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме