Подпишись и читай
самые интересные
статьи первым!

Микроклимат производственной среды. Факторы производственной среды

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

Федеральное государственное образовательное учреждение

АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ

ОПРЕДЕЛЕНИЕ И ОЦЕНКА ПАРАМЕТРОВ МИКРОКЛИМАТА ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

г. Барнаул 2007

Зыга и оценка параметров микроклимата производственных помещений. Методические указания к лабораторной работе. - Барна7- -38 с. с прилож.

В методических указаниях приведены основные гигиенические требования к микроклимату производственных помещений и мето­дика определения оценки соответствия параметров микроклимата гигиеническим требованиям.

Методические указания предназначены для проведения лабораторных занятий по данной теме со студентами инженерных и технологических специальностей.

© Алтайский государственный аграрный университет, 2007

ОПРЕДЕЛЕНИЕ И ОЦЕНКА ПАРАМЕТРОВ

МИКРОКЛИМАТА

ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

Цель работы: изучить методику определения и оценки параметров микроклимата производственных помещений и рабочих зон.

1. Ознакомиться с основными требованиями к параметрам микроклимата производственных помещений.

2. Изучить методику определения параметров микроклимата.

Определить значение температуры, относительной и скорости движения воздуха согласно заданию. Оформить протоколы отчета. Полученные результаты сравнить с нормами (протокол № 4 отчета) и оценить параметры микроклимата. Изучить методику комплексной оценки параметров микроклимата и по номограмме (рис. приложения) определив эквивалентно-эффективную температуру, сделать вывод о комфортности микроклимата.

Оборудование


Гигрометр психрометрический ВИТ-1, психрометр аспирационный, актинометр Носкова, барограф, термограф, гигрограф, гигрометр волосяной, для определения скорости движения воздуха - лабораторная установка, включающая анемометры (крыльчатый АСО-3 и чашечный МС-13) и цифровой переносной анемометр АП-1.

Рисунки приборов и экспериментальной установки приведены в приложении.

1. ОСНОВНЫЕ ТРЕБОВАНИЯ К МИКРОКЛИМАТУ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

Метеорологические условия - это физическое состояние воздушной среды, определяемое действующим на организм человека сочетанием температуры, влажности, скорости движения воздуха, атмосферного давления.

Терморегуляция - способность организма поддерживать постоянной температуру тела человека в определенных границах (36,1-37,2°С). Она обеспечивается изменением двух составляющих: теплообмена (теплопередачи) и теплоотдачи. Из них основное значение имеет регуляция теплоотдачи, так как этот путь регуляции теплового равновесия организма человека более изменчив и управляем.

Микроклимат производственных помещений - это климат в ограниченном пространстве (внутри помещений), который кроме основных параметров метеоусловий (температуры, скорости движения воздуха, относительной влажности) для отдельных производств дополнительно и интенсивностью теплового излучения от нагретого оборудования.

Факторы, влияющие на микроклимат, можно разделить на две группы: нерегулируемые (комплекс климатообразующих факторов данной местности) и регулируемые (особенности и качество строительства зданий и сооружений, интенсивность теплового излучения от нагревательных приборов, кратность воздухообмена, количество людей и животных в помещении и др.). При выполнении работ на открытой местности или площадках метеорологические условия определяются климатическим поясом и сезоном года.

Указанные параметры могут изменяться в широких пределах и имеют ряд особенностей: значительную выраженность отдельных факторов, определенное их сочетание во многих случаях, большую изменчивость в связи с особенностями технологических процессов и оборудования и т. п.

Высокая температура воздуха способствует быстрой утомляемости работающего, может привести к перегреву организма, тепловому удару или профзаболеванию, а низкая температура воздуха - вызвать местное или общее охлаждение организма, стать причиной простудного заболевания либо обморожения.

Влажность воздуха оказывает значительное влияние на терморегуляцию организма человека. Высокая относительная влажность при высокой температуре воздуха способствует перегреванию организма, при низкой температуре она усиливает теплоотдачу с поверхности кожи, что ведет к переохлаждению организма. Низкая влажность вызывает пересыхание слизистых оболочек дыхательных путей работника.

Подвижность воздуха эффективно способствует теплоотдаче организма человека и положительно проявляется при высоких температурах, но отрицательно - при низких.

Поэтому благоприятный (комфортный) микроклимат на производстве и рабочих местах является важным условием высокопроизводительного труда, профилактики заболеваний и травматизма. Терморегуляция зависит не только от внешних условий, но и от влияния на теплоотдачу (энергозатраты) организма тяжести работы.

Все работы в зависимости от интенсивности общих энергозатрат организма человека по СанПиН 2.2.4.548 - 96 «Гигиенические требования к микроклимату производственных помещений» подразделяются на легкие (Iа и Iб), средней тяжести (IIа и IIб) и тяжелые (III).


Iа - работы с интенсивностью энергозатрат до 139 Вт (до 120 ккал/ч.), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся незначительным физическим напряжением;

Iб - работы с интенсивностью энергозатрат 141- 174 Вт (121 - 150 ккал/ч.), производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением;

IIа - работы с интенсивностью энергозатрат 175 - 232 Вт (150 - 200 ккал/ч.), связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения;

IIб - работы с интенсивностью энергозатрат более 232-290 Вт (201 - 250 ккал/ч.), связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением;

III - работы с интенсивностью энергозатрат более 290 Вт (более 250 ккал/ч.), связанные с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий.

Следовательно, нормы параметров микроклимата производственных помещений зависят от степени тяжести выполняемой работы (уровня энергозатрат), периода года и подразделяются на оптимальные и допустимые.

Оптимальные - такие сочетания параметров, которые при длительном и систематическом воздействии на человека обеспечивают сохранение нормального функционального и теплового состояния организма, напряжение реакций терморегуляции, не выходящих за пределы физиологических приспособительных возможностей.

Нормы температуры, относительной влажности и скорости движения воздуха установлены для рабочей зоны - пространства высотой до 2 м над уровнем пола или площадки, на котором находится место постоянного или временного пребывания работающего (табл. 1). Постоянным считается ме­сто, на котором работающий проводит более50% (или более 2 ч непрерывно). Если работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местом является вся рабочая зона.

Если по технологическим требованиям, технически и экономически обоснованным причинам оптимальные параметры микроклимата не могут быть обеспечены, то устанавливают пределы их допустимых значений.

2. МЕТОДИКА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МИКРОКЛИМАТА

2.1. Определение температуры воздуха

Температура воздуха - степень его нагретости, выраженная в градусах Цельсия (Со).

Температура в большинстве измеряется ртутным или спиртовыми термометрами, подвешенными на 8-10 мин в проверяемой зоне. В помещениях с высоким уровнем теплового излучения температуру следует определять с помощью парного термометра, состоящего из двух ртутных термометров, резервуар одного из которых зачернен, а другого - посеребрен.

Для непрерывной записи значений температуры воздуха на бумажную диаграмму применяют термографы М-16 АС суточный (рис. 1 приложения А) или М-16 АН-недельный. Измерительно-регистрирующая часть их представляет собой биметаллическую пластину 1, соединенную рычагом со стрелкой 2, на конце которой закреплено перо. Барабан 3 с бумажной лентой приводится в движение часовым механизмом, который заводится ключом. Продолжительность одного оборота барабана составляет 26 ч для термографа М-16 АС и 176 ч - для М-16 АН.

Принцип действия прибора основан на свойстве биметаллической пластинки (датчика температуры) изменять радиус изгиба с изменением температуры воздуха. Деформация пластины преобразуется с помощью передаточного механизма в перемещение стрелки с пером по бумажной диаграмме, закрепленной зажимом на барабане часового механизма.

Бланк диаграммы разделен по вертикали на горизонтальные линии с ценой деления 1 секунда, а по горизонтали - вертикальными дугообразными линиями с ценой деления, соответствующей 15 мин времени оборота барабана для суточных, 2-м часам - для недельных термографов.

Определение температуры воздуха можно совместить с определением относительной влажности, используя показания сухого термометра гигрометра психометрического типа ВИТ-1 (рис. 2 приложения А).

2.2. Определение влажности воздуха

В атмосферном воздухе всегда содержится некоторое количество влаги в виде водяных паров. Когда количество их в воздухе при определенной температуре достигает максимального значения, воздух называется насыщенным.

Различают абсолютную, максимальную и относительную влажность воздуха. Абсолютная влажность выражается упругостью водяных паров в граммах, приходящихся в 1 м3 воздуха. Максимальная влажность - упругость водяных паров в граммах при полном насыщении воздуха влагой при данной температуре или количество водяных паров в граммах, необходимое для полного насыщения 1 м3 или 1 кг воздуха при данной температуре (табл. 2).

Таблица 2

Максимальное содержание паров в воздухе при полном насыщении в зависимости от температуры



Примечание: Содержание водяного пара в воздухе определено при нормальном атмосферном давлении.

Относительная влажность - отношение абсолютной влажности к максимальной влажности воздуха при данной температуре, выраженная в процентах. При оценке воздушной среды этот показатель является основным критерием.

При определении влажности используют гигрометры типа ВИТ-1, гигрометры волосяного типа М-19 или аспирационный психрометр (рис. 2, 3, 4 приложения А).

Гигрометр психометрический типа ВИТ-1 состоит из двух одинаковых ртутных или спиртовых термометров, закрепленных на пластмассовом основании (корпусе). Сухой термометр 1 показывает температуру воздуха в зоне измерения. Резервуар влажного термометра 2 обернут гигроскопической тканью, конец которой опущен в стеклянный питатель 3 с дистиллированной водой. По ткани к резервуару этого термометра поступает влага. Определив показания термометров и разность температур, по психометрической таблице (табл. 1 приложения Б) нанесенной на корпус психрометра, находят относительную влажность воздуха.

Относительную влажность можно определить непосредственно по циферблату гигрометра волосяного типа М-19 (рис. 3 приложения А), принцип работы которого основан на способности человеческого волоса изменять свою длину в зависимости от влажности воздуха. Обезжиренный в эфире (спирте) человеческий волос 1, через блок соединены с легкой стрелкой (указателем) 2. При уменьшении относительной влажности приемная часть (волос) укорачивается, а при увеличении - удлиняется. Стрелка-указатель в соответствии с этими изменениями перемещается вдоль шкалы 3, на которой нанесены деления от 0 до 100, указывающие процент относительной влажности.

Гигрометр может определять влажность при отрицательных температурах. Погрешность в работе гигрометра 5-10%.

Психрометр аспирационный (рис. 4 приложения А) устроен аналогично. Отличие его заключается в том, что оба термометра 1 заключены в светлые металлические трубки, через которые с помощью просасывается исследуемый воздух. Привод вентилятора у аспирационного психрометра МВ-4М механический, пружину которого перед началом измерений заводят с помощью ключа 3, а у психрометра М-34 - электрический. Аспирация обеспечивает постоянную смену воздуха вокруг термометров, что позволяет определить влажность значительной массы воздуха, а не только той его части, которая находится в непосредственной близости прибора как у психрометрических гигрометров. Всасываемый воздух выбрасывается наружу через прорези в аспирационной головке 2.

Сухой термометр будет показывать температуру воздуха, а показания смоченного термометра будут меньше из-за охлаждения, вызванного испарением воды с поверхности батиста, облегающего резервуар термометра. Принцип определения относительной влажности аспирационным психрометром аналогичен гигрометру ВИТ-1 (табл. 2 приложения Б).

Для непрерывной записи значений влажности воздуха на бумажную ленту применяют гигрографы М-21А (рис. 5 приложения А). Также как и термографы, они бывают суточные (С) и недельные (Н). Принцип действия гигрографа основан на свойстве женского волоса 1 изменять свою длину с изменением влажности воздуха. Изменение длины пучка волос преобразуется с помощью передаточного механизма в перемещение стрелки 2 с пером по бумажной диаграмме, закрепленной на барабане 3. При увеличении относительной влажности воздуха пучок волос удлиняется и стрелка с пером перемещается вверх, а при уменьшении опускается вниз.

На относительную влажность влияет величина барометрического давления, определяемая барометром или барографом (рис. 6 а, б приложения А).

Барометр-анероид предназначен для измерения давления воздуха. Его приемное устройство (анероидная коробка) выполнена в виде плоской металлической цилиндрической коробки с крышкой и дном. В коробке создано сильное разряжение, но она не сплющивается под действием внешнего давления, т. к. крышка оттягивается пружиной. При изменениях давления упругие деформации крышки через систему рычагов передаются стрелке-указателю, которая перемещается вдоль шкалы, отградуированной в единицах давления. Стрелка барометра указывает на циферблате величину давления в мм. рт. ст. или в Паскалях.

Барограф, как гигрограф и термограф, (рис. 6 б приложения А) представляет собой самопишущий прибор. для непрерывной регистрации колебаний атмосферного давления воздуха. Заводной ключ часового механизма располагается на оси барабана под крышкой корпуса. Движение крышек анероидных коробочек передается с помощью системы рычагов стрелке с пером, обеспечивающей непрерывную регистрацию на диаграммной ленте величину атмосферного давления. Диаграммная лента прибора разделена по вертикали горизонтальными параллельными линями с ценой деления, соответствующей 1мбар атмосферного давления, а по горизонтали - вертикальными дугообразными линиями с ценой деления, соответствующе 15 мин времени оборота барабана для суточных, 2-м часам - для недельных.

1 бар = 7,5 · 10 мм. рт. ст.; 1 миллибар (мбар) = 0,7501 мм. рт. ст.

2.3 Определение скорости движения воздуха

Для измерения скорости воздушного потока применяют анемометры различных конструкций (крыльчатые и чашечные).

Анемометр чашечный МС-13 (рис. 7 а приложения А) предназначен для измерения скорости воздуха от 1 до 20 м/с. Анемометр ручной крыльчатый АСО-3 (рис. 7 б приложения А) для измерения скорости воздуха в пределах 0,3-0,5 м/с.

Чашечный анемометр в верхней части имеет четыре полых полушария (чашечки) 4. которые под влиянием потока воздуха вращаются вокруг вертикальной оси. Нижний конец оси при помощи зубчатой передачи соединен со стрелками, расположенными на циферблате 2. Передвигаясь по шкале, они указывают число делений. Большая стрелка показывает единицы и десятки, маленькие (в зависимости от их количества) - сотни, тысячи делений.

Сбоку корпуса 1 циферблата имеется колечко (арретир) 3, с помощью которого включается и выключается счетчик оборотов стрелок. Перед началом измерения при выключенном счетчике записывают показания стрелок. Прибор устанавливают перпендикулярно воздушному потоку и дают чашечкам некоторое время вращаться вхолостую. Затем одновременно включают счетчик анемометра и секундомер на одну минуту, после чего записывают конечные показания прибора (стрелок циферблата). Разность между конечным и начальным показаниями счетчиков делят на время измерения (60 с) и определяют число делений в секунду.

Аналогично скорость движения воздуха определяется крыльчатым анемометром, у которого ветроприемником служит крыльчатка 4, насаженная на ось с подшипниковыми втулками.

Для перевода скорости оборота счетного механизма (дел/с) в м/с к паспорту анемометров АСО-3 и МС-13 прилагаются тарировочные графики (рис. 8, 9 приложения А).

При необходимости постоянного контроля скорости воздушного потока используется анемометр цифровой переносной АП-1 с диапазоном измерения скорости движения воздуха 0,3-5,0 м/с и 1-20 м/с.

Анемометр АП-1 включает в себя:

Первичные измерительные преобразователи АП1-1 и АП1-2, преобразующие энергию воздушного потока во вращение ветроприемника, вырабатывающего электрические импульсы с частотой, пропорциональной скорости воздушного потока;

Цифровой измерительный прибор, регистрирующий импульсы и выдающий цифровую информацию о скорости воздушного потока.

Принципы работы анемометра АП-1 можно изучить с помощью лабораторной установки, схема которой приведена на рисунке 10 приложения А.

Цифровой измерительный прибор 2 выполнен в отдельном корпусе, в котором размещены плата преобразователя с индикаторами, батареи питания, разъём для подключения первичных преобразователей АП1-1 или АП1-2 и выпрямительного . На передней панели измерительного прибора 2 имеется окно 3 со светофильтром для цифровых индикаторов. Задняя крышка корпуса выполнена в виде съёмной кассеты для замены элементов питания. Питание анемометра осуществляется от восьми батарей аккумуляторного типа Д-0,26 с напряжением 9,6 В.

Интенсивность теплового излучения определяют актинометром (рис. 11 приложения А), на задней стенке которого расположены белые и зачерненные пластины, соединенные с термопарами. Принцип действия прибора основан на возбуждении электродвижущей силы термопарами вследствие того, что черные пластинки под воздействием лучистой энергии нагреваются до более высокой температуры, чем белые. Электродвижущая сила регистрируется гальванометром, шкала которого отградуирована в кал/см2 · мин.

Перед измерением интенсивности теплового излучения стрелку гальванометра нужно установить на нуль. После этого, открыв заднюю крышку, прибор установить перед источником теплового излучения так, чтобы лучи падали перпендикулярно к приемнику лучистой энергии.

Через 3-4 сек записывают показатели стрелки и убирают прибор, закрыв приемник крышкой. Допустимая величина лучистой энергии на рабочем месте - 0,5 кал/см 2 мин.

3. ПРАКТИЧЕСКОЕ ЗАДАНИЕ

3.1 Определение условий измерения параметров

Определить температуру воздуха по показанию сухого термометра психрометра ВИТ-1 и давление по барометру в Паскалях. Полученные данные (вид помещения, категорию работы по энергозатратам) занести в протокол №1 отчета.

3.2 Определение скорости движения воздуха

Скорость движения воздуха определить с помощью анемометров лабораторной установки (рис. 10 приложения А). Последовательность выполнения:

    выключателем 4 включить блок питания; создать воздушный поток, включив вентилятор 5 выключателем 6; занести в протокол №2 отчета показания стрелок анемометров в положении счетчика «выкл.», при вращении чашечек или крыльчатки вхолостую; установить регулятор оборотов вентилятора 7 в положение 1 для измерения крыльчатым анемометром, в положение II - для чашечного; одновременно включить секундомер и счетчик крыльчатого анемометра, во втором случае - чашечного на одну минуту; занести в протокол отчета; найти разность делений в минуту и, разделив ее на 60 с, определить дел/с; по тарировочному графику (рис. 8 и 9 приложения А) определить скорость движения в м/с и занести в протокол №2 отчета; одновременно со снятием показаний стрелок циферблата анемометра снять показания сухого и влажного термометров гигрометра ВИТ-1 занести в протокол №3 и определить значение относительной влажности при действии воздушного потока по таблице №1 приложения Б.

3.3 Определение относительной влажности

3.3.1 Определение относительной влажности по приборам

На основе изучения методики определения денного параметра микроклимата выполнить следующее практическое задание:

    снять показания сухого и влажного термометров гигрометра ВИТ-1 с воздушным потоком и без него и занести в протокол №3 отчета; по таблице, расположенной на панели прибора или таблице 1 приложения Б, определить значение относительной влажности и занести в протокол № 3 отчета;

Снять показания сухого и влажного термометров аспирационного психрометра и определить относительную влажность по психрометрической таблице 2 приложения Б. Данные занести в протокол №3 отчета.

3.3.2 Определение расчетного значения относительной влажности.

Относительная влажность φ определяется по формуле:

где qф - абсолютная влажность, г/кг;

fс - максимальное содержание водяных паров при температуре сухого термометра, г/кг (табл. 2).

Абсолютная влажность определяется по формуле:

qф = fв – а · (tc - tв) · Р,

где fв - максимальное содержание водяных паров при температуре влажного термометра, г/кг (табл. 2);

tc, tв - показания «сухого» и «влажного» термометров психрометра, Со;

Р - барометрическое давление, мм. рт. ст.;

а - психрометрический коэффициент (табл. 3);

Таблица 3

Значение психрометрического коэффициента (а)


Скорость воздуха, м/с

Психрометрический коэффициент


Последовательность расчета:

    рассчитать абсолютную влажность, для чего значение атмосферного давления, определенное по барометру в Па, перевести в мм. рт. ст. (1мм. рт. ст. = 133,322 Па); рассчитать относительную влажность по формуле, результат занести в протокол №3 отчета.

4. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЙ ПАРАМЕТРОВ МИКРОКЛИМАТА И ИХ ОЦЕНКА

4.1. Форма отчета

Результаты определения параметров микроклимата занести в протоколы отчета.

Протокол №1

Условия измерения параметров микроклимата



Протокол №3

Относительная влажность воздуха


4.2. Оценка параметров микроклимата

4.2.1. Оценка результатов замеров

Для оценки соответствия параметров микроклимата заполнить протокол №4 отчета, сопоставить фактические значения с оптимальными и сделать выводы.

Протокол №4

Сравнение фактических параметров метеорологических

условий с нормами



4.2.2. Комплексная оценка параметров микроклимата

Для оценки влияния всех параметров микроклимата на организм человека комплексно существуют разные способы. Чаще всего используют метод, основанный на определении эквивалентно-эффективной температуры с помощью номограммы (приложение В) и сравнении соответствующих условий работы с зоной комфорта.

Эквивалентно-эффективной температурой (ЭЭТ) называется комплекс метеорологических условий, вызывающий одинаковый эффект и обусловленный тремя факторами: температурой, влажностью и скоростью движения воздуха.

Приведенная номограмма составлена для людей, одетых в одежду для комнатных условий, занятых сидячей или легкой мускульной работой при отоплении помещения конвекционным способом. На номограмме обозначены зоны комфорта (зона хорошего самочувствия) и линия комфорта.

Зона комфорта расположена между 17,2° и 21,2° при различных комбинациях температуры, влажности и скорости движения воздуха. В этих пределах (по всей очерченной площади) не менее чем 50% всех испытуемых людей чувствуют себя хорошо (комфортно). На номограмме градусы эффективной температуры нанесены на кривой, соответствующей скорости движения воздуха, равной нулю.

Эффективной температурой (ЭТ) называется комплекс метеорологических условий, вызывающий одинаковый эффект и обусловленный двумя факторами: температурой и влажностью воздуха.

Линия комфорта проходит внутри зоны комфорта в пределах 18,1°-18,9°, пересекая кривые скоростей движения воздуха и характеризуя собой приятное самочувствие не менее 95% из всех испытуемых лиц.

Эффективная и эквивалентно-эффективная температура вообще не являются реальной температурой, которую можно бы было наблюдать по какому-либо прибору. Обе эти величины являются функциями основных метеорологических факторов (температуры, влажности и скорости движения воздуха), а термины ЭТ и ЭЭТ введены лишь для выражения одинаково восприимчивого ощущения тепла или холода при различных комбинациях значений метеорологических факторов.

Для определения ЭЭТ на номограмме отмечают показания сухого и влажного термометров и соединяют их прямой линией. Точка пересечения ее с кривой, соответствующей скорости воздуха, показывает значение ЭЭТ, и ее положение относительно зоны комфорта. Если значение находится в пределах зоны комфорта, то весь исследуемый комплекс метеорологических условий обеспечивает нормальный тепловой обмен. Если значение находится вне зоны комфорта, то по номограмме определяют пути создания комфортных условий. Это достигается изменением одного или нескольких параметров.

Определив ЭЭТ по данным действительных условий протокола №4, сделать выводы о комфортности условий работы по микроклимату.

Контрольные вопросы


Какие факторы влияют на микроклимат? Какие параметры определяют метеоусловия рабочей зоны? Что называется абсолютной влажностью воздуха? Что называется относительной влажностью воздуха?

5. Какие приборы используют для измерения скорости движения воздуха?

6. Сущность терморегуляции и теплообмена.

7. От каких показателей зависит выбор норм параметров микроклимата?

Что учитывают при определении категории работы по тяжести? Принцип работы гигрометра ВИТ-1? Что понимается под эквивалентно-эффективной температурой? Зона и линия комфорта. Сущность этих понятий. Какова последовательность определения скорости движения воздуха? Каким прибором определяется тепловая лучистая энергия? Что измеряют термографом и барографом? Принцип их работы.

15. Перечислить приборы для измерения относительной влажности.

16. Какой документ определяет гигиенические нормы микроклимата?

Список использованной литературы


ГОСТ 12.1.005-88 ССБТ. Общие санитарно-гигиенические требования к воздуху рабочей зоны. Беляков по охране труда.- 2 изд., перераб. и доп.-М.: Колос,.-2002 С. 6-24 Каспаров труда и промышленная санитария.- М.: Медицина,.- 1977.- С. 106-128 Р 2.2.2006-05. Гигиена труда. Руководство по гигиенической оценке факторов рабочей среды и трудового процесса. СанПиН 2.2.4.548-96. Гигиенические требования к микроклимату производственных помещений.

ПРИЛОЖЕНИЕ А

Рис. 10. Лабораторная установка для определения скорости движения воздуха с помощью анемометра АП-1

1 - анемометры; 2 - цифровой измерительный прибор; 3 - окно для цифровых индикаторов; 4 - выключатель блока питания; 5 - вентилятор; 6 - выключатель вентилятора; 7 - регулятор оборотов вентилятора

Рис. 11. Актинометр

ПРИЛОЖЕНИЕ Б


V. МИКРОКЛИМАТ ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

1. Параметры микроклимата и их измерение

Условия микроклимата в производственных помещениях зависят от ряда факторов:

    климатического пояса и сезона года;

    характера технологического процесса и вида используемого оборудования;

    условий воздухообмена;

    размеров помещения;

    числа работающих людей и т.п.

Микроклимат в производственном помещении может меняться на протяжении всего рабочего дня, быть различным на отдельных участках одного и того же цеха.

В производственных условиях характерно суммарное (сочетанное) действие параметров микроклимата : температуры, влажности, скорости движения воздуха .

В соответствии с СанПиН 2.2.4.548 – 96 «Гигиенические требования к микроклимату производственных помещений» параметрами, характеризующими микроклимат являются:

    температура воздуха ;

    температура поверхностей (учитывается температура поверхностей ограждающихконструкций (стены, потолок, пол), устройств (экраны и т.п.), а также технологического оборудования или ограждающих его устройств);

    относительная влажность воздуха ;

    скорость движения воздуха ;

    интенсивность теплового облучения .

Температура воздуха , измеряемая в 0 С, является одним из основных параметров, характеризующих тепловое состояние микроклимата. Температура поверхностей и интенсивность теплового облучения учитываются только при наличии соответствующих источников тепловыделений.

Влажность воздуха - содержание в воздухе водяного пара. Различают абсолютную, максимальную и относительную влажность.

Абсолютная влажность (А) - упругость водяных паров, находящихся в момент исследования в воздухе, выраженная в мм ртутного столба, или массовое количество водяных паров, находящихся в 1 м 3 воздуха, выражаемое в граммах.

Максимальная влажность (F) - упругость или масса водяных паров, которые могут насытить 1 м 3 воздуха при данной температуре.

Относительная влажность (R) -это отношение абсолютной влажности к максимальной, выраженное в процентах.

Скорость движения воздуха измеряется в м/с.

Измерение параметров микроклимата.

В обычных условиях для измерения температуры воздуха используются термометры (ртутные или спиртовые), термографы (регистрирующие изменение температуры за определенное время) и сухие термометры психрометров.

Для определения влажности воздуха применяются переносные аспирационные психрометры (Ассмана), реже стационарные психрометры (Августа) и гигрометры. При использовании психрометров дополнительно измеряют атмосферное давление с помощью барометров – анероидов.

Скорость движения воздуха измеряется крыльчатыми и чашечными анемометрами.

Рассмотрим примеры приборов, традиционно используемых для измерения параметров микроклимата.

Аспирационный психрометр МВ-4М

Аспирационный психрометр МВ - 4М предназначен для определения относительной влажности воздуха в диапазоне от 10 до 100 % при температуре от -30 до +50 0 С. Цена деления шкал термометров не более 0,2 0 С. Принцип его работы основан на разности показаний сухого и смоченного термометров в зависимости от влажности окружающего воздуха. Он состоит из двух одинаковых ртутных термометров, резервуары которых помещены в металлические трубки защиты. Эти трубки соединены с воздухопроводными трубками, на верхнем конце которых укреплен аспирационный блок с крыльчаткой, заводимой ключом и предназначенной для прогона воздуха через трубки с целью сделать более интенсивным испарение воды со смоченного термометра.

Анемометр крыльчатый АСО-3

Крыльчатый анемометр применяется для измерения скоростей движения воздуха в диапазоне от 0,3 до 5 м/с. Ветроприемником анемометра служит крыльчатка, насаженная на ось, один конец которой закреплен на неподвижной опоре, а второй через червячную передачу передает вращение редуктору счетного механизма. Его циферблат имеет три шкалы: тысяч, сотен и единиц. Включение и выключение механизма производится арретиром. Чувствительность прибора не более 0,2 м/с.

В последнее время для определения параметров микроклимата производственных помещений успешно применяются аналого-цифровые приборы.

Портативный измеритель влажности и температуры ИВТМ – 7

Прибор предназначен для измерения относительной влажности и температуры, а также для определения других температуро-влажностных характеристик воздуха. В качестве чувствительного элементаизмерителя температурыиспользуется пленочный терморезистор, выполненный из никеля. Чувствительным элементом измерителя относительной влажности является емкостной датчик с изменяющейся диэлектрической проницаемостью. Принцип работы прибора основан на преобразовании емкости датчика влажности и сопротивления датчика температуры в частоту с дальнейшей обработкой ее с помощью микроконтроллера. Микроконтроллер обрабатывает информацию, отображает ее на жидкокристалическом индикаторе и одновременно выдает с помощью интерфейса RS – 232на компьютер.

Анемометр Testo – 415

Прибор предназначен для измерения скорости воздуха и температуры в помещениях. Информация отображается на большом двухстрочном дисплее. Прибор имеет возможность усреднения результатов измерений по времени и числу замеров.

Важнейшим физическим фактором окружающей (производственной) среды, от которого зависят работоспособность и состояние здоровья работающего населения является микроклимат. Производственный микроклимат характеризуется такими параметрами, как уровень температуры и влажности воздуха, скоростью его движения и интенсивностью тепловой радиации преимущественно в инфракрасной и частично в ультрафиолетовой области спектра электромагнитных излучений.

Температура воздуха, определяя метеорологические условия производственной среды, играет важнейшую роль в создании комфортных условий труда промышленных рабочих. На многих производствах - металлургических (доменные, конверторные, мартеновские, прокатные цеха), машиностроительных (литейные, кузнечные, термические цехи), а также тепловых электростанциях, текстильных, резиновых, швейных, стекольных, пищевых производствах, выпуске строительных материалов (кирпич, бетон) труд рабочих сопряжен с влиянием неблагоприятного нагревающего климата. В то же время, ряд производств, напротив, характеризуются пониженной температурой воздуха рабочих мест - труд работников, занятых на элеваторах, в складских помещениях, в некоторых цехах судостроительных заводов, мясо-молочной промышленности.

Работы на открытом воздухе (строительство, лесозаготовка, рыбный промысел, добыча нефти и газа, геологоразведка и др.) в осенний, зимний, весенний и летний периоды года зачастую проходят в крайне неблагоприятных климатических условиях. Порой разница между самой низкой и самой горячей точкой температуры воздуха достигает очень больших значений (диапазон колебаний составляет от 500С до 800С).

В этой связи, является несомненно актуальным гигиеническая оценка основных закономерностей формирования микроклимата, адаптации организма к нагревающему и охлаждающему климату, обоснование соответствующих нормативов, разработка комплексных профилактических мероприятий по обеспечению комфортного микроклимата.

Характеристика микроклимата. Параметрами микроклимата, при которых выполняет работу человек и от которой зависит теплообмен между организмом человека и окружающей средой, являются температура окружающей среды, скорость движения воздуха и влажность воздуха.

Температура окружающей среды и скорость движения атмосферного воздуха зависят от очень многих параметров, определяемых временем года и целым комплексом других гидро-метеорологических факторов, которые формируют климат региона. Движение воздуха в производственных помещениях создается конвекционными потоками, в результате неравномерного нагревания воздушных масс от источников тепловыделения.

Влажность воздуха зависит от содержания в нем паров воды и подразделяется на абсолютную влажность (выражается парциальным давлением водяных паров [Па] или в весовых единицах в определенном объеме воздуха [г/м ]); максимальную влажность (выражается количеством влаги при полном насыщении воздуха при данной температуре); относительную влажность (выражается отношением абсолютной влажности к максимальной, выраженной в процентах). Дефицит насыщения - это разница между максимальной и абсолютной влажностью воздуха.

Комфортный (нейтральный) микроклимат характеризуется комфортным тепловым ощущением, а тепловой баланс в организме обеспечивается без напряжения процессов терморегуляции.

Нагревающий микроклимат характеризуется тем, что на рабочих местах параметры микроклимата значительно выше средних значений границы зоны комфорта.

Охлаждающий микроклимат характеризуется температурами воздуха значительно меньшими, чем нижние границы зоны комфорта.

Терморегуляция - взаимосочетание процессов теплообразования и теплоотдачи, регулируемых нервно-эндокринным путем.

Теплообразование - тепло, продуцируемое организмом, за счет окислительновосстановительных реакций при сгорании белков, жиров и углеводов.

Теплоотдача - переход теплоты, освобождаемой в процессе жизнедеятельности, из организма в окружающую среду.

Теплоотдача осуществляется путем радиационной теплоотдачи (излучением тепла телом человека по отношению к окружающим поверхностям, имеющим более низкую температуру); конвекции (отдача тепла с поверхности тела человека притекающими к нему менее нагретым слоям воздуха); проведения тепла (отдача тепла предметам, непосредственно соприкасающимся с поверхностью тела); испарения воды с поверхности кожи и дыхательных путей. В условиях метеорологического комфорта, теплоотдача излучением составляет в среднем 5065%, испарением воды (пота) - 20-25%, конвекцией - 15-30% от общих потерь тепла организмом.

Влияние нагревающего и охлаждающего микроклимата на организм.

Являясь саморегулирующей системой, организм человека, используя целый каскад физиолого-биохимических реакций, поддерживает постоянство температуры тела за счет усиления или ослабления механизмов теплопродукции и теплоотдачи. Динамическое соотношение процессов теплообразования и теплоотдачи регулируются терморегуляторными центрами и корой головного мозга. При этом совокупность физиолого-биохимических процессов, обусловленная деятельностью центральной нервной системы, направленной на поддержание температурного гомеостаза, определяет саму суть процесса терморегуляции.

Терморегуляция является одним из наиболее важных физиологических механизмов, с помощью которых поддерживается относительное динамическое постоянство функций организма при различных метеорологических условиях и разной тяжести выполняемой работы. Система терморегуляции включает тепловой центр, расположенный в гипоталамусе, термочувствительные нервные клетки в различных отделах центральной нервной системы, терморецепторы внутренних органов, слизистых оболочек и кожи с соответствующими нервными проводящими путями, эфферентные нервные пути и эффекторные органы в виде кожных сосудов, эндокринных и потовых желез, скелетных мышц.

Среди физиологических механизмов, с помощью которых устанавливается соответствующее соотношение химической и физической терморегуляции, большую роль играет симпатическая нервная система. По симпатическим нервным волокнам импульсы от центральной нервной системы передаются мускулатуре и печени, участвующим в процессе химической терморегуляции. Характер и интенсивность теплоотдачи с поверхности кожи, в реализации механизма которого важное значение отводится сосудистой реакции в ответ на раздражение температурным фактором, также во многом определяется деятельностью симпатической нервной системы.

При воздействии на организм нагревающего климата механизм терморегуляции способствует увеличению теплоотдачи через систему кровообращения и повышенным потоотделением. Роль системы кровообращения состоит в увеличении частоты сердечных сокращений и минутного объема крови, в результате чего происходит усиление тока крови через кожу в следствие расширения кожных сосудов и капилляров. Указанный механизм приводит к увеличению теплопроводности тканей и поступлению тепла в окружающую среду.

При воздействии на организм охлаждающего климата, механизмы терморегуляции направлены на уменьшение теплоотдачи и увеличение количества тепла, вырабатываемого организмом. Уменьшение теплоотдачи происходит в результате сужения (спазма) кровеносных сосудов поверхностных тканей и снижения их температуры. Увеличение теплообразования осуществляется преимущественно за счет повышения мышечного тонуса и рефлекторно возникающей дрожи скелетной мускулатуры.

Сложный процесс физической химической терморегуляции в

производственных условиях характеризуется многообразными изменениями и взаимодействием физиологических функций работающего организма. При перегревании и переохлаждении в организме возникают значительные изменения в поведенческих, физиологических реакциях, включая и эндокринную систему. Охлаждение организма, как правило, сопровождается усиленной секрецией адреналина, который стимулирует клеточный обмен и уменьшает теплоотдачу. В таблице № 12 представлена классификация тепловых состояний организма человека, построенная на данных о характере изменения приспособительных механизмов системы терморегуляции в условиях теплового равновесия, перегревания и охлаждения.

Оптимальный микроклимат характеризуется сочетанием таких параметров, которые обусловливают сохранение нормального функционального состояния организма без напряжения реакции терморегуляции. Он создает ощущение теплового комфорта и предпосылки для сохранения высокого уровня работоспособности. Допустимым микроклиматом является сочетание параметров, которые вызывают изменение функционального состояния организма и напряжение реакции терморегуляции, не выходящие за пределы физиологических приспособительных возможностей.

bgcolor=white>37,5
Показатель Уровень физиологических показателей в условиях
перегревания теплового

равновесия

охлаждения
предельно предельно допустимые допус оптималь допус предельно предельно
Т еплоощущения очень жарко тепло комфорт прох холодно очень
Ректальная температура, °С 39,5-38,5 38,4-37,7 37,6 37,0-37,4 36,7 36,6-35,5 Ниже 35,5
Оральная температура, °С 40,0-38,4 38,3-37,5 37,4 36,6-37,0 36,0 35,9-34,5 Ниже 34,5
Средневзвешенная температура кожи, °С 40,5-38,0 38,5-36,1 36,0 32,5-33,5 30,0 29,9-27,0 Ниже 27,0
Средняя температура тела, °С 39,5-38,5 38,4-37,6 36,0-36,7 34,5 34,4-31,7 Ниже 31,7
Разность температур туловища и конечностей (грудь-стопа), °С -2,5-+1,5 -1,5-0 0 +4,0-+2,0 +6,0 +6,0-+10,0 Выше 10,0
Внутренний градиент температур, °С +1,0-0 0--1,6 -1,6 -4,5--3,5 +6,7 -6,7--8,5 >-8,5
Т еплоизоляция поверхностных тканей, кло 0,60
Потеря веса, г/ч 1200-650 650-250 250 40-60 80 80-100 -
Частота пульса, уд/мин 160-120 120-90 90 60-80 60 60-50 -
Т еплопродукция организма, Вт/м2 80-65 65-45 45 60-45 70 70-140 Повышение до 350 с последующим уменьшением
Теплоотдача испарением влаги, Вт/м2 185-150 150-60 60 10-20 25 25-35 -
Изменение

организма,

+420-+250 +250-+15 +150 -50-+50 -250 -250--60 >-600

Гигиеническое нормирование микроклимата. Гигиеническое нормирование параметров производственного микроклимата установлено санитарными и гигиеническими нормами: СанПиН «Гигиенические требования к микроклимату производственных помещений» № 355 от 14.07.2005, МЗ РК; СН «Санитарные нормы ультрафиолетового излучения в производственных помещениях» № 1.02.02594; ГН «Гигиенические нормы интенсивности инфракрасного излучения от нагретых поверхностей оборудования и ограждений в машинных и котельных отделениях и других производственных помещениях судов» № 1.02.026-94.

Нормируются оптимальные и допустимые параметры микроклимата - температура, относительная влажность и скорость движения воздуха. Значения параметров микроклимата устанавливаются в зависимости от способности человеческого организма к акклиматизации в разное время года и категории работ по уровню энергозатрат (Таблица № 13).

Таблица № 13. Нормируемые величины температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений.
Период года Категории работ Температура воздуха, °С Относительная влажность, % Скорость движения

воздуха, м/с

оптимальная допустимая оптимальная допустимая оптимальная, не более допустимая
Верхняя Нижняя
На рабочих местах На рабочих местах, постоянных и непостоянных
Постоянных Непостоянных Постоянных Непостоянных
Холодный период года Легкая - 1а 22-24 25 26 21 18 40-60 75 0,1 не более 0,1
Легкая - 1б 21-23 24 25 20 17 40-60 75 0,1 не более 0,2
Средней тяжести - 11а 18-20 23 24 17 15 40-60 75 0,2 не более 0,3
Средней тяжести - 11б 17-19 21 23 15 13 40-60 75 0,2 не более 0,4
Тяжелая - III 16-18 19 20 13 12 40-60 75 0,3 не более 0,5
Теплый период года Легкая - 1а 23-25 28 30 22 20 40-60 55 при 28°С 0,1 0,1-0,2
Легкая - 1б 22-24 28 30 21 19 40-60 60 при 27°С 0,2 0,1-0,3
Средней тяжести - 11а 21-23 27 29 18 17 40-60 65 при 26°С 0,3 0,2-0,4
Средней тяжести - 11б 20-22 27 29 16 15 40-60 70 при 25°С 0,3 0,2-0,5
Тяжелая - III 18-20 26 28 15 13 40-60 75 при 24°С и ниже 0,4 0,2-0,6


Несмотря на адаптационно-приспособительные процессы, обеспечивающие повышение устойчивости организма человека к дискомфортным метеорологическим условиям среды, длительное и интенсивное воздействие тепла и холода, может привести к нарушению его компенсаторно-защитных механизмов и развитию патологических состояний. С целью исключения негативного влияния микроклимата на организм работающих, регламентируется время пребывания работающего контингента на рабочих местах в условиях нагревающего и охлаждающего климата. При этом среднесменная температура воздуха за обычный режим работы, когда люди находятся на рабочих местах, не должна выходить за пределы допустимых величин для соответствующих категорий работ (Таблицы № 14, 15).

Таблица № 14. Время пребывания на рабочих местах при температуре воздуха ниже допустимых величин.

Температура воздуха на рабочем месте, 0С Время пребывания, не более при категориях работ, ч
Па Пб III
1 2 3 4 5 6
6 - - - - 1
7 - - - - 2
1 2 3 4 5 6
8 - - - 1 3
9 - - - 2 4
10 - - 1 3 5
11 - - 2 4 6
12 - 1 3 5 7
13 1 2 4 6 8
14 2 3 5 7 -
15 3 4 6 8 -
16 4 5 7 - -
17 5 6 8 - -
18 6 7 - - -
19 7 8 - - -
20 8 - - - -

Таблица № 15. Время пребывания на рабочих местах при температуре воздуха выше допустимых величин.

Температура воздуха на рабочем месте, °С Время пребывания, не более при категоі оиях работ, ч
1а-1б Па-Пб П1
32,5 1 - -
32,0 2 - -
31,5 2,5 1 -
31,0 3 2 -
30,5 4 2,5 1
30,0 5 3 2
29,5 5,5 4 2,5
29,0 6 5 3
28,5 7 5,5 4
28,0 8 6 5
27,5 - 7 5,5
27,0 - 8 6
26,5 - - 7
26,0 - - 8

В практике санитарно-гигиенического контроля для оценки сочетанного воздействия параметров микроклимата и разработки мероприятий по защите работающих от возможного перегревания используется интегральный показатель тепловой нагрузки среды (ТНС-индекс). ТНС-индекс является эмпирическим показателем, характеризующим сочетанное воздействие на организм температуры, влажности, скорости движения воздуха и теплового облучения (Таблица № 16).



Профилактические мероприятия. Обеспечение теплового баланса осуществляется путем регулирования значений параметров микроклимата в помещении - температуры, относительной влажности и скорости движения воздуха. Поддержание указанных параметров на уровне оптимальных значений обеспечивает комфортные климатические условия человека, а на уровне допустимых - предельно допустимые, при которых система терморегуляции организма человека обеспечивает тепловой баланс и не допускает перегрева и переохлаждения организма.

Применение систем вентиляции, аэрации, отопления и кондиционирования воздуха обеспечивает требуемые параметры микроклимата и состава воздушной среды.

Эффективно работающая вентиляция (вентиляция - организованный и регулируемый воздухообмен, обеспечивающий удаление из помещения отработанного воздуха и подачу на его место свежего), кондиционирование воздуха (кондиционирование - искусственная автоматическая обработка воздуха с целью поддержания оптимальных микроклиматических условий независимо от характера технологического процесса и условий внешней среды), аэрация (аэрация - организованная естественная вентиляция помещений через фрамуги, форточки, окна) и отопление (отопление - система обеспечения оптимальной температуры воздуха в помещении в холодное время года, которое бывает водяным, паровым и электрическим) способствуют улучшению самочувствия человека и повышению его работоспособности.

На промышленном производстве используется комплекс мер, направленных на профилактику неблагоприятного воздействия нагревающего микроклимата, которые могут быть сгруппированы следующим образом:

Меры, направленные на ограничение тепловыделений в рабочую зону или обеспечивающие возможность работы вне зоны нагревающего микроклимата;

Меры, обеспечивающие снижение температуры воздуха и интенсивности инфракрасного излучения в рабочей зоне;

Меры, обеспечивающие нормализацию теплового состояния работающих в условиях нагревающего микроклимата и способствующие восстановлению физиологических показателей организма.

Комплекс инженерно-технических и санитарно-гигиенических мероприятий, направленных на снижение влияния нагревающего микроклимата на организм рабочих промышленных предприятий включает следующее: исключение пребывания рабочих в неблагоприятной зоне (механизация и автоматизация производственных процессов дистанционного управления); ограничение тепло- и влаговыделений от технологического источника (герметизация, термоизоляция); снижение инфракрасного излучения (экранирование рабочего места); использование средств индивидуальной защиты (костюмы, обувь, каски, рукавицы, очки, щитки); нормализацию физиологических функций организма работающего (рациональный режим труда и отдыха, питьевой режим обеспечивающий восстановление макро- и микроэлементов, витаминов, гидропроцедуры и др.).

В условиях воздействия на работающих охлаждающего микроклимата, профилактические мероприятия должны быть направлены на регламентацию работ, совершенствование санитарно-бытового обеспечения, применение эффективных способов обогрева работающих от охлаждения. Комплекс профилактических мероприятий включает следующее:

Мероприятия, направленные на создание оптимальных и допустимых микроклиматических условий (теплоизоляция помещений, устройство тамбуров и воздушно-тепловых завес у дверей, эффективно работающее отопление и др.);

Мероприятия, обеспечивающие поддержание допустимого теплового состояния работающих в холодный период года на открытом воздухе, в неотапливаемых помещениях и помещениях с искусственно созданным охлаждающим микроклиматом (применение спецодежды, регламентированные перерывы на обогрев и отдых, помещение для сушки спецодежды и обуви, защита временем).

Тема 3 Идентификация и воздействие на человека вредных и опасных факторов

21. Как подразделяются вредные вещества по степени опасности?

а)на 5 классов опасности; б) на 4 класса опасности; в) на 6 классов опасности; г) на 3 класса опасности

22. Вредные условия труда по показателям вредных и опасных производственных факторов, тяжести и напряженности труда делятся на _____ классов:

а) 1; б) 2; в) 3; г) 4; д) 5

а)температура, относительная влажность, скорость движения воздуха, барометрическое давление; б)температура, относительная влажность, скорость движения воздуха, интенсивность теплового излучения, барометрическое давление; в)температура, максимальная влажность, скорость движения воздуха, интенсивность теплового излучения; г)температура, относительная влажность, скорость движения воздуха, интенсивность теплового излучения

24. Основную роль в развитии профзаболеваний легких (пневмокониозов) играет пыль со следующими характеристиками:

a)мелкодисперсная с размером частиц 0,2 - 7 мкм; б)мелкодисперсная с размером частиц менее 0,2 мкм;в)крупнодисперсная с размером частиц более 10 мкм; г)любая пыль

25. Состояние, в котором находится ацетилен в баллонах:

а) жидкое; б) сжиженное; в) растворенное; г) твердое

26. В процессе идентификации опасностей выявляют :

а) вероятность появления; б) координаты; в) возможный ущерб;

г) наказание виновных лиц.

27. Ультрафиолетовое излучение это :

в) возникновение в окружающей среде электромагнитных полей, характеризуется определенной энергией и распространяется в виде электромагнитных волн.

28. Ионизирующее излучение это:

а) электромагнитное излучение в оптической области, примыкающее со стороны коротких волн к видимому свету и имеющее длины волн 200…400 нм; б) излучение, прямо или косвенно вызывающее ионизацию среды;

в) генератор электромагнитного излучения оптического диапазона, действие основано на свойстве атома излучать фотоны при переходе из возбужденного состояния в основное с меньшей энергией.

29. Электромагнитное излучение это:

а) электромагнитное излучение в оптической области, примыкающее со стороны коротких волн к видимому свету и имеющее длины волн 200…400 нм; б) генератор электромагнитного излучения оптического диапазона, действие основано на свойстве атома излучать фотоны при переходе из возбужденного состояния в основное с меньшей энергией; в) возникновение в окружающей среде электромагнитных полей, характеризуется определенной энергией и распространяется в виде электромагнитных волн.



30. Лазерное излучение это :

а) генератор электромагнитного излучения оптического диапазона, действие основано на свойстве атома излучать фотоны при переходе из возбужденного состояния в основное с меньшей энергией; б) электромагнитное излучение в оптической области, примыкающее со стороны коротких волн к видимому свету и имеющее длины волн 200…400 нм; в) излучение, прямо или косвенно вызывающее ионизацию

Лабораторная работа № 4

ИССЛЕДОВАНИЕ МИКРОКЛИМАТА НА РАБОЧЕМ МЕСТЕ

Цель работы: получить представление об основных параметрах микроклимата; изучить принципы нормирования микроклимата в помещениях; исследовать и оценить параметры микроклимата на рабочем месте.

Теоретическая часть

1. Микроклимат и его влияние на организм человека

Микроклимат – это совокупность параметров среды, влияющих на тепловые ощущения человека: температуры, влажности и скорости движения воздуха и интенсивности теплового излучения от окружающих поверхностей, характерных для конкретного помещения.

Микроклимат оказывает существенное влияние на работоспособность человека, его самочувствие и здоровье.

Необходимость учёта параметров микроклимата предопределяется условиями теплового баланса между организмом человека и окружающей средой помещений.

Человек постоянно находится в процессе теплового взаимодействия с окружающей средой. Величина тепловыделений организма человека Q зависит от степени физического напряжения и параметров микроклимата. Для того чтобы физиологические процессы в его организме протекали нормально, выделяемая организмом теплота должна полностью отводиться в окружающую человека среду. Нормальным тепловым ощущениям соответствует равенство между количествами выделяемого организмом человека и отдаваемого в окружающую среду тепла.



Теплообмен между организмом человека и окружающей средой осуществляется с использованием следующих процессов:

· теплопередача (теплопроводность) через одежду Q Т ;

· конвекция Q К ;

· тепловое излучение в окружающее пространство Q ИЗЛ ;

· испарение влаги (пота) с поверхности кожи Q ИСП ;

· дыхание (нагрев вдыхаемого воздуха) Q Д .

Теплопередача (теплопроводность) состоит в передаче тепла от одной частицы к другой при непосредственном контакте.

Конвекция представляет собой процесс теплообмена между телом человека и средой, осуществляемый движущимся воздухом. Конвективный теплообмен зависит от температуры окружающей среды, скорости движения воздуха, его влажности и барометрического давления.

Тепловое излучение представляет собой процесс теплообмена, осуществляемый путем испускания электромагнитных волн инфракрасного диапазона. Тепловые лучи непосредственно воздух практически не нагревают, но хорошо поглощаются твёрдыми телами и, следовательно, нагревают их. Нагреваясь, твёрдые тела сами становятся источниками тепла и уже путём конвекции нагревают воздух.

При температуре окружающей среды, равной или выше температуры поверхности тела человека, теплоотдача происходит только в виде выделения пота, на испарение 1 г которого затрачивается около 0,6 ккал. В состоянии покоя при температуре окружающего воздуха 18 °С доля Q К составляет около 30 % всей отводимой теплоты, Q ИЗЛ » 45 %, Q ИСП » 20 % и Q Д » 5 %.

При изменении температуры воздуха, скорости его движения и влажности, при наличии вблизи человека нагретых поверхностей, в условиях физической работы и т.д. эти соотношения существенно изменяются. Так, при высокой температуре воздуха (30 °С и выше), особенно при выполнении тяжёлой физической работы, потоотделение может усиливаться в десятки раз и достигать 1 – 1,5 л/ч.

Нормальное тепловое самочувствие человека (комфортные условия, соответствующие данному виду деятельности) обеспечивается, если выполняется условие теплового баланса:

Q Ч = Q Т + Q К + Q ИЗЛ + Q ИСП + Q Д,

где Q Ч – количество тепла, генерируемого организмом человека.

Температура внутренних органов человека поддерживается постоянной на уровне около 36,6 °С. Эта способность человеческого организма поддерживать постоянной температуру при изменении параметров микроклимата и при выполнении различной по тяжести работы называется терморегуляцией. Если тепловое равновесие нарушено (например теплоотдача меньше тепловыделений), то в организме происходит накопление тепла – перегрев. Если теплоотдача больше, чем тепловыделение, то происходит переохлаждение организма.

Комфортные метеорологические условия являются важным фактором обеспечения высокой производительности труда и профилактики заболеваний. При несоблюдении гигиенических норм микроклимата снижается работоспособность человека, возрастает опасность возникновения травм и ряда заболеваний, в том числе профессиональных.

Основные параметры микроклимата

Влажность воздуха . Влажность воздуха характеризует степень его насыщения водяными парами. Одна и та же температура воздуха в зависимости от степени его влажности ощущается человеком по-разному. Различают абсолютную и относительную влажность.

Абсолютная влажность (Р АБС ) – это количество водяного пара, содержащегося в 1 м 3 воздуха, т.е. плотность пара (г/м 3). Абсолютную влажность характеризуют также давлением водяного пара (гПа), т. е. парциальным давлением, которое оказывал бы водяной пар на стенки сосуда, если из данного сосуда удалить все другие компоненты воздуха.

Воздух с предельным содержанием водяного пара при данной температуре характеризуется давлением насыщенного пара (Р НАС ), которое увеличивается с повышением температуры воздуха. После достижения Р НАС начинается конденсация водяного пара.

Абсолютная влажность сама по себе не указывает на то, в насыщенном или ненасыщенном состоянии находится водяной пар, поэтому введено понятие относительной влажности.

Относительная влажность (φ ) определяется выражением:

φ = (P АБС /P НАС )·100, %. (1)

Относительная влажность влияет на теплообмен человека, например на интенсивность испарения влаги с поверхности кожи.

Температура воздуха оказывает большое влияние на состояние ор­­га­низма человека. Высокая температура окружающего воздуха повышает утомляемость, может привести к перегреву организма или вызвать тепловой удар. При небольшом перегреве возникают небольшое повышение температуры тела человека, обильное потоотделение, появляется ощущение жажды, учащаются дыхание и пульс. В более тяжёлых условиях может случиться тепловой удар, сопровождающийся повышением температуры до 40 – 41 °С, слабым и учащённым пульсом, потерей сознания. Характерным признаком наступления теплового удара является почти полное прекращение потоотделения. Тепловой удар может привести к смертельному исходу. Низкая температура окружающего воздуха может вызвать местное или общее переохлаждение организма человека, стать причиной простудных заболеваний или обморожения.

Скорость движения воздуха имеет большое значение для создания благоприятных условий жизнедеятельности. При большой скорости движения воздуха увеличивается интенсивность конвективного теплообмена. Если воздушные потоки имеют температуру ниже температуры поверхности кожи (30 - 33 °С), они оказывают освежающее действие на организм человека, а при температуре свыше 37 °С действуют угнетающе. Организм человека начинает ощущать воздушные потоки при скорости около 0,15 м/с.

Тепловое излучение от нагретых поверхностей играет немаловажную роль в создании неблагоприятных микроклиматических условий. Действие лучистого тепла не ограничивается изменениями, происходящими на облучаемом участке кожи, – на облучение реагирует весь организм. В организме возникают биохимические изменения, нарушения в сердечно-сосудистой и нервной системах. При длительном воздействии инфракрасных лучей может возникнуть катаракта глаз (помутнение хрусталика).

Тепловые ощущения человека зависят от сочетания микроклиматических параметров и от напряженности физической работы.

Для оценки комплексного влияния параметров микроклимата на организм человека при малых энергозатратах используется метод эквивалентно-эффективных температур. Этот метод позволяет на основании данных о параметрах микроклимата судить о тепловом состоянии человека. Для его использования введено понятие эквивалентно-эффективной температуры (ЭЭТ ), которая характеризует тепловое ощущение человека при одновременном воздействии температуры, влажности и скорости движения воздуха. ЭЭТ оценивается температурой неподвижного воздуха 100 % -ой относительной влажности, при которой тепловое ощущение человека такое же, как и при заданном сочетании температуры, влажности и скорости движения воздуха.

Область ЭЭТ в интервале температур от 17 до 22 °С соответствует зоне комфорта , внутри которой можно выделить линию комфорта, соответствующую ЭЭТ = 19 °С, при которой почти у всех исследуемых людей возникает ощущение комфорта.

На рисунке приведена номограмма, позволяющая определить влияние параметров микроклимата на тепловое ощущение человека.

3. Нормирование параметров микроклимата

Нормируемыми параметрами микроклимата в производственных помещениях являются: температура воздуха; относительная влажность воздуха; скорость движения воздуха; температура поверхностей помещения (стены, потолок, пол) и технологического оборудования; интенсивность теплового облучения. При нормировании параметров микроклимата учитывают интенсивность энергозатрат работающих (категорию работ по тяжести), период года, время пребывания на рабочих местах .

При этом различают оптимальные и допустимые микроклиматические условия.

Оптимальные микроклиматические условия представляют такие сочетания параметров микроклимата, которые обеспечивают ощущение теплового комфорта в течение 8-часовой рабочей смены при минимальном напряжении механизмов терморегуляции

Допустимые микроклиматические условия могут приводить к ощущению теплового дискомфорта, напряжению механизмов терморегуляции, ухудшению самочувствия и работоспособности. При условии 8-часовой рабочей смены они не вызывают повреждений или нарушений состояния здоровья. Допустимые значения параметров микроклимата устанавливают в случаях, когда по технологическим требованиям, техническим и экономически обоснованным причинам не могут быть обеспечены оптимальные значения.

Номограмма эквивалентно-эффективных температур

В зависимости от энергозатрат в единицу времени работы подразделяются на следующие категории.

¨ Лёгкие физические работы (категория I ) – виды деятельности с интенсивностью энергозатрат до 174 Вт.

К категории относятся работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением с интенсивностью энергозатрат 140 – 174 Вт.

¨ Физические работы средней тяжести (категория II ) – виды деятельности с интенсивностью энергозатрат 175 – 290 Вт.

К категории IIa относятся работы, связанные с постоянной ходьбой, перемещением мелких (до 1 кг) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения с интенсивностью энергозатрат 175 – 232 Вт.

К категории IIб относятся работы, связанные с ходьбой, перемещением и переноской тяжестей до 10 кг и сопровождающиеся умеренным физическим напряжением с интенсивностью энергозатрат 233 – 290 Вт.

¨ Тяжёлые физические работы (категория III ) – виды деятельности с интенсивностью энергозатрат с расходом энергии более 290 Вт. Эти работы связаны с постоянными передвижениями, перемещением и переноской значительных (свыше 10 кг) тяжестей и требующие больших физических усилий.

При нормировании различают два периода года: холодный (со среднесуточной температурой наружного воздуха +10 °С и ниже) и тёплый (со среднесуточной температурой наружного воздуха выше +10 °С).

В табл. 1 приведены оптимальные (в скобках – допустимые) значения параметров микроклимата на постоянных рабочих местах производственных помещений.

Интенсивность теплового облучения учитывается, если в производственных помещении имеются источники тепла, нагретые до высокой температуры .



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме