Подпишись и читай
самые интересные
статьи первым!

Цезий. Цезий: металл, по которому сверяют часы

Цезий входит в группу химических элементов с ограниченными запасамивместе с гафнием, танталом, бериллием, рением, металлами платиновой группы, кадмием, теллуром. Общие выявленные мировые ресурсы руд составляют около 180 тыс. тонн (в пересчёте на окись цезия), но они крайне распылены. Сверхвысокие цены — это неотъемлемая черта, сопровождающая цезий и рубидий в прошлом и настоящем. Мировой объём добычи цезия составляет около 9 тонн в год, а потребность свыше 85 тонн в год и она постоянно растёт. У цезия есть и недостатки, которые обусловливают постоянный поиск его минералов: извлечение этого металла из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, запасы цезиевых руд очень ограничены и не могут обеспечить постоянно растущий спрос на металлический цезий (потребности в металле более чем в 8,5 раз превышают его добычу, и положение в металлургии цезия ещё более тревожное, чем, например, в металлургии тантала или рения). Промышленность нуждается именно в очень чистом материале (на уровне 99,9—99,999 %), и это является одной из труднейших задач в металлургии редких элементов. Для получения цезия достаточной степени чистоты требуется многократная ректификация в вакууме, очистка от механических примесей на металлокерамических фильтрах, нагревание с геттерами для удаления следов водорода, азота, кислорода и многократная ступенчатая кристаллизация. Цезий весьма активен и агрессивен по отношению к контейнерным материалам и требует хранения, например, в сосудах из специального стекла в атмосфере аргона или водорода (обычные марки лабораторного стекла цезий разрушает).

Месторождения

По добыче цезиевой руды (поллуцита) лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено около 70 % мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России его мощные месторождения находятся на Кольском полуострове, в Восточном Саяне и Забайкалье. Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о. Эльба), но они обладают малыми запасами и не имеют важного экономического значения.

Ежегодное производство цезия в мире составляет около 20 тонн.

Геохимия и минералогия

Среднее содержание цезия в земной коре 3,7 г/т. Наблюдается некоторое увеличение содержание цезия от ультраосновных пород (0,1 г/т) к кислым (5 г/т). Основная его масса в природе находится в рассеянной форме и лишь незначительная часть заключена в собственных минералах. Постоянно повышенные количества цезия наблюдаются в воробьевите (1—4 %), родиците (около 5 %), авогадрите и лепидолите (0,85 %). По кристаллохимическим свойствам цезий наиболее близок к рубидию, калию и таллию. В повышенных количествах цезий находится в калиевых минералах. Цезий, как и рубидий, имеет тенденцию накапливаться на поздних стадиях магматических процессов, и в пегматитах его концентрации достигают наивысших значений. Среднее содержание цезия в гранитных пегматитах около 0,01 %, а в отдельных пегматитовых жилах, содержащих поллуцит, даже достигает 0,4 %, что примерно в 400 раз выше, чем в гранитах. Наиболее высокие концентрации цезия наблюдаются в редкометально замещённых микроклин-альбитовых пегматитах со сподуменом. При пневматолито-гидротермальном процессе повышенные количества цезия связанны с массивами грейзенезированных аляскитов и гранитов с кварц-берилл-вольфрамитовыми жилами, где он присутствует главным образом в мусковитах и полевых шпатах. В зоне гипергенеза (в поверхностных условиях) цезий в небольшом количестве накапливается в глинах, глинистых породах и почвах, содержащих глинистые минералы, иногда в гидроокислах марганца. Максимальное содержание цезия составляет лишь 15 г/т. Роль глинистых минералов сводится к сорбции, цезий вовлекается в межпакетное пространство в качестве поглощённого основания. Активная миграция этого элемента в водах очень ограничена. Основное количество цезия мигрирует «пассивно», в глинистых частичках речных вод. В морской воде концентрация цезия составляет ок. 0,5 мкг/л. Из числа собственно цезиевых минералов наиболее распространены поллуцит (Cs, Na)·nH2O (22 — 36 % Cs2O), цезиевый берилл (воробьевит) Be2CsAl2(Si6O18) и авогадрит (KCs)BF4. Последние два минерала содержат до 7,5 % окиси цезия.

Получение цезия

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs). Кроме того, в виде примесей цезий входит в ряд алюмосиликатов: лепидолит, флогопит, биотит, амазонит, петалит, берилл, циннвальдит, лейцит, карналлит. В качестве промышленного сырья используются поллуцит и лепидолит.
При промышленном получении цезий в виде соединений извлекается из минерала поллуцита. Это делается хлоридным или сульфатным вскрытием. Первое включает обработку исходного минерала подогретой соляной кислотой, добавление хлорида сурьмы SbCl3 для осаждения соединения Cs3 и промывку горячей водой или раствором аммиака с образованием хлорида цезия CsCl. При втором — минерал обрабатывается подогретой серной кислотой с образованием алюмоцезиевых квасцов CsAl(SO4)2 · 12H2O.
В России после распада СССР промышленная добыча поллуцита не велась, хотя в Вороньей тундре под Мурманском ещё в советское время были обнаружены колоссальные запасы минерала. К тому времени, когда российская промышленность смогла встать на ноги, выяснилось, что лицензию на разработку этого месторождения купила Канадская компания. В настоящее время переработка и извлечение солей цезия из поллуцита ведется в Новосибирске на ЗАО «Завод редких металлов».

Существует несколько лабораторных методов получения цезия. Он может быть получен:
нагревом в вакууме смеси хромата или дихромата цезия с цирконием;
разложением азида цезия в вакууме;
нагревом смеси хлорида цезия и специально подготовленного кальция.

Все методы являются трудоёмкими. Второй позволяет получить высокочистый металл, однако является взрывоопасным и требует на реализацию несколько суток.

Химические свойства

Цезий является наиболее химически активным металлом, полученным в макроскопических количествах (так как активность щелочных металлов растёт с порядковым номером, то франций, вероятно, ещё более активен, но в макроскопических количествах не получен, так как все его изотопы имеют малый период полураспада). Является сильнейшим восстановителем. На воздухе цезий мгновенно окисляется с воспламенением, образуя надпероксид CsO2. При ограниченном доступе кислорода окисляется до оксида Cs2O. Взаимодействие с водой происходит со взрывом, продуктом взаимодействия являются гидроксид CsOH и водород H2. Цезий вступает в реакцию со льдом (даже при −120 °C), простыми спиртами, галогеноорганическими соединениями, галогенидами тяжёлых металлов, кислотами, сухим льдом (взаимодействие протекает с сильным взрывом). Реагирует с бензолом. Активность цезия обусловлена не только высоким отрицательным электрохимическим потенциалом, но и невысокой температурой плавления и кипения (быстро развивается очень большая контактная поверхность, что увеличивает скорость реакции). Многие образуемые цезием соли — нитраты, хлориды, бромиды, фториды, иодиды, хроматы, манганаты, азиды, цианиды, карбонаты и т. д. — чрезвычайно легко растворимы в воде и ряде органических растворителей; наименее растворимы перхлораты (что важно для технологии получения и очистки цезия). Несмотря на то, что цезий является весьма активным металлом, он, в отличие от лития, не вступает в реакцию с азотом при обычных условиях и, в отличие от бария, кальция, магния и ряда других металлов, не способен образовать с азотом соединений даже при сильнейшем нагревании.

Гидроксид цезия — сильнейшее основание с высочайшей электропроводностью в водном растворе; так, например, при работе с ним необходимо учитывать, что концентрированный раствор CsOH разрушает стекло даже при обычной температуре, а расплав разрушает железо, кобальт, никель, а также платину, корунд и диоксид циркония, и даже постепенно разрушает серебро и золото (в присутствии кислорода — очень быстро). Единственным устойчивым в расплаве гидроксида цезия металлом является родий и некоторые его сплавы.

Если бы писателю-беллетристу пришлось заняться «биографией» цезия, то он, может быть, начал так: «Открыт цезий сравнительно недавно, в 1860 г., в минеральных водах известных целебных источников Шварцвальда (Баден-Баден и др.). За короткий исторический срок прошел блистательный путь - от редкого, никому не ведомого химического элемента до стратегического металла. Принадлежит к трудовой семье щелочных металлов, но в жилах его течет голубая кровь последнего в роде... Впрочем, это нисколько не мешает ему общаться с другими элементами и даже, если они не столь знамениты, он охотно вступает с ними в контакты и завязывает прочные связи.

В настоящее время работает одновременно в нескольких отраслях: в электронике и автоматике, в радиолокации и кино, в атомных реакторах и на космических кораблях...».
Не принимая всерьез шутливого тона и некоторых явно литературных преувеличений, это жизнеописание можно смело принять за «роман без вранья». Не беспредметен разговор о «голубой крови» цезия - впервые он был обнаружен по двум ярким линиям в синей области спектра и латинское слово «caesius», от которого произошло его название, означает небесно-голубой. Неоспоримо утверждение о том, что цезий практически последний в ряду щелочных металлов . Правда, еще Менделеев предусмотрительно оставил в своей таблице пустую клетку для «экацезия», который должен был следовать в I группе за цезием. И этот элемент (франций) в 1939 г. был открыт. Однако франций существует лишь в виде быстро распадающихся радиоактивных изотопов с периодами полураспада в несколько минут, секунд или даже тысячных долей секунды. Наконец, правда и то, что цезий применяется в некоторых важнейших областях современной техники и науки.

Распространенность цезия в природе

В литературе нет точных данных о том, сколько цезия имеется на земном шаре. Известно лишь, что он относится к числу редких химических элементов. Полагают, что его содержание в земной коре во всяком случае в несколько сот раз меньше, чем рубидия, и не превышает 7 10~4%.
Цезий встречается в крайне рассеянном состоянии (порядка тысячных долей процента) во многих горных породах; ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах, главным образом в лепидолите. Но особенно существенно то, что, в отличие от рубидия и большинства других редких элементов, цезий образует собственные минералы - поллуцит , авогадрит и родицит. Родицит крайне редок, притом некоторые авторы причисляют его к литиевым минералам, так как в его состав (R20 ^АЬОз-ЗВЮз, где R20- сумма окисей щелочных металлов) входит обычно больше лития, чем цезия. Авогадрит (К, Cs) тоже редок, да и поллуциты встречаются нечасто; их залежи маломощны, зато цезия они содержат не менее 20, а иногда и до 35%. Наибольшее практическое значение имеют поллуциты CHIA (Южная Дакота и Мэн), Юго-Западной Африки, Швеции и Советского Союза (Казахстан и др.).

Поллуциты - это алюмосиликаты, сложные и весьма прочные соединения. Их состав определяют формулой (Cs, Na) -гаН20, и хотя цезия в них много, извлечь его не так просто. Чтобы «вскрыть» минерал и перевести в растворимую форму ценные компоненты, его обрабатывают при нагревании концентрированными минеральными кислотами - плавиковой или соляной и серной. Затем освобождают раствор от всех тяжелых и легких металлов и, что особенно трудно, от постоянных спутников цезия - щелочных металлов: калия, натрия и Рубидия.
Современные методы извлечения цезия из поллуцитов основаны на предварительном сплавлении концентратов с избытком извести и небольшим количеством плавиколого шпата. Если вести процесс при 1200° С, то почти весь цезий возгоняется в виде окиси Cs20. Этот возгон, конечно, загрязнен примесью других щелочных металлов, но он растворим в минеральных кислотах, что упрощает дальнейшие операции.


Из лепидолитов цезий извлекается вместе с рубидием попутно, как побочный продукт производства лития. Лепидолиты предварительно сплавляют (или спекадэт) при температуре около 1000° С с гипсом или сульфатом калия и карбонатом бария. В этих условиях все щелочные металлы превращаются в легкорастворимые соединения - их можно выщелачивать горячей водой. После выделения лития остается переработать полученные фильтраты, и здесь самая трудная операция - отделение цезия от рубидия и громадного избытка калия. В результате ее получают какую-либо соль цезия - хлорид, сульфат или карбонат. Но это еще только часть дела, так как цезиевую соль надо превратить в металлический цезий. Чтобы понять всю сложность последнего этапа, достаточно указать, что первооткрывателю цезия - крупнейшему немецкому химику Бунзену - так и не удалось получить элемент № 55 в свободном состоянии. Все способы, пригодные для восстановления других металлов, не давали желаемых результатов. Металлический цезий был впервые получен только через 20 лет, в 1882 г., шведским химиком Сеттербергом в процессе электролиза расплавленной смеси цианидов цезия и бария, взятых в отношении 4:1. Цианид бария добавляли для снижения температуры плавления. Однако барий загрязнял конечный продукт, а работать с цианидами было трудно ввиду их крайней токсичности, да и выход цезия был весьма мал. Более рациональный способ найден в 1890 г. известным русским химиком Н. Н. Бекетовым, предложившим восстанавливать гидроокись цезия металлическим магнием в токе водорода при повышенной температуре. Водород заполняет прибор и препятствует окислению цезия, который отгоняется в специальный приемник. Однако и в этом случае выход цезия не превышает 50% теоретического.
Наилучшее решение трудной задачи получения металлического цезия было найдено в 1911 г. французским химиком Акспилем. При методе Акспиля, до сих пор остающемся наиболее распространенным, хлорид цезия восстанавливают металлическим кальцием в вакууме,
причем реакция 2CsCl + Са -> СаС12 + 2Cs идет практически до конца. Процесс ведут в специальном приборе (в лабораторных условиях - из кварца или тугоплавкого стекла), снабженном отростком. Если давление в приборе не больше 0,001 мм рт. ст., температура процесса может не превышать 675° С. Выделяющийся цезий испаряется и отгоняется в отросток, а хлористый кальций полностью остается в реакторе, так как в этих условиях летучесть соли ничтожна (температура плавления СаС12 равна 773° С, т. е. на 100° С выше температуры процесса). В результате повторной дистилляции в вакууме получается абсолютно чистый металлический цезий.
В литературе описаны еще многие другие способы по-лучения металлического цезия из его соединений, но, как правило, они не сулят особых преимуществ. Так, при замене металлического кальция его карбидом температуру реакции приходится повышать до 800° С, и конечный продукт загрязняется дополнительными примесями. Можно разлагать азид цезия или восстанавливать цирконием его бихромат, но эти реакции взрывоопасны. Впрочем, при замене бихромата хроматом цезия процесс восстановления протекает спокойно, и, хотя выход не превышает 50%, отгоняется очень чистый металлический цезий. Этот способ применим для получения небольших количеств металла в специальном вакуумном приборе.
Мировое производство цезия сравнительно невелико, но в последнее время оно постоянно растет. О масштабах этого роста можно только догадываться - цифры не публикуются.
Блестящая поверхность металлического цезия имеет бледно-золотистый цвет. Это - один из самых легкоплавких металлов: он плавится при 28,5° С, кипит при 705° С в обычных условиях и при 330° С в вакууме. Легкоплавкость цезия сочетается с большой легкостью. Несмотря на довольно большую атомную массу (132,905) элемента, его плотность при 20° С всего 1,87. Цезий во много раз легче своих соседей по менделеевской таблице. Лантан, например, имеющий почти такую же атомную массу, по плотности превосходит цезий в три с лишним раза. Цезий всего вдвое тяжелее натрия, а их атомные массы относятся, как 6:1. По-видимому, причина этого кроется в своеобразной электронной структуре атомов цезия. Каждый его атом содержит 55 протонов, 78 нейтронов и 55 электронов, но все эти многочисленные электроны расположены относительно рыхло - ионный радиус цезия очень велик-1,65А. Ионный радиус лантана, например, равен всего 1,22А, хотя в состав его атома входят 57 протонов, 82 нейтрона и 57 электронов.
Самое замечательное свойство цезия - его исключительно высокая активность. По чувствительности к свету он превосходит все другие металлы. Цезиевый катод испускает поток электронов даже под действием инфракрасных лучей с длиной волны 0,80 мкм. Кроме того, максимальная электронная эмиссия, превосходящая нормальный фотоэлектрический эффект в сотни раз, наступает у цезия при освещении зеленым светом, тогда как у других светочувствительных металлов этот максимум проявляется лишь при воздействии фиолетовых или ультрафиолетовых лучей.
Долгое время ученые надеялись найти радиоактивные изотопы цезия в природе, поскольку они есть у рубидия и калия. Но в природном цезии не удалось обнаружить каких-либо иных изотопов, кроме вполне стабильного ir;3Cs. Правда, искусственным путем получено 22 радиоактивных изотопа цезия с атомными массами от 123 до 144. В большинстве случаев они недолговечны: периоды полураспада измеряются секундами и минутами, реже - несколькими часами или днями. Однако три из них распадаготся не столь быстро - это 134Cs, 137Cs и 135Cs, живу-щие 2,07; 26,6 и 3 106 лет. Все три изотопа образуются в атомных реакторах при распаде урана, тория и плутония; их удаление из реакторов довольно затруднительно.
Химическая активность цезия необычайна. Он очень быстро реагирует с кислородом и не только моментально воспламеняется на воздухе, по способен поглощать малейшие следы кислорода в условиях глубокого вакуума. Воду он бурно разлагает уже при обычной температуре; при этом выделяется много тепла, и вытесняемый из воды водород тут же воспламеняется. Цезий взаимодействует даже со льдом при-116° С. Его хранение требует большой предосторожности.
Цезий взаимодействует и с углеродом. Только самая совершенная модификация углерода - алмаз - в состоянии противостоять его «натиску». Жидкий расплавленный цезий и его пары разрыхляют сажу, древесный уголь и даже графит , внедряясь между атомами углерода и образуя своеобразные, довольно прочные соединения золотисто-желтого цвета, которые в пределе, по-видимому, отвечают составу C8Cs5. Они воспламеняются на воздухе, вытесняют водород из воды, а при нагревании разлагаются и отдают весь поглощенный цезий.
Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором - взрывом. При нагревании цезий соединяется с водородом, азотом и другими элементами, а при 300° С разрушает стекло и фарфор. Гидриды и дейтериды цезия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием, а также с окисью углерода. Галоидные соединения цезия и цезиевые соли большинства кислот, напротив, очень прочны и устойчивы. Активность исходного цезия проявляется у них разве только в хорошей растворимости подавляющего большинства солей. Кроме того, они легко превращаются в более сложные комплексные соединения.
Сплавы и интерметаллические соединения цезия всегда сравнительно легкоплавки.
У цезия имеется еще одно весьма важное свойство, тесно связанное с его электронной структурой. Дело в том, что он теряет свой единственный валентный электрон
легче, чем любой другой металл; для этого необходима очень незначительная энергия - всего 3,89 эв. Поэтому получение плазмы из цезия требует гораздо меньших энергетических затрат, чем при использовании любого другого химического элемента.

Где применяется цезий

Неудивительно, что замечательные свойства цезия давно открыли ему доступ в различные сферы человеческой деятельности.
Прежде всего он нашел применение в радиотехнике. Вакуумные фотоэлементы со сложным серебряно-цезиевым фотокатодом особенно ценны для радиолокации: они чувствительны не только к видимому свету, но и к не-видимым инфракрасным лучам и, в отличие, например, от селеновых, работают без инерции. В телевидении и звуковом кино широко распространены вакуумные сурьмяно-цезиевые фотоэлементы; их чувствительность даже после 250 часов работы падает всего на 5-6%, они надежно работают в интервале температур от - 30° до +90° С. Из них составляют так называемые многокаскадные фотоэлементы; в этом случае под действием электронов, вызванных лучами света в одном из катодов, наступает вторичная эмиссия - электроны испускаются добавочными фотокатодами прибора. В результате общий электрический ток, возникающий в фотоэлементе, многократно усиливается. Усиление тока и повышение чувствительности достигаются также в цезиевых фотоэлементах, заполненных инертным газом (аргоном или неоном) .
В оптике и электротехнике широко используются бромиды, иодиды и некоторые другие соли цезия. Если при изготовлении флуоресцирующих экранов для телевизоров и научной аппаратуры ввести между кристалликами сернистого цинка примерно 20% йодистого цезия, экраны будут лучше поглощать рентгеновские лучи и ярче светиться при облучении электронным пучком.


На проходившей в 1965 г. в Москве Международной выставке «Химия-65» в павильоне СССР демонстрировались сцинтилляционные приборы с монокристаллами иодида цезия, активированного таллием . Эти приборы, предназначенные для регистрации тяжелых заряженных частиц, обладают наиболышей чувствительностью из всех приборов подобного назначения.
Кристаллы бромистого и йодистого цезия прозрачны для инфракрасных лучей с длиной волны от 15 до 30 мкм (CsBr) и от 24 до 54 мкм (Csl). Обычные призмы из хлористого натрия пропускают только лучи с длиной волны 14 мкм, а из хлористого калия - 25 мкм. Поэтому применение бромистого и йодистого цезия сделало возможным снятие спектров сложных молекул в отдаленной инфракрасной области.
Весьма чувствительны к свету соединения цезия с оловянной кислотой (ортостаннаты) и с окисыо циркония (метацирконаты). Изготовленные на их основе люминесцентные трубки при облучении ультрафиолетовыми лучами или электронами дают зеленую люминесценцию.
Активность многих соединений цезия проявляется в их каталитической способности. Установлено, что при получении синтола (синтетической нефти) из водяного газа и стирола из этилбензола, а также при некоторых других синтезах добавление к катализатору незначительного количества окиси цезия (вместо окиси калия) повышает выход конечного продукта и улучшает условия процесса. Гидроокись цезия служит превосходным катализатором синтеза муравьиной кислоты. С этим катализатором реакция идет при 300° С без высокого давления. Выход конечного продукта очень велик - 91,5%- Металлический цезий лучше, чем другие щелочные металлы, ускоряет реакцию гидрогенизации ароматических углеводородов.
В целом же каталитические свойства цезия изучались мало и его положительное действие оценивалось скорее качественно, чем количественно. Вероятно, это можно объяснить недостаточной актуальностью вопроса, поскольку на цезий имеется настоятельный спрос в ряде Других весьма важных областей. К числу последних относится, в частности, медицина. Изотопом 137Cs, образующимся во всех атомных реакторах (в среднем из 100 ядер урана 6 ядер 137Cs), заинтересовались специалисты в области рентгенотерапии. Этот изотоп разлагается сравнительно медленно, теряя за год только 2,4% своей исходной активности. Он оказался пригодным для лечения злокачественных опухолей и имеет определенные преимущества перед радиоактивным кобальтом-60: более Длительный период полураспада (26,6 года против 5,27) и в четыре раза менее жесткое гамма-излучение. В связи с этим приборы на основе 137Cs долговечнее, а защита от излучения менее громоздка. Впрочем, эти преимущества становятся реальными лишь при условии абсолютной радиохимической чистоты 137Cs, отсутствия в нем примеси 134Cs, имеющего более короткий период полураспада и более жесткое гамма-излучение.

Не только радиоактивный, но и стабильный металлический цезий приобретает все большее значение. Он служит для изготовления специальных выпрямителей, во многих отношениях превосходящих ртутные. В военном и военно-морском деле вакуумные лампы с парами цезия применяются для инфракрасной сигнализации и контроля. В США такого рода прибор, способный обнаружить в темноте всевозможные объекты, называют «снайпер- скопом».
Но особенно большое внимание уделяется в последнее время цезиевой плазме, всестороннему изучению ее свойств и условий образования. Возможно, она стапет «топливом» плазменных двигателей будущего. Кроме того, работы по исследованию цезиевой плазмы тесно связаны с проблемой управляемого термоядерного синтеза. Многие ученые считают, что целесообразно создавать цезиевую плазму, используя высокотемпературную тепловую энергию атомных реакторов, то есть непосредственно превращать эту тепловую энергию в электрическую.
Таков далеко не полный перечень возможностей цезия.
ВСКОРЕ ПОСЛЕ ОТКРЫТИЯ. Цезий, как известно, был первым элементом, открытым с помощью спектрального анализа. Ученые, однако, имели возможность познакомиться с этим элементом еще до того, как Бунзен и Кирхгоф создали новый исследовательский метод. В 1846 г. немецкий химик Платтнер, анализируя минерал поллуцит, обнаружил, что сумма известных его компонентов составляет лишь 93%, но не сумел точно установить, какой еще элемент (или элементы) входит в этот минерал. Лишь в 1864 г., уже после открытия Бунзена, итальянец Пизани нашел цезий в поллуците и установил, что именно соединения этого элемента не смог идентифицировать Платтнер.

Цезий и давление

Все щелочные металлы сильно изменяются под действием высокого давления. Но именно цезий реагирует на него наиболее своеобразно и резко. При давлении в
100 тыс. атм его объем уменьшается почти втрое - сильнее, чем у других щелочных металлов. Кроме того, именно в условиях высокого давления были обнаружены две новые модификации элементарного цезия. Электрическое сопротивление всех щелочных металлов с ростом давления увеличивается; у цезия это свойство выражено особенно сильно.
АТОМНЫЕ ЧАСЫ. Ядро атома цезия и его валентный электрон обладают собственными магнитными моментами. Эти моменты могут быть ориентированы двояко - параллельно или антипараллельно. Разница между энергиями обоих состояний постоянна, и, естественно, переход из одного состояния в другое сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). Используя это свойство, ученые создали цезиевые «атомные часы»- едва ли не самые точные в мире.

Характеристика цезия, его особенности строения и качества, свойственные этому элементу, обязательно проходят в курсе химии. Не только школьники, но и студенты химических специальностей должны знать специфические особенности этого соединения. Применение цезия в настоящее время довольно широкое - но в специфической сфере. Во многом это связано с тем, что при комнатной температуре элемент приобретает жидкое состояние, а в чистом виде практически не встречается. В настоящее время только пять металлов имеют аналогичные качества. Свойства цезия определяют интерес к нему ученых и возможности по применению соединения.

О чем идет речь?

Мягкий металл цезий обозначается в таблице Менделеева символами Cs. Его порядковый номер - 55. Мягкий металл имеет серебристый, золотистый оттенок. Температура плавления - 28 градусов по шкале Цельсия.

Цезий представляет собой щелочной металл, чьи качества и особенности сходны с калием, рубидием. Строение цезия обусловливает повышенную реактивность. С водой металл может реагировать при температуре по шкале Цельсия 116 градусов ниже нуля. Химический элемент цезий имеет высокую пирофорность. Добывается он из поллуцита. Многие радиоактивные изотопы цезия (включая нашедший себе активное применение цезий 137) производятся в ходе переработки отходов, возникающих при функционировании ядерного реактора. Цезий 137 представляет собой результат реакции расщепления.

Исторические предпосылки

Заслуга открытия электронной формулы цезия принадлежит химикам из Германии, выдающимся умам в свой области Кирхгоффу, Бунзену. Это событие случилось в далеком 1860 году. В тот период начали активно менять только-только изобретенную методику спектроскопии пламенем, и в ходе своих экспериментов немецкие ученые обнаружили прежде неизвестный общественности химический элемент - цезий. В тот момент цезий был представлен в качестве получателя, что актуально для фотоэлементов, электронных ламп.

Заметные изменения в истории определения и выделения элемента случились в 1967-м. С учетом сделанного Эйнштейном заявления о том, что скорость света можно считать наиболее постоянным фактором измерения, присущим нашей вселенной, было решено выделить цезий 133. Это стало важным моментом в расширении спектра применения химического элемента цезия - в частности, на нем изготавливают атомные часы.

Цезий в девяностые годы

Именно в последнем десятилетии прошлого века химический элемент цезий начал использоваться человечеством особенно активно. Выяснилось, что он применим в работах бурения жидкостей. Также удалось найти довольно обширную зону применения в химических отраслях. Оказалось, что хлорид цезия и другие его производные могут использоваться при конструировании сложной электроники.

Тогда же, в девяностые, особенное внимание научного сообщества было приковано ко всему, что могло бы стать новым словом в атомной, ядерной энергетике. Именно тогда наиболее тщательно изучили радиоактивный цезий. Выявлено, что полураспад этого компонента требует около трех десятилетий. В настоящее время радиоактивные изотопы цезия нашли широкое применение в гидрологии. Без них не обходятся и медицина, промышленность. Наиболее широкое распространение получил радиоактивный изотоп цезий 137. Цезию свойственен низкий уровень отравляющих способностей, в то же время радиоактивные производные в большой концентрации могут нанести вред природе и человеку.

Физические параметры

Специфика цезия (а также хлорида цезия и других производных этого металла) обуславливает возможности по широкому применению продукта. Среди прочих элементов именно цезий имеет самый малый показатель твердости - всего 0,2 единицы по Кроме мягкости, металлу свойственна податливость. В нормальном состоянии правильная электронная формула цезия позволяет сформировать бледный по цвету материал, способный менять краску на более темную при малейшем контакте с соединениями кислорода.

Точка плавления металла - всего лишь 28 градусов по Цельсию, а это означает, что соединение принадлежит к числу пяти металлов, при комнатной температуре или близкой к таковой находящихся в жидкой фазе. Еще более низкая точка плавления, нежели у цезия, зарегистрирована только у меркурия. Точка кипения цезия тоже невелика - меньше только у ртути. Особенности электрохимического потенциала регламентируют горение металла - он создает фиолетовые оттенки либо синий цвет.

Сочетаемость и особенности

У цезия есть способность вступать в реакции с Также элемент формирует оксиды цезия. Кроме того, наблюдаются реакции с ртутными смесями, золотом. Особенности взаимодействия с другими соединениями, а также температурные режимы, при которых реакции возможны, декларируют возможные межметаллические составы. В частности, цезий является исходным компонентом для формирования фоточувствительных соединений. Для этого проводят реакцию металла с участием тория, сурьмы, галлия, индия.

Кроме оксида цезия, интерес у химиков вызывают и результаты взаимодействия с рядом щелочных элементов. В то же время нужно учитывать, что металл не может реагировать с литием. Для каждого из сплавов цезия характерен собственный оттенок. Некоторые смеси - это черно-фиолетовые соединения, другие окрашены в золотой оттенок, а третьи практически бесцветны, но с ярко выраженным металлическим блеском.

Химические особенности

Наиболее ярко выраженная особенность цезия - его пирофорность. Кроме того, внимание ученых привлекает и электрохимический потенциал металла. Цезий может спонтанно загореться прямо в воздухе. При взаимодействии с водой происходит взрыв, даже если условия реакции предполагали низкие температуры. Заметно отличается в этом плане цезий от первой группы Менделеевской химической таблицы. При взаимодействии цезия и воды в твердом виде также происходит реакция.

Выявлено, что период полураспада цезия длится порядка трех десятилетий. Материал признали опасным в силу его особенностей. Чтобы работать с цезием, необходимо создать атмосферу инертного газа. В то же время взрыв при контакте с водой при равном количестве натрия и цезия во втором случае будет ощутимо слабее. Химики объясняют это следующей особенностью: при контакте цезия с водой происходит мгновенная взрывная реакция, то есть не остается достаточно продолжительного временного промежутка для накопления водорода. Оптимальный метод хранения цезия - закупоренные емкости из боросиликатного соединения.

Цезий: в составе соединений

Цезий в соединениях выступает в качестве катиона. Есть много разнообразных анионов, с которыми возможна реакция формирования соединения. Большая часть солей цезия не имеет цвета, если только окрашивание не обусловлено анионом. Простые соли гигроскопичны, хотя в меньшей степени, чем у других легких металлов-щелочей. Многие в воде растворяются.

Имеют относительно низкую степень растворимости. Это нашло довольно широкое применение в промышленности. Например, сульфат алюминия-цезия активно используется в рудноочистительных установках в силу своей малой растворимости водой.

Цезий: уникальный и полезный

Визуально этот металл сходен с золотом, но немного светлее, нежели самый популярный благородный металл. Если взять кусочек цезия в руку, он быстро расплавится, а полученная субстанция будет подвижной, несколько изменит цвет - ближе к серебру. В расплавленном состоянии цезий отлично отражает лучи света. Из щелочных металлов цезий считается наиболее тяжелым, в то же время ему свойственна самая низкая плотность.

История открытия цезия содержит упоминания о Дюрхгеймском источнике. Именно отсюда прислали образец воды для лабораторного исследования. В ходе анализа составных компонентов особенное внимание уделялось решению вопроса: какой именно элемент обеспечивает лечебные качества жидкости? Немецкий ученый Бунзен решил применить метод спектрального анализа. Именно тогда появились две неожиданные линии голубого оттенка, не свойственные известным на тот момент соединениям. Именно цвет этих полос и помог ученым выбрать имя для нового компонента - небесно-голубой на латыни звучит как «цезий».

Где же мне тебя найти?

Как было выявлено в ходе длительных испытаний, цезий - это рассеянный элемент, который в природных условиях встречается крайне редко. Так, проводя сравнительный анализ содержания в коре планеты рубидия и цезия, ученые выявили, что второго меньше в сотни раз. Приблизительная оценка концентрации дала показатель 7*10(-4) %. Никакой другой менее чувствительный метод, нежели спектроскопия, просто не позволил бы выявить столь редкое соединение. Это объясняет факт того, что раньше ученые даже не подозревали о существовании цезия.

В настоящее время удалось выяснить, что чаще встречается цезий в извлекаемых в горах породах. Его концентрация в этом материале не превышает тысячных долей процента. Категорически малые количества удалось зафиксировать в водах морей. До десятых долей процента доходит уровень концентрации в литиевых, калиевых минеральных соединениях. Чаще всего его удается выявить в лепидолите.

При сравнении отличительных особенностей цезия и рубидия, а также других элементов, встречающихся крайне редко, удалось выявить, что цезию свойственно формирование уникальных минералов, на что не способны прочие соединения. Именно таким образом получаются поллуцит, родицит, авогадрит.

Родицит, как выяснили ученые, встречается в исключительно редко. Аналогичным образом очень сложно найти авогадрит. Поллуцит несколько более распространен, в ряде случаев обнаруживались небольшие залежи. Они обладают очень низкой мощностью, но содержат цезий в количестве 20-35 процентов от общей массы. Самые важные, с точки зрения общественности, поллуциты были обнаружены в американских недрах и на территории России. Также есть шведские разработки, казахстанские. Известно, что поллуцит найден на юго-западе Африканского континента.

Работа продолжается

Не секрет, что открытие элемента и получение его в чистом виде - это две совершенно разные задачи, хоть и связанные между собой. Когда стало ясно, что цезий встречается очень редко, ученые начали разрабатывать методики синтезирования металла в лабораторных условиях. Первое время казалось, что это совершенно непосильная задача, если применять доступные в те времена средства и технику. Бунзену за долгие годы так и не удалось выделить металлический цезий в чистом его виде. Лишь два десятилетия спустя передовые химики смогли наконец решить эту задачу.

Прорыв произошёл в 1882-м, когда Сеттерберг из Швеции провел электролиз смеси, на четыре части состоящей из цианидов цезия, к которым была примешана одна часть бария. Последний компонент использовался, чтобы сделать температуру плавления меньше. Цианиды, как в этот момент уже знали ученые, представляли собой очень опасные компоненты. В то же время за счет бария формировалось загрязнение, что не позволяло получить более-менее удовлетворительное количество цезия. Было ясно, что методика требует существенных доработок. Хорошее предложение в этой сфере было вынесено на обсуждение научного сообщества Бекетовым. Именно тогда внимание привлекла гидроокись цезия. Если восстановить это соединение, применяя металлический магний, повышая нагрев и используя водородный ток, можно добиться несколько лучшего результата, нежели доказанный шведским химиком. Впрочем, реальные эксперименты показали, что выход вдвое меньше, нежели рассчитываемый в теории.

Что дальше?

Цезий и дальше оставался в фокусе внимания международного химического научного сообщества. В частности, в своих исследованиях ему посвятил немало усилий и времени французский ученый Акспиль. В 1911 он предложил кардинально новый подход к вопросу извлечения чистого цезия. Необходимо было проводить реакцию в вакууме, в качестве исходного материала брался хлорид металла, а для его восстановления применялся металлический кальций.

Такая реакция, как показали эксперименты, происходит почти до конца. Чтобы добиться достаточного эффекта, необходимо использовать специальный прибор. В лабораториях обычно прибегают к тугоплавкому стеклу либо применяют кварцевые ёмкости. У прибора должен быть отросток. Внутри поддерживается давление порядка 0.001 мм рт. ст. Для успешной реакции необходимо обеспечить нагрев ёмкости до 675 градусов по шкале Цельсия. При этом выделяется цезий, который практически сразу же испаряется. Пары переходят в предназначенный для этого отросток. А вот хлористый калий преимущественно оседает прямо в реакторе. При заданных условиях летучесть этой соли столь мала, что ее можно вообще не учитывать, поскольку для этого соединения характерная температура плавления - 773 градуса (по той же шкале Цельсия). Это означает, что осадок может расплавиться, если емкость перегреть на сто градусов относительно задуманного. Чтобы добиться максимально эффективного результата, необходимо провести повторный процесс дистилляции. Для этого создают вакуум. На выходе будет идеальный металлический цезий. В настоящее время описанная методика применяется наиболее широко и считается оптимальной для получения соединения.

Активность и реакции

В ходе многочисленных исследований ученые смогли определить, что цезию присуща удивительная активность, в норме не свойственная металлам. При контакте с воздухом происходит возгорание, которое приводит к выделению надпероксида. Добиться окиси можно, если ограничить доступ кислорода к реагентам. Есть возможность формирования субоксидов.

Если цезий контактирует с фосфором, серой, галогеном, это провоцирует сопровождающуюся взрывом реакцию. Также взрыв сопутствует реакции с водой. Используя кристаллизатор, стакан, можно столкнуться с тем, что емкость буквально разлетается на кусочки. Также возможна реакция со льдом, если температура по шкале Цельсия - не ниже 116 градусов. В результате такой реакции продуцируются водород, гидроксид.

Гидроксид: особенности

В ходе изучения продуктов реакции, производимых цезием, химики выявили, что получаемый гидроксид - это очень сильное основание. Взаимодействуя с ним, необходимо помнить, что при высокой концентрации это соединение запросто может разрушить стекло даже без дополнительного нагрева. А вот при повышении температуры гидроксид без труда плавит никель, железо, кобальт. Аналогичным будет влияние на корунд, платину. Если в реакции принимает участие кислород, гидроксид цезия крайне быстро разрушает серебро, золото. Если ограничить поступление кислорода, процесс протекает относительно медленно, но все же не останавливается. Стойкостью к гидроксиду цезия обладают родий и несколько сплавов этого соединения.

Применять с умом

Не только цезий, но и известные на основе этого металла соединения используются в настоящее время очень широко. Без них невозможно представить себе конструирование радиотехники, незаменимы они и в электронике. Активно применяется соединение и вариации цезия в химии, промышленности, офтальмологической сфере, медицинской. Не обойден вниманием цезий и в рамках развития применимых в космосе технологий, а также ядерной энергетики.

В настоящее время распространено использовать цезий при конструировании фотоэлементов. Бромид, иодид этого металла необходимы для создания систем инфракрасного видения. Полученные промышленным путем монокристаллы допускается использовать в качестве элементов детекторов, позволяющих фиксировать ионизирующее излучение. Некоторые соединения на основе цезия активно используются как катализаторы в процессах промышленности. Это необходимо при создании аммиака, формировании и продуцировании бутадиена.

Радиация и цезий

Наибольшее внимание ученых привлекает изотоп цезий 137. Он принадлежит к категории бета-излучателей. В настоящее время этот элемент незаменим в процессе стерилизации продуктов питания, лекарственных соединений. К нему принято прибегать при терапии злокачественных новообразований. Современные подходы позволили применять элемент при гамма-дефектоскопии. На его основе конструируются датчики уровня, а также источники тока. 137-й изотоп в окружающую среду в очень большом количестве попал после аварии на Чернобыльской атомной станции. Именно он - один из самых главных факторов загрязнения после этой катастрофы.

Впрочем, 137-й - это не единственный радиоактивный изотоп цезия, который нашел применение в современной промышленности. Так, атомные часы создаются на изотопе цезия 133. В настоящее время - это самый точный прибор, позволяющий контролировать ход времени. Одна секунда, как выяснили в ходе высокоточных исследований современные ученые, это 9192631770 периодов излучения. Это позволяет использовать атом изотопа цезия 133 как стандарт для определения частоты, времени.

Тает в руках, но не снег – загадка из раздела «химия». Отгадка – цезий . Температура плавления этого металла равна 24,5 градусам Цельсия. Вещество, буквально утекающее сквозь пальцы, открыто в 1860-ом году. Цезий стал первым элементом, обнаруженным с помощью спектрального анализа.

Провели его Роберт Бунзен и Густав Киргоф. Химики изучали воды минеральных источников в Дюркхейме. Обнаружили магний, литий, кальций, . Напоследок, поместили каплю воды в спектроскоп и увидели две линии синего цвета – свидетельство присутствия неизвестного вещества.

Для начала выделили его хлороплатинат. Ради 50 граммов переработали 300 тонн минеральной воды. С названием нового металла мудрить не стали. С латинского «цезий» переводится как «голубой».

Химические и физические свойства цезия

В спектроскопе металл лучится ярко-синий. В реальности же элемент схож с , немного светлее его. В жидком состоянии желтизна цезия уходит, расплав становится серебристым. Добыть сырье для опытов непросто.

Из металлов элемент самый редкий и рассеянный в земной коре. В природе встречается лишь один изотоп – цезий 133 . Он полностью устойчив, то есть не подвержен радиоактивному распаду.

Радиоактивные изотопы металла получены искусственно. 135-ый цезий – долгожитель. Период его полураспада приближается к 3 000 000 лет. Цезий 137 наполовину распадается за 33,5 года. Изотоп признан одним из основных источников загрязнения биосферы.

В нее нуклид попадает из сбросов заводов, атомных станций. Период полураспада цезия позволяет ему проникать в воды, почву, растения, накапливаться в них. Особенно много 137-го изотопа в пресноводных водорослях и лишайниках.

Будучи самым редким из металлов, цезий является еще и самым активным. Элемент щелочной, расположен в главной подгруппе 1-ой группы периодической системы, что уже обязывает вещество легко вступать в химические реакции. Их течение усиливает присутствие воды. Так, на воздухе атом цезия взрывается из-за нахождения ее паров в атмосфере.

Взаимодействие с водой сопровождается взрывом, даже если она замерзшая. Реакция со льдом возможна при -120-ти градусах Цельсия. Сухой лед – не исключение. Взрыв неизбежен и при контакте цезия с кислотами, простыми спиртами, галогенидами тяжелых металлов галогенами органического типа.

Взаимодействия легко запускаются по 2-м причинам. Первая – сильный отрицательный электрохимический потенциал. То есть, атом заряжен отрицательно, стремится притянуть к себе иные частицы.

Вторая причина – площадь поверхности цезия при реакциях с другими веществами. Тая в комнатных условиях, элемент растекается. Получается, что для взаимодействия открыто большее число атомов.

Активность элемента привела к отсутствии его чистой формы в природе. Встречаются лишь соединения, к примеру, . В их числе: хлорид цезия , фторид, йодит, азит, цианит, бромид и карбонат цезия . Все соли 55-го элемента легко растворяются в воде.

Если же работа ведется с гидроксидом цезия , бояться нужно не его растворения, а того, что он сам способен разрушить, к примеру, стекло. Его структура нарушается реагентом уже при комнатной температуре. Стоит повысить градус, гидроксид не пощадит и кобальт, , корунд, и железо.

Реакции проходят особенно быстро в кислородной среде. Противостоять гидроксиду цезия способен только . Во взаимодействие с 55-ым элементом не вступает и азот. Азит цезия получают только косвенным путем.

Применение цезия

Цезий, формула которого обеспечивает низкую работу выхода электрона, пригождается при изготовлении фотоэлементов. В приборах на основе 55-го вещества затраты на получение тока минимальны. Чувствительность же к излучению, напротив, максимальна.

Чтобы фотоэлектрическое оборудование не стоило запредельно из-за редкости цезия, его сплавляют с , , , . Как источник тока цезий применяется в топливных элементах. Твердый электролит на основе 55-го металла – часть автомобилей и высокоэнергоемких аккумуляторов.

Применяют 55-ый металл и в счетчиках заряженных частиц. Для них закупают йодит цезия. Активированный таллием, он регистрирует почти любые излучения. Цезиевые детекторы приобретают для атомных предприятий, геологической разведки, медицинских клиник.

Пользуются приборами и космической отрасли. В частности, «Марс-5» изучил элементарный состав поверхности красной планеты именно благодаря гамма-спектрометру на основе цезия.

Способность улавливать инфракрасные лучи – причина для применения в оптике. В нее добавляют бромид цезия и оксид цезия . Он есть в биноклях и очках ночного видения, оружейных прицелах. Последние, срабатывают даже из космоса.

137-ой изотоп элемента тоже нашел достойное применение. Радиоактивный нуклид не только загрязняет атмосферу, но и стерилизует продукты, точнее, тару для них. Полураспад цезия долог. Можно обработать миллионы консервов. Порой, стерилизуют и мясо – туши птиц и .

Обрабатывать 137-ым изотопом можно и медицинские инструменты, лекарства. Нуклид нужен и в самом лечении, если дело касается опухолей. Метод называется радиотерапией. Препараты с цезием дают и при шизофрении, дифтерии, язвенных заболеваниях, некоторых видах шока.

Металлурги нуждаются в чистом элементе. Его примешивают к сплавам и . Добавка повышает их жаропрочность. У , к примеру, она увеличивается втрое при цезия всего в 0,3%.

Растет и прочность на разрыв, стойкость к коррозии. Правда, промышленники ищут альтернативу 55-му элементу. Слишком уж он дефицитен, не выгоден в цене.

Добыча цезия

Металл выделяют из поллуцита. Это водный алюмосиликат и цезия. Минералов, содержащих 55-ый элемент единицы. В поллуците процентовка цезия делает добычу экономически обоснованной. Немало металла и в авогардите. Однако, этот камень сам столь же редок, как и цезий.

Промышленники вскрывают поллуцит хлоридами или сульфатами . Цезий из камня выделяют, погружая его в подогретую соляную кислоту. Туда же засыпают хлорид сурьмы. Образуется осадок.

Его промывают горячей водой. Итог операций – хлорид цезия. При работе с сульфатом, поллуцит погружают в серную кислоту. На выходе образуются алюмоцезиевые квасцы.

В лабораториях применяют другие методы получения 55-го элемента. Их 3, все трудоемки. Можно нагреть дихромат и хромат цезия с цирконием. Но, для этого требуется вакуум. Он нужен и для разложения азида цезия. Без вакуума обходятся лишь при нагреве специально подготовленного кальция и хлорида 55-го металла.

Цена цезия

В России добычей и переработкой поллуцита занимается Завод редких металлов в Новосибирске. Продукцию предлагает и Горно-обогатительный комбинат Ловозерска. Последний предлагает цезий в ампулах по 10 и 15 миллиграммов.

Они идут в пачках по 1000 штук. Минимальная цена – 6000 рублей. Севредмет тоже торгует ампулами, но готов осуществлять поставки меньших объемов, — от 250-ти граммов.

Если чистота металла 99,9%, за один грамм, как правило, просят в районе 15-20-ти долларов США. Речь идет об устойчивом 133-ем изотопе 55-го элемента периодической системы .

Неудивительно, что замечательные свойства цезия давно открыли ему доступ в различные сферы человеческой деятельности. Прежде всего он нашел применение в радиотехнике. Вакуумные фотоэлементы со сложным серебряно-цезиевым фотокатодом особенно ценны для радиолокации: они чувствительны не только к видимому свету, но и к невидимым инфракрасным лучам и, в отличие, например, от селеновых, работают без инерции. В телевидении и звуковом кино широко распространены вакуумные сурьмяно-цезиевые фотоэлементы; их чувствительность даже после 250 часов работы падает всего на 5-6%,они надежно работают в интервале температур от - 30° до +90° С. Из них составляют так называемые многокаскадные фотоэлементы; в этом случае под действием электронов, вызванных лучами света в одном из катодов, наступает вторичная эмиссия - электроны испускаются добавочными фотокатодами прибора. В результате общий электрический ток, возникающий в фотоэлементе, многократно усиливается.

Усиление тока и повышение чувствительности достигаются также в цезиевых фотоэлементах, заполненных инертным газом (аргоном или неоном). В оптике и электротехнике широко используются бромиды, иодиды и некоторые другие соли цезия. Если при изготовлении флуоресцирующих экранов для телевизоров и научной аппаратуры ввести между кристалликами сернистого цинка примерно 20% йодистого цезия, экраны будут лучше поглощать рентгеновские лучи и ярче светиться при облучении электронным пучком.На проходившей в 1965 г. в Москве Международной выставке «Химия -65» в павильоне СССР демонстрировались сцинтилляционные приборы с монокристаллами иодида цезия, активированного таллием. Эти приборы, предназначенные для регистрации тяжелых заряженных частиц, й обладают наибольшей чувствительностью иввсех приборов подобного назначения.Кристаллы бромистого и йодистого цезия прозрачпы для инфракрасных лучей с длиной волны от 15 до 30 мкм (CsBr) и от 24 до 54 мкм (CsI). Обычные приемы из хлористого натрия пропускают только лучи с длиной волны 14 мкм, а из хлористого калия - 25 мкм.

Поэтому применение бромистого и йодистого цезия сделало возможным снятие спектров сложных молекул в отдаленной инфракрасной области. Весьма чувствительны к свету соединения цезия с оловянной кислотой (ортостаннаты) и с окисью циркония (метацирконаты). Изготовленные на их основе люминесцентные трубки при облучении ультрафиолетовыми лучами или электронами дают зеленую люминесценцию.Активность многих соединений цезия проявляется в их каталитической способности. Установлено, что при получении синтола (синтетической нефти) из водяного газа и стирола из этилбензола, а также при некоторых других синтезах добавление к катализатору незначительного количества окиси цезия (вместо окиси калия) повышает выход конечного продукта и улучшает условия процесса.

Гидроокись цезия служит превосходным катализатором синтеза муравьиной кислоты. С этим катализатором реакция идет при 300° С без высокого давления. Выход конечного продукта очень велик - 91,5%. Металлический лучше, чем другие щелочные , ускоряет реакцию гидрогенизации ароматических углеводородов. В целом же каталитические свойства цезия изучались мало и его положительное действие оценивалось скорее качественно, чем количественно. Вероятно, это можно объяснить недостаточной актуальностью вопроса, поскольку на имеется настоятельный спрос в ряде других весьма важных областей. К числу последних относится, в частности, медицина.

Изотопом 137 Cs, образующимся во всех атомных реакторах (в среднем из 100 ядер урана 6 ядер 137 Cs), заинтересовались специалисты в области рентгенотерапии. Этот изотоп разлагается сравнительно медленно, теряя за год только 2 ,4% своей исходной активности. Он оказался пригодным для лечения злокачественных опухолей и имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада (26,6 года против 5,27) и в четыре раза менее жесткое гамма-излучение. В свя-зи этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Впрочем, эти преимущества становятся реальными лишь при условии абсолют-ной радиохимической чистоты 137 Cs, отсутствия в нем примеси 134 Gs, имеющего более короткий период полураспада и более жесткое гамма-излучение.

Не только радиоактивный, но и стабильный металлический приобретает все большее значение. Он служит для изготовления специальных выпрямителей, во многих отношениях превосходящих ртутные. В военном и военно-морском деле вакуумные лампы с парами цезия применяются для инфракрасной сигнализации и контроля. В США такого рода прибор, способный обнаружить в темноте всевозможные объекты, называют «снайпер скопом».Но особенно большое внимание уделяется в последнее время цезиевой плазме, всестороннему я изучению ее свойств и условий образования. Возможно, она станет «топливом» плазменных двигателей будущего. Кроме то-го, работы но исследованию цезиевой плазмы тесно связаны с проблемой управляемого термоядерного синтеза. Многие ученые считают, что целесообразно создавать цезиевую плазму, используя высокотемпературную тепловую энергию атомных реакторов, есть непосредственно превращать эту тепловую энергию в электрическую.Таков далеко не полный перечень возможностей цезия.

ВСКОРЕ ПОСЛЕ ОТКРЫТИЯ. Цезий, как известно, был первым элементом, открытым с помощью спектрального анализа. Ученые, однако, имели возможность познакомиться с этим элементом еще до того, как Бунзен и Кирхгоф создали новый исследовательский метод. В 1846 г. немецкий химик Платтнер, анализируя минерал поллуцит, обнаружил, что сумма известных его компонентов составляет лишь 93%, но не сумел точно установить, какой еще элемент (или элементы) входит в этот минерал. Лишь в 1864 г., уже после открытия Бунзена, итальянец Пизани нашел цезий в пол-луцжте и установил, что именно соединения этого элемента не смог идентифицировать Платтнер.

ЦЕЗИЙ И ДАВЛЕНИЕ. Все щелочные сильно изменяются под действием высокого давления. Но именно цезий реагирует па него наиболее своеобразно и резко. При давлении в 100 тыс. атм его объем уменьшается почти втрое - сильнее, чем у других щелочных металлов. Кроме того, именно в условиях высокого давления были обнаружены две новые модификации элементарного цезия. Электрическое сопротивление всех щелочных металлов с ростом давления увеличивается; у цезия это свойство выражено особенно сильно.

АТОМНЫЕ ЧАСЫ. Ядро атома цезия и его валентный электронобладают собственными магнитными моментами. Эти моменты могут быть ориентированы двояко - параллельно или антипараллель-ю. Разница между энергиями обоих состояний постоянна, и, есте-венно, переход из одного состояния в другое сопровождается колебаниями со строго постоянными характеристиками (длина волны 3,26 см). Используя это свойство, ученые создали цезиевые«атомные часы»- едва ли не самые точные в мире.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме