Подпишись и читай
самые интересные
статьи первым!

Расчет критерия пирсона в статистике. Решения задач на проверку статистических гипотез

Критерий согласия для проверки гипотезы о законе распределения исследуемой случайной величины.Во многих практических задачах точный закон распределения неизвестен.Поэтому выдвигается гипотеза о соответствии имеющегося эмпирического закона, построенного по наблюдениям, некоторому теоретическому.Данная гипотеза требует статистической проверки, по результатам которой будет либо подтверждена, либо опровергнута.

Пусть X – исследуемая случайная величина. Требуется проверить гипотезу H 0 о том, что данная случайная величина подчиняется закону распределения F(x). Для этого необходимо произвести выборку из n независимых наблюдений и по ней построить эмпирический закон распределения F"(x). Для сравнения эмпирического и гипотетического законов используется правило, называемое критерием согласия.Одним из популярных является критерий согласия хи-квадрат К. Пирсона.

В нем вычисляется статистика хи-квадрат:

,

где N – число интервалов, по которому строился эмпирический закон распределения (число столбцов соответствующей гистограммы), i – номер интервала, p t i - вероятность попадания значения случайной величины в i-й интервал для теоретического закона распределения, p e i – вероятность попадания значения случайной величины в i-й интервал для эмпирического закона распределения. Она и должна подчиняться распределению хи-квадрат.

Если вычисленное значение статистики превосходит квантиль распределения хи-квадрат с k-p-1 степенями свободы для заданного уровня значимости, то гипотеза H 0 отвергается.В противном случае она принимается на заданном уровне значимости.Здесь k – число наблюдений, p – число оцениваемых параметров закона распределения.

Пирсона позволяет осуществлять проверку эмпирического и теоретического (либо другого эмпирического) распределений одного признака. Данный критерий применяется, в основном, в двух случаях:

Для сопоставления эмпирического распределения признака с теоретическим распределением (нормальным, показательным, равномерным либо каким-то иным законом);

Для сопоставления двух эмпирических распределений одного и того же признака.

Идея метода – определение степени расхождения соответствующих частот n i и ; чем больше это расхождение, тем больше значение

Объемы выборок должны быть не меньше 50 и необходимо равенство сумм частот

Нулевая гипотеза H 0 ={два распределения практически не различаются между собой}; альтернативная гипотеза – H 1 ={расхождение между распределениями существенно}.

Приведем схему применения критерия для сопоставления двух эмпирических распределений:

Критерий - статистический критерий для проверки гипотезы , что наблюдаемая случайная величина подчиняется некому теоретическому закону распределения.


В зависимости от значения критерия , гипотеза может приниматься, либо отвергаться:

§ , гипотеза выполняется.

§ (попадает в левый "хвост" распределения). Следовательно, теоретические и практические значения очень близки. Если, к примеру, происходит проверка генератора случайных чисел, который сгенерировал n чисел из отрезка и гипотеза : выборка распределена равномерно на , тогда генератор нельзя называть случайным (гипотеза случайности не выполняется), т.к. выборка распределена слишком равномерно, но гипотеза выполняется.

§ (попадает в правый "хвост" распределения) гипотеза отвергается.

Определение: пусть дана случайная величина X .

Гипотеза : с. в. X подчиняется закону распределения .

Для проверки гипотезы рассмотрим выборку, состоящую из n независимых наблюдений над с.в. X: . По выборке построим эмпирическое распределение с.в X. Сравнение эмпирического и теоретического распределения (предполагаемого в гипотезе) производится с помощью специально подобранной функции -критерия согласия. Рассмотрим критерий согласия Пирсона (критерий ):

Гипотеза : Х n порождается функцией .

Разделим на k непересекающихся интервалов ;

Пусть - количество наблюдений в j-м интервале: ;

Вероятность попадания наблюдения в j-ый интервал при выполнении гипотезы ;

- ожидаемое число попаданий в j-ый интервал;

Статистика: - Распределение хи-квадрат с k-1 степенью свободы.

Критерий ошибается на выборках с низкочастотными (редкими) событиями.Решить эту проблему можно отбросив низкочастотные события, либо объединив их с другими событиями.Этот способ называется коррекцией Йетса (Yates" correction).

Критерий согласия Пирсона (χ 2) применяют для проверки гипотезы о соответствии эмпирического распределения предполагаемому теоретическому распределению F(x) при большом объеме выборки (n ≥ 100). Критерий применим для любых видов функции F(x), даже при неизвестных значениях их параметров, что обычно имеет место при анализе результатов механических испытаний. В этом заключается его универсальность.

Использование критерия χ 2 предусматривает разбиение размаха варьирования выборки на интервалы и определения числа наблюдений (частоты) n j для каждого из e интервалов. Для удобства оценок параметров распределения интервалы выбирают одинаковой длины.

Число интервалов зависит от объема выборки. Обычно принимают: при n = 100 e = 10 ÷ 15, при n = 200 e = 15 ÷ 20, при n = 400 e = 25 ÷ 30, при n = 1000 e = 35 ÷ 40.

Интервалы, содержащие менее пяти наблюдений, объединяют с соседними. Однако, если число таких интервалов составляет менее 20 % от их общего количества, допускаются интервалы с частотой n j ≥ 2.

Статистикой критерия Пирсона служит величина
, (3.91)
где p j - вероятность попадания изучаемой случайной величины в j-и интервал, вычисляемая в соответствии с гипотетическим законом распределением F(x). При вычислении вероятности p j нужно иметь в виду, что левая граница первого интервала и правая последнего должны совпадать с границами области возможных значений случайной величины.Например, при нормальном распределении первый интервал простирается до -∞, а последний - до +∞.

Нулевую гипотезу о соответствии выборочного распределения теоретическому закону F(x) проверяют путем сравнения вычисленной по формуле (3.91) величины с критическим значением χ 2 α , найденным по табл. VI приложения для уровня значимости α и числа степеней свободы k = e 1 - m - 1. Здесь e 1 - число интервалов после объединения; m - число параметров, оцениваемых по рассматриваемой выборке.Если выполняется неравенство
χ 2 ≤ χ 2 α (3.92)
то нулевую гипотезу не отвергают.При несоблюдении указанного неравенства принимают альтернативную гипотезу о принадлежности выборки неизвестному распределению.

Недостатком критерия согласия Пирсона является потеря части первоначальной информации, связанная с необходимостью группировки результатов наблюдений в интервалы и объединения отдельных интервалов с малым числом наблюдений.В связи с этим рекомендуется дополнять проверку соответствия распределений по критерию χ 2 другими критериями.Особенно это необходимо при сравнительно малом объеме выборки (n ≈ 100).

В таблице приведены критические значения хи-квадрат распределения с заданным числом степеней свободы.Искомое значение находится на пересечении столбца с соответствующим значением вероятности и строки с числом степеней свободы. Например, критическое значение хи-квадрат распределения с 4-мя степенями свободы для вероятности 0.25 составляет 5.38527. Это означает, что площадь под кривой плотности хи-квадрат распределения с 4-мя степенями свободы справа от значения 5.38527 равна 0.25.

Назначение критерия χ 2 - критерия Пирсона Критерий χ 2 применяется в двух целях: 1) для сопоставления эмпирического распределения признака с теоретическим - равномерным, нормальным или каким-то иным; 2) для сопоставления двух, трех или более эмпирических распределений одного и того же признака. Описание критерия Критерий χ 2 отвечает на вопрос о том, с одинаковой ли частотой встречаются разные значения признака в эмпирическом и теоретическом распределениях или в двух и более эмпирических распределениях. Преимущество метода состоит в том, что он позволяет сопоставлять распределения признаков, представленных в любой шкале, начиная от шкалы наименований. В самом простом случае альтернативного распределения "да - нет", "допустил брак - не допустил брака", "решил задачу - не решил задачу" и т. п. мы уже можем применить критерий χ 2 . Чем больше расхождение между двумя сопоставляемыми распределениями, тем больше эмпирическое значение χ 2 . Автоматический расчет χ 2 - критерия Пирсона Чтобы произвести автоматический расчет χ 2 - критерия Пирсона, необходимо выполнить действия в два шага: Шаг 1 . Указать количество эмпирических распределений (от 1 до 10); Шаг 2 . Занести в таблицу эмпирические частоты; Шаг 3 . Получить ответ.

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении.

Пусть получена выборка достаточно большого объема п с большим количеством различных значений вариант. Для удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вариант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты………..х 1 х 2 … х s

частоты………….п 1 п 2 … п s ,

где х i – значения середин интервалов, а п i – число вариант, попавших в i -й интервал (эмпирические частоты).



По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интервале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n·p i .Наша цель – сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (20.1)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупности закон распределения случайной величины (20.1) при стремится к закону распределения (см. лекцию 12) с числом степеней свободы k = s – 1 – r , где r – число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s – 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием

(20.2)

где α – уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально – нужно вычислить по выборке наблюдаемое значение критерия:

, (20.1`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s – 3. Если - нулевую гипотезу принимают, при ее отвергают.

2. Проверка гипотезы о равномерном распределении.

При использовании критерия Пирсона для проверки гипотезы о равномерном распределении генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (20.3).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s – число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (20.1`), а критическое – по таблице с учетом того, что число степеней свободы k = s – 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении.

В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i – й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i – й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s – 2.

​ Критерий корреляции Пирсона – это метод параметрической статистики, позволяющий определить наличие или отсутствие линейной связи между двумя количественными показателями, а также оценить ее тесноту и статистическую значимость. Другими словами, критерий корреляции Пирсона позволяет определить, есть ли линейная связь между изменениями значений двух переменных. В статистических расчетах и выводах коэффициент корреляции обычно обозначается как r xy или R xy .

1. История разработки критерия корреляции

Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон .

2. Для чего используется критерий корреляции Пирсона?

Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.

Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.

3. Условия и ограничения применения критерия хи-квадрат Пирсона

  1. Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
  2. Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой - определяются при помощи регрессионного анализа .
  3. Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа .
  4. Критерий корреляции Пирсона является параметрическим , в связи с чем условием его применения служит нормальное распределение сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена .
  5. Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.

Например, рост ребенка зависит от его возраста, то есть чем старше ребенок, тем он выше. Если мы возьмем двух детей разного возраста, то с высокой долей вероятности рост старшего ребенка будет больше, чем у младшего. Данное явление и называется зависимостью , подразумевающей причинно-следственную связь между показателями. Разумеется, между ними имеется и корреляционная связь , означающая, что изменения одного показателя сопровождаются изменениями другого показателя.

В другой ситуации рассмотрим связь роста ребенка и частоты сердечных сокращений (ЧСС). Как известно, обе эти величины напрямую зависят от возраста, поэтому в большинстве случаев дети большего роста (а значит и более старшего возраста) будут иметь меньшие значения ЧСС. То есть, корреляционная связь будет наблюдаться и может иметь достаточно высокую тесноту. Однако, если мы возьмем детей одного возраста , но разного роста , то, скорее всего, ЧСС у них будет различаться несущественно, в связи с чем можно сделать вывод о независимости ЧСС от роста.

Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.

4. Как рассчитать коэффициента корреляции Пирсона?

Расчет коэффициента корреляции Пирсона производится по следующей формуле:

5. Как интерпретировать значение коэффициента корреляции Пирсона?

Значения коэффициента корреляции Пирсона интерпретируются исходя из его абсолютных значений. Возможные значения коэффициента корреляции варьируют от 0 до ±1. Чем больше абсолютное значение r xy – тем выше теснота связи между двумя величинами. r xy = 0 говорит о полном отсутствии связи. r xy = 1 – свидетельствует о наличии абсолютной (функциональной) связи. Если значение критерия корреляции Пирсона оказалось больше 1 или меньше -1 – в расчетах допущена ошибка.

Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения r xy < 0.3 свидетельствуют о слабой связи, значения r xy от 0.3 до 0.7 - о связи средней тесноты, значения r xy > 0.7 - о сильной связи.

Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока :

Оценка статистической значимости коэффициента корреляции r xy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:

Полученное значение t r сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если t r превышает t крит, то делается вывод о статистической значимости выявленной корреляционной связи.

6. Пример расчета коэффициента корреляции Пирсона

Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице.

Опр Критерий проверки гипотезы о предполагаемом законе неизвестного распределения называется критерием согласия.

Имеется несколько критериев согласия: $\chi ^2$ { хи-квадрат } К. Пирсона, Колмогорова, Смирнова и др.

Обычно теоретические и эмпирические частоты различаются. Случай расхождения может быть не случайным, значит и объясняется тем, что не верно выбрана гипотеза. Критерий Пирсона отвечает на поставленный вопрос, но как любой критерий он ничего не доказывает, а лишь устанавливает на принятом уровне значимости её согласие или несогласие с данными наблюдений.

Опр Достаточно малую вероятность, при которой событие можно считать практически невозможным называют уровнем значимости.

На практике обычно принимают уровни значимости, заключённые между 0,01 и 0,05, $\alpha =0,05$ - это $5 { \% } $ уровень значимости.

В качестве критерия проверки гипотезы примем величину \begin{equation} \label { eq1 } \chi ^2=\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } \qquad (1) \end{equation}

здесь $n_i -$ эмпирические частоты, полученные из выборки, $n_i" -$ теоретические частоты, найденные теоретическим путём.

Доказано, что при $n\to \infty $ закон распределения случайной величины { 1 } независимо от того, по какому закону распределена генеральная совокупность, стремится к закону $\chi ^2$ { хи-квадрат } с $k$ степенями свободы.

Опр Число степеней свободы находят по равенству $k=S-1-r$ где $S-$ число групп интервалов, $r-$ число параметров.

1) равномерное распределение: $r=2, k=S-3 $

2) нормальное распределение: $r=2, k=S-3 $

3) показательное распределение: $r=1, k=S-2$.

Правило . Проверка гипотезы по критерию Пирсона.

  1. Для проверки гипотезы вычисляют теоретические частоты и находят $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $
  2. По таблице критических точек распределения $\chi ^2$ по заданному уровню значимости $\alpha $ и числу степеней свободы $k$ находят $\chi _ { кр } ^2 ({ \alpha ,k })$.
  3. Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 $ то нет оснований отвергать гипотезу, если не выполняется данное условие - то отвергают.

Замечание Для контроля вычислений применяют формулу для $\chi ^2$ в виде $\chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } $

Проверка гипотезы о равномерном распределении

Функция плотности равномерного распределения величины $X$ имеет вид $f(x)=\frac { 1 } { b-a } x\in \left[ { a,b }\right]$.

Для того, чтобы при уровне значимости $\alpha $ проверить гипотезу о том, что непрерывная случайная величина распределена по равномерному закону, требуется:

1) Найти по заданному эмпирическому распределению выборочное среднее $\overline { x_b } $ и $\sigma _b =\sqrt { D_b } $. Принять в качестве оценки параметров $a$ и $b$ величины

$a = \overline x _b -\sqrt 3 \sigma _b $, $b = \overline x _b +\sqrt 3 \sigma _b $

2) Найти вероятность попадания случайной величины $X$ в частичные интервалы $({ x_i ,x_ { i+1 } })$ по формуле $ P_i =P({ x_i

3) Найти теоретические { выравнивающие } частоты по формуле $n_i" =np_i $.

4) Приняв число степеней свободы $k=S-3$ и уровень значимости $\alpha =0,05$ по таблицам $\chi ^2$ найдём $\chi _ { кр } ^2 $ по заданным $\alpha $ и $k$, $\chi _ { кр } ^2 ({ \alpha ,k })$.

5) По формуле $\chi _ { набл } ^2 =\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ где $n_i -$ эмпирические частоты, находим наблюдаемое значение $\chi _ { набл } ^2 $.

6) Если $\chi _ { набл } ^2 <\chi _ { кр } ^2 -$ нет оснований, отвергать гипотезу.

Проверим гипотезу на нашем примере.

1) $\overline x _b =13,00\,\,\sigma _b =\sqrt { D_b } = 6,51$

2) $a=13,00-\sqrt 3 \cdot 6,51=13,00-1,732\cdot 6,51=1,72468$

$b=13,00+1,732\cdot 6,51=24,27532$

$b-a=24,27532-1,72468=22,55064$

3) $P_i =P({ x_i

$ P_2 =({ 3

$ P_3 =({ 7

$ P_4 =({ 11

$ P_5 =({ 15

$ P_6 =({ 19

В равномерном распределении если одинакова длина интервала, то $P_i -$ одинаковы.

4) Найдём $n_i" =np_i $.

5) Найдём $\sum { \frac { ({ n_i -n_i" })^2 } { n_i" } } $ и найдём $\chi _ { набл } ^2 $.

Занесём все полученные значения в таблицу

\begin{array} { |l|l|l|l|l|l|l| } \hline i& n_i & n_i" =np_i & n_i -n_i" & ({ n_i -n_i" })^2& \frac { ({ n_i -n_i" })^2 } { n_i" } & Контроль~ \frac { n_i^2 } { n_i" } \\ \hline 1& 1& 4,43438& -3.43438& 11,7950& 2,659898& 0,22551 \\ \hline 2& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 3& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 4& 3& 4,43438& -1,43438& 2,05744& 0,471463& 2,0296 \\ \hline 5& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline 6& 6& 4,43438& 1,56562& 2,45117& 0,552765& 8,11838 \\ \hline & & & & & \sum = \chi _ { набл } ^2 =3,261119& \chi _ { набл } ^2 =\sum { \frac { n_i^2 } { n_i" } -n } =3,63985 \\ \hline \end{array}

$\chi _ { кр } ^2 ({ 0,05,3 })=7,8$

$\chi _ { набл } ^2 <\chi _ { кр } ^2 =3,26<7,8$

Вывод отвергать гипотезу нет оснований.

Критерий Пирсона для проверки гипотезы о виде закона распределения случайной величины. Проверка гипотез о нормальном, показательном и равномерном распреде-лениях по критерию Пирсона. Критерий Колмогорова . Приближенный метод проверки нормальности распределения, связанный с оценками коэффициентов асимметрии и эксцесса.

В предыдущей лекции рассматривались гипотезы, в которых закон распределения генеральной совокупности предполагался известным. Теперь займемся проверкой гипотез о предполагаемом законе неизвестного распределения, то есть будем проверять нулевую гипотезу о том, что генеральная совокупность распределена по некоторому известному закону. Обычно статистические критерии для проверки таких гипотез называются критериями согласия .

Достоинством критерия Пирсона является его универсальность: с его помощью можно проверять гипотезы о различных законах распределения.

1. Проверка гипотезы о нормальном распределении.

Пусть получена выборка достаточно большого объема п с большим количеством различ-ных значений вариант. Доя удобства ее обработки разделим интервал от наименьшего до наибольшего из значений вариант на s равных частей и будем считать, что значения вари

ант, попавших в каждый интервал, приближенно равны числу, задающему середину интервала. Подсчитав число вариант, попавших в каждый интервал, составим так называемую сгруппированную выборку:

варианты х 1 х 2 х s

частоты п 1 п 2 п s ,

где х i - значения середин интервалов, а п i - число вариант, попавших в i -й интервал (эмпи-рические частоты).

По полученным данным можно вычислить выборочное среднее и выборочное среднее квадратическое отклонение σ В . Проверим предположение, что генеральная совокупность распределена по нормальному закону с параметрами M (X ) = , D (X ) = . Тогда можно найти количество чисел из выборки объема п , которое должно оказаться в каждом интер-вале при этом предположении (то есть теоретические частоты). Для этого по таблице значений функции Лапласа найдем вероятность попадания в i -й интервал:

,

где а i и b i - границы i -го интервала. Умножив полученные вероятности на объем выборки п, найдем теоретические частоты: п i =n?p i . Наша цель - сравнить эмпирические и теоретические частоты, которые, конечно, отличаются друг от друга, и выяснить, являются ли эти различия несущественными, не опровергающими гипотезу о нормальном распределении исследуемой случайной величины, или они настолько велики, что противоречат этой гипотезе. Для этого используется критерий в виде случайной величины

. (20.1)

Смысл ее очевиден: суммируются части, которые квадраты отклонений эмпирических частот от теоретических составляют от соответствующих теоретических частот. Можно доказать, что вне зависимости от реального закона распределения генеральной совокупно-сти закон распределения случайной величины (20.1) при стремится к закону распределения (см. лекцию 12) с числом степеней свободы k = s - 1 - r , где r - число параметров предполагаемого распределения, оцененных по данным выборки. Нормальное распределение характеризуется двумя параметрами, поэтому k = s - 3. Для выбранного критерия строится правосторонняя критическая область, определяемая условием


(20.2)

где α - уровень значимости. Следовательно, критическая область задается неравенством а область принятия гипотезы - .

Итак, для проверки нулевой гипотезы Н 0: генеральная совокупность распределена нормально - нужно вычислить по выборке наблюдаемое значение критерия:

, (20.1`)

а по таблице критических точек распределения χ 2 найти критическую точку , используя известные значения α и k = s - 3. Если - нулевую гипотезу принимают, при ее отвергают.

2. Проверка гипотезы о равномерном распределении.

При использовании критерия Пирсона для проверки гипотезы о равномерном распределе-нии генеральной совокупности с предполагаемой плотностью вероятности

необходимо, вычислив по имеющейся выборке значение , оценить параметры а и b по формулам:

где а* и b* - оценки а и b . Действительно, для равномерного распределения М (Х ) = , , откуда можно получить систему для определения а* и b *: , решением которой являются выражения (20.3).

Затем, предполагая, что , можно найти теоретические частоты по формулам

Здесь s - число интервалов, на которые разбита выборка.

Наблюдаемое значение критерия Пирсона вычисляется по формуле (20.1`), а критическое - по таблице с учетом того, что число степеней свободы k = s - 3. После этого границы критической области определяются так же, как и для проверки гипотезы о нормальном распределении.

3. Проверка гипотезы о показательном распределении.

В этом случае, разбив имеющуюся выборку на равные по длине интервалы, рассмотрим последовательность вариант , равноотстоящих друг от друга (считаем, что все варианты, попавшие в i - й интервал, принимают значение, совпадающее с его серединой), и соответствующих им частот n i (число вариант выборки, попавших в i - й интервал). Вычислим по этим данным и примем в качестве оценки параметра λ величину . Тогда теоретические частоты вычисляются по формуле

Затем сравниваются наблюдаемое и критическое значение критерия Пирсона с учетом того, что число степеней свободы k = s - 2.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме