Подпишись и читай
самые интересные
статьи первым!

Графически гармонические колебания. Колебание и волны

1.Определение колебательного движения

Колебательное движение - это движение, точно или приблизительно повторяющееся через одинаковые промежутки времени. Учение о колебательном движении в физике выделяют особо. Это обусловлено общностью закономерностей колебательного движения различной природы и методов его исследования. Механические, акустические, электромагнитные колебания и волны рассматриваются с единой точки зрения. Колебательное движение свойственно всем явлениям природы. Внутри любого живого организма непрерывно происходят ритмично повторяющиеся процессы, например биение сердца.

Механические колебания Колебания - это любой физический процесс, характери­зующийся повторяемостью во времени.

Волнение моря, качание маятника часов, вибрации корпуса корабля, биение человеческого сердца, звук, радиоволны, свет, переменные токи - все это коле­бания.

В процессе колебаний значения физических величин, опреде­ляющих состояние системы, через равные или неравные проме­жутки времени повторяются. Колебания называются периодическими , если значения изме­няющихся физических величин повторяются через равные проме­жутки времени.

Наименьший промежуток времени Т, черезкото­рый значение изменяющейся физической величины повторяется (по величине и направлению, если эта величина векторная, по величине и знаку, если она скалярная), называетсяпериодом колебаний.

Число полных колебаний n , совершаемых за единицу времени, называется частотой колебаний этой величины и обозначается через ν . Период и частота колебаний связаны соотноше­нием:

Любое колебание обусловлено тем или иным воздействием на колеблющуюся систему. В зависимости от характера воздействия, вызывающего колебания, различают следующие виды периодических колебаний: свободные, вынужденные, автоколебания, параметри­ческие.

Свободные колебания - это колебания, происходящие в систе­ме, предоставленной самой себе, после выведения ее из состояния устойчивого равновесия (например, колебания груза на пружине).

Вынужденные колебания - это колебания, обусловленные внешним периодическим воздействием (например, электромагнит­ные колебания в антенне телевизора).

Механические колебания

Автоколебания - свободные колебания, поддерживаемые внеш­ним источником энергии, включение которого в нужные моменты времени осуществляет сама колеблющаяся система (например, колебания маятника часов).

Параметрические колебания - это колебания, в процессе которых происходит периодическое изменение какого-либо параметра системы (например, раскачивание качелей: приседая в крайних положениях и выпрямляясь в среднем положении, человек, находящийся на качелях, изменяет момент инерции качелей).

Различные по своей природе колебания обнаруживают много общего: они подчиняются одним и тем же закономерностям, описываются одними и теми же уравнениями, исследуются одними и теми же методами. Это дает возможность создать единую теорию колебаний.

Простейшими из периодических колебаний

являются гармонические колебания.

Гармонические колебания- это колебания, в процессе совершения которых значения физических величин изменяются с течением времени по закону синуса или косинуса. Большинство колебательных процессов описываются этим законом или может быть приставлено в виде суммы гармонических колебаний.

Возможно и другое «динамическое» определение гармонических колебании как процесса, совершаемого под действием упругой или «квазиупругой»

2. Периодическими называются колебания, при которых происходит точное повторение процесса через равные промежутки времени.

Периодом периодических колебаний называется минимальное время, через которое система возвращается в первоначальное

х - колеблющаяся величина (например, сила тока в цепи, состояние и начинается повторение процесса. Процесс, происходящий за один период колебаний, называется «одно полное колебание».

периодических колебаний называется число полных колебаний за единицу времени (1 секунду) - это может быть не целое число.

Т - период колебаний Период - время одного полного колебания.

Чтобы вычислить частоту v, надо разделить 1 секунду на время Т одного колебания (в секундах) и получится число колебаний за 1 секунду или координата точки) t - время

Гармоническое колебание

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса.

График гармонического колебания

График устанавливает зависимость смещения тела со временем. Установим к пружинному маятнику карандаш, за маятником бумажную ленту, которая равномерно перемещается. Или математический маятник заставим оставлять след. На бумаге отобразится график движения.

Графиком гармонического колебания является синусоида (или косинусоида). По графику колебаний можно определить все характеристики колебательного движения.

Уравнение гармонического колебания

Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Изменение скорости и ускорения при гармоническом колебании

Не только координата тела изменяется со временем по закону синуса или косинуса. Но и такие величины, каксила, скорость и ускорение, тоже изменяются аналогично. Сила и ускорение максимальные, когда колеблющееся тело находится в крайних положениях, где смещение максимально, и равны нулю, когда тело проходит через положение равновесия. Скорость, наоборот, в крайних положениях равна нулю, а при прохождении телом положения равновесия - достигает максимального значения.

Если колебание описывать по закону косинуса

Если колебание описывать по закону синуса

Максимальные значения скорости и ускорения

Проанализировав уравнения зависимости v(t) и a(t), можно догадаться, что максимальные значения скорость и ускорение принимают в том случае, когда тригонометрический множитель равен 1 или -1. Определяются по формуле

Как получить зависимости v(t) и a(t)

Колебательное движение - периодическое или почти периодическое движение тела, координата, скорость и ускорение которого через равные промежутки времени принимают примерно одинаковые значения.

Механические колебания возникают тогда, когда при выводе тела из положения равновесия появляется сила, стремящаяся вернуть тело обратно.

Смещение х - отклонение тела от положения равновесия.

Амплитуда А - модуль максимального смещения тела.

Период колебания Т - время одного колебания:

Частота колебания

Число колебаний, совершаемых телом за единицу времени: При колебаниях скорость и ускорение периодически изменяются. В положении равновесия скорость максимальна, ускорение равно нулю. В точках максимального смещения ускорение достигает максимума, скорость обращается в нуль.

ГРАФИК ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

Гармоническими называются колебания, происходящие по закону синуса или косинуса:

где x(t) - смещение системы в момент t, A - амплитуда, ω - циклическая частота колебаний.

Если по вертикальной оси откладывать отклонение тела от положения равновесия, а по горизонтальной - время, то получится график колебания х = x(t) - зависимость смещения тела от времени. При свободных гармонических колебаниях - это синусоида или косинусоида. На рисунке представлены графики зависимости смещения х, проекций скорости V х и ускорения а х от времени.

Как видно из графиков, при максимальном смещении х скорость V колеблющегося тела равна нулю, ускорение а, а значит и действующая на тело сила, максимальны и направлены противоположно смещению. В положении равновесия смещение и ускорение обращаются в нуль, скорость максимальна. Проекция ускорения всегда имеет знак, противоположный смещению.

ЭНЕРГИЯ КОЛЕБАТЕЛЬНОГО ДВИЖЕНИЯ

Полная механическая энергия колеблющегося тела равна сумме его кинетической и потенциальной энергий и при отсутствии трения остается постоянной:

В момент, когда смещение достигает максимума х = А, скорость, а вместе с ней и кинетическая энергия, обращаются в нуль.

При этом полная энергия равна потенциальной энергии:

Полная механическая энергия колеблющегося тела пропорциональна квадрату амплитуды его колебаний.

Когда система проходит положение равновесия, смещение и потенциальная энергия равны нулю: х = 0, Е п = 0. Поэтому полная энергия равна кинетической:

Полная механическая энергия колеблющегося тела пропорциональна квадрату его скорости в положении равновесия. Следовательно:

МАТЕМАТИЧЕСКИЙ МАЯТНИК

1. Математический маятник - это материальная точка, подвешенная на невесомой нерастяжимой нити.

В положении равновесия сила тяжести компенсируется силой натяжения нити. Если маятник отклонить и отпустить, то силы и перестанут компенсировать друг друга, и возникнет результирующая сила , направленная к положению равновесия. Второй закон Ньютона:

При малых колебаниях, когда смещение х много меньше l, материальная точка будет двигаться практически вдоль горизонтальной оси х. Тогда из треугольника МАВ получаем:

Так как sin a = х/l , то проекция результирующей силы R на ось х равна

Знак "минус" показывает, что сила R всегда направлена против смещения х.

2. Итак, при колебаниях математического маятника, так же как и при колебаниях пружинного маятника, возвращающая сила пропорциональна смещению и направлена в противоположную сторону.

Сравним выражения для возвращающей силы математического и пружинного маятников:

Видно, что mg/l является аналогом k. Заменяя, k на mg/l в формуле для периода пружинного маятника

получаем формулу для периода математического маятника:

Период малых колебаний математического маятника не зависит от амплитуды.

Математический маятник используют для измерения времени, определения ускорения свободного падения в данном месте земной поверхности.

Свободные колебания математического маятника при малых углах отклонения являются гармоническими. Они происходят благодаря равнодействующей силы тяжести и силы натяжения нити, а также инерции груза. Равнодействующая этих сил является возвращающей силой.

Пример. Определите ускорение свободного падения на планете, где маятник длиной 6,25 м имеет период свободных колебаний 3,14 с.

Период колебаний математического маятника зависит от длины нити и ускорения свободного падения:

Возведя обе части равенства в квадрат, получаем:

Ответ: ускорение свободного падения равно 25 м/с 2 .

Задачи и тесты по теме "Тема 4. "Механика. Колебания и волны"."

  • Поперечные и продольные волны. Длина волны

    Уроков: 3 Заданий: 9 Тестов: 1

  • Звуковые волны. Скорость звука - Механические колебания и волны. Звук 9 класс

Гармонические колебания – колебания, совершаемые по законам синуса и косинуса. На следующем рисунке представлен график изменения координаты точки с течением времени по закону косинуса.

картинка

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Период колебаний

Период колебаний – это время совершения одного полного колебания. Период колебания обозначается буквой Т. Единицы измерения периода соответствуют единицам времени. То есть в СИ - это секунды.

Частота колебаний – количество колебаний совершенных в единицу времени. Частота колебаний обозначается буквой ν. Частоту колебаний можно выразить через период колебания.

ν = 1/Т.

Единицы измерения частоты в СИ 1/сек. Эта единица измерения получила название Герца. Число колебаний за время 2*pi секунд будет равняться:

ω0 = 2*pi* ν = 2*pi/T.

Частота колебаний

Данная величина называется циклической частотой колебаний. В некоторой литературе встречается название круговая частота. Собственная частота колебательной системы – частота свободных колебаний.

Частота собственных колебаний рассчитывается по формуле:

Частота собственных колебаний зависит от свойств материала и массы груза. Чем больше жесткость пружины, тем больше частота собственных колебаний. Чем больше масса груза, тем меньше частота собственных колебаний.

Эти два вывода очевидны. Чем более жесткая пружина, тем большее ускорение она сообщит телу, при выведении системы из равновесия. Чем больше масса тела, тем медленнее будет изменяться это скорость этого тела.

Период свободных колебаний :

T = 2*pi/ ω0 = 2*pi*√(m/k)

Примечателен тот факт, что при малых углах отклонения период колебания тела на пружине и период колебания маятника не будут зависеть от амплитуды колебаний.

Запишем формулы периода и частоты свободных колебаний для математического маятника.

тогда период будет равен

T = 2*pi*√(l/g).

Данная формула будет справедлива лишь для малых углов отклонения. Из формулы видим, что период колебаний возрастает с увеличением длины нити маятника. Чем больше будет длина, тем медленнее тело будет колебаться.

От массы груза период колебаний совершенно не зависит. Зато зависит от ускорения свободного падения. При уменьшении g, период колебаний будет увеличиваться. Данное свойство широко используют на практике. Например, для измерения точного значения свободного ускорения.

Простейшим видом колебаний являются гармонические колебания - колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 13.2) гармо-ническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

\(x = A \cos \Bigr(\frac{2 \pi}{T}t + \varphi_0 \Bigl)\) или \(x = A \sin \Bigr(\frac{2 \pi}{T}t + \varphi"_0 \Bigl)\)

где х - смешение - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А - амплитуда колебаний - максимальное смещение тела из положения равновесия; Т - период колебаний - время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; \(\varphi_0\) - начальная фаза; \(\varphi = \frac{2 \pi}{T}t + \varphi"_0\) - фаза колебании в момент времени t . Фаза колебаний - это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени t 0 = 0 колеблющаяся точка максимально смещена от положения равновесия, то \(\varphi_0 = 0\), а смещение точки от положения равновесия изменяется по закону

\(x = A \cos \frac{2 \pi}{T}t.\)

Если колеблющаяся точка при t 0 = 0 находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

\(x = A \sin \frac{2 \pi}{T}t.\)

Величину V , обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

\(\nu = \frac{1}{T} \)(в СИ единицей частоты является герц, 1Гц = 1с -1).

Если за время t тело совершает N полных колебаний, то

\(T = \frac{t}{N} ; \nu = \frac{N}{t}.\)

Величину \(\omega = 2 \pi \nu = \frac{2 \pi}{T}\) , показывающую, сколько колебаний совершает тело за 2 \(\pi\) с , называют циклической (круговой) частотой.

Кинематический закон гармонического движения можно записать в виде:

\(x = A \cos(2\pi \nu t + \varphi_0), x = A \cos(\omega t + \varphi_0).\)

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 13.3, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая \(\varphi_0=0\), т.е. \(~x=A\cos \omega t.\)

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

\(\upsilon_x = x" A \sin \omega t = \omega A \cos \Bigr(\omega t + \frac{\pi}{2} \Bigl) ,\)

где \(~\omega A = |\upsilon_x|_m\)- амплитуда проекции скорости на ось х .

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по  гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на \(\frac{\pi}{2}\) (рис. 13.3, б).

Для выяснения зависимости ускорения a x (t) найдем производную по времени от проекции скорости:

\(~ a_x = \upsilon_x" = -\omega^2 A \cos \omega t = \omega^2 \cos(\omega t + \pi),\)

где \(~\omega^2 A = |a_x|_m\) - амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 13,3, в).

Аналогично можно построить графики зависимостей \(~x(t), \upsilon_x (t)\) и \(~a_x(t),\) если \(~x = A \sin \omega t\) при \(\varphi_0=0.\)

Учитывая, что \(A \cos \omega t = x\), формулу для ускорения можно записать

\(~a_x = - \omega^2 x,\)

т.е. при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, т.е. ускорение направлено в сторону, противоположную смещению.

Так, проекция ускорения - это вторая производная от смещения а x =х" " , то полученное соотношение можно записать в виде:

\(~a_x + \omega^2 x = 0\) или \(~x"" + \omega^2 x = 0.\)

Последнее равенство называют уравнением гармонических колебаний.

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором, а уравнение гармонических колебаний - уравнением гармонического осциллятора.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 368-370.

Меняется во времени по синусоидальному закону:

где х — значение колеблющейся величины в момент времени t , А — амплитуда , ω — круговая частота, φ — начальная фаза колебаний, (φt + φ ) — полная фаза колебаний . При этом величины А , ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость , для электрических колебаний — напряжение и сила тока .

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии W p в кинетическую W k и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней-шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво-начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π ). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости , она равна:

где v m — максимальная скорость тела (в положении равновесия), х m = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме