Подпишись и читай
самые интересные
статьи первым!

Катодная защита. Катодная защита трубопроводов от коррозии

Cтраница 1


Катодная защита газопровода должна действовать бесперебойно. Для каждой СКЗ устанавливается определенный режим в зависимости от условий ее работы. При эксплуатации катодной станции ведется журнал электрических параметров ее и работы источника тока. Необходим также постоянный контроль за анодным заземлением, состояние которого определяется по величине тока СКЗ.  


Характеристика состояния защитного покрытия и его проводимости.  

Катодная защита газопровода должна действовать бесперебойно. На участках трассы с перерывами подачи электроэнергии в течение нескольких часов в сутки применяют аккумуляторы, осуществляющие защиту в период отключения электроэнергии. Емкость аккумуляторной батареи определяют по величине защитного тока СКЗ.  


Катодная защита газопроводов от воздействия блуждающих токов или грунтовой коррозии осуществляется при помощи постоянного электрического тока внешнего источника. Отрицательный полюс источника тока присоединяется к защищаемому газопроводу, а положительный к специальному заземлению - аноду.  


Катодная защита газопроводов от коррозии осуществляется за счет их катодной поляризации с помощью тока внешнего источника.  

Влияние катодной защиты газопроводов на рельсовые цепп железных дорог.  

При катодной защите газопровода применяют стандартные приборы электротехнических установок и специальные коррозионно-измерительные и вспомогательные приборы. Для измерения разности потенциалов подземное сооружение - земля, являющейся одним из критериев оценки опасности коррозии и наличия защиты, применяют вольтметры с большой величиной внутреннего сопротивления на 1 в шкалы, чтобы включение их в измерительную цепь не нарушало в последней распределения потенциалов. Это требование обусловливается как высоким внутренним сопротивлением системы подземное сооружение - земля, так и трудностью создания малого сопротивления заземления в месте контакта измерительного электрода с землей, особенно при использовании неполяризующихся электродов. Для получения измерительной схемы с высоким входным сопротивлением пользуются потенциометрами и высокоомными вольтметрами.  

Для станций катодной защиты газопроводов как источника электроэнергии рекомендуется применение высокотемпературных топливных элементов с керамическим электродом. Такие топливные элементы могут длительное время работать на трассе газопровода, питая электроэнергией станции катодной защиты, а также дома линейных ремонтеров, сигнальные системы и автоматику управления крапами. Этот метод электроснабжения линейных сооружений и установок на газопроводе, которые не требуют большой мощности, значительно упрощает эксплуатационное обслуживание.  

Очень часто параметры катодной защиты газопроводов, полученные расчетным путем, значительно отличаются от параметров СКЗ, полученных на практике путем измерений. Это связано с невозможностью учета всего многообразия факторов, влияющих в природных условиях на параметры защиты.  

Больше 15 лет я разрабатываю станции катодной защиты. Требования к станциям четко формализованы. Есть определенные параметры, которые должны быть обеспечены. А знание теории защиты от коррозии совсем не обязательно. Гораздо важнее знание электроники, программирования, принципов конструирования электронной аппаратуры.

Создав этот сайт, я не сомневался, что когда-нибудь там появится раздел катодная защита. В нем я собираюсь писать о том, что я хорошо знаю, о станциях катодной защиты. Но как-то не поднимается рука писать о станциях, не рассказав, хотя бы коротко, о теории электрохимической защиты. Постараюсь рассказать о таком сложном понятии как можно проще, для не профессионалов.

По сути это источник вторичного электропитания, специализированный блок питания. Т.е. станция подключается к питающей сети (как правило ~ 220 В) и вырабатывает электрический ток с заданными параметрами.

Вот пример схемы системы электрохимической защиты подземного газопровода с помощью станции катодной защиты ИСТ-1000.

Станция катодной защиты установлена на поверхности земли, вблизи от газопровода. Т.к. станция эксплуатируется на открытом воздухе, то она должна иметь исполнение IP34 и выше. В этом примере используется современная станция, с контроллером GSM телеметрии и функцией стабилизации потенциала.

В принципе, бывают очень разными. Они могут быть трансформаторными или инверторными. Могут быть источниками тока, напряжения, иметь различные режимы стабилизации, различные функциональные возможности.

Станции прошлых лет это громадные трансформаторы с тиристорными регуляторами. Современные станции это инверторные преобразователи с микропроцессорным управлением и GSM телемеханикой.

Выходная мощность устройств катодной защиты, как правило, находится в диапазоне 1 – 3 кВт, но может доходить и до 10 кВт. Станциям катодной защиты и их параметрам посвящена отдельная статья.

Нагрузкой для устройства катодной защиты является электрическая цепь: анодное заземление – почва – изоляция металлического объекта. Поэтому требования к выходным энергетическим параметрам станций, прежде всего, определяют:

  • состояние анодного заземления (сопротивление анод-почва);
  • почва (сопротивление грунта);
  • состояние изоляции объекта защиты от коррозии (сопротивление изоляции объекта).

Все параметры станции определяются при создании проекта катодной защиты:

  • рассчитываются параметры трубопровода;
  • определяется величина защитного потенциала;
  • рассчитывается сила защитного тока;
  • определяется длина защитной зоны;
  • 0 Рубрика: . Вы можете добавить в закладки.

Метод электрохимической защиты (ЭХЗ) от коррозии уже многие годы применяется инженерами для продления срока службы различных металлических устройств и сооружений. Однако так повелось, что наиболее широко известны технические решения по использованию ЭХЗ для противокоррозионной защиты больших металлоемких конструкций и сооружений, таких как подземные трубопроводы в нефтегазовой промышленности и в сфере ЖКХ или большие стальные резервуары, хотя принцип работы ЭХЗ универсален, и может быть успешно использован практически везде, где есть контакт металла и агрессивного электролита. В этой статье мы бы хотели дать, безусловно, очень краткий обзор других возможностей применения электрохимзащиты вокруг нас - в индустриальной, общественной и даже приватной сфере жизни современного человека.

Электрохимическая защита основана на управлении токами электрохимической коррозии, всегда возникающими при контакте любого металлического сооружения и электролита. С помощью ЭХЗ анодная разрушающаяся зона переносится с защищаемого объекта либо на специальное анодное заземление (при катодной защите), либо на отдельное изделие из более активного металла (при протекторной защите). Более подробно о физико-химических принципах катодной и протекторной защиты от коррозии можно прочитать . Главное, что следует понимать при принятии решения о применении ЭХЗ - это то, что необходим обязательный контакт защищаемого объекта/системы объектов и внешнего анода (анодного заземления или протектора), как посредством проводника первого рода (металлического кабеля или прямого металлического контакта), так и посредством проводника второго рода (электролита). Электрическая цепь "сооружение - кабель - анод - электролит" обязательно должна замкнуться, иначе защитного тока в системе просто не возникнет. Простой пример - трубопровод или свая, выходящая из земли на поверхность. ЭХЗ будет работать только на подземной части. Однако есть несколько примеров, когда, на первый взгляд, это правило не работает. Например, постоянный контакт сооружения и электролита не обеспечивается в зонах переменного смачивания, таких как приливно-отливная зона свай на морских пирсах и причалах, зона волнового смачивания аналогичных сооружений пресноводных водоемов и т.д. В этих случаях приходится применять довольно хитрые схемы ЭХЗ, работающие только в моменты увлажнения коррозионно-опасных зон. Но как, например, организовать ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе? Оказывается и это возможно! Но начнем мы с более простых случаев.

Простой и очевидный пример объекта, подвергающегося электрохимической коррозии, которую можно замедлить с помощью ЭХЗ - это закопанное в землю или стоящее на земле любое металлическое сооружение: свая, резервуар, трубопровод любого назначения. Конечно, применять ЭХЗ везде и всюду нет никакой необходимости, однако если объект находится в грунте высокой коррозионной агрессивности (высокая влажность или засоленность - явные признаки такого грунта!), либо это промышленно значимый и плохо ремонтопригодный объект - ЭХЗ явно не будет лишней. Проект такой системы ЭХЗ не очень сложен. Например, если нужно защитить свайный фундамент, то достаточно станции катодной защиты малой мощности (может хватить и аккумулятора) и несколько правильно расположенных точечных анодов, или несколько небольших отрезков протяженного анода. Только нужно не забыть, что если сваи сделаны из труб, то они могут корродировать и изнутри, там, где ЭХЗ работать не будет. Одиночный, полностью закопанный резервуар также прекрасно защищается точечными анодами по периметру сооружения, а днище резервуара, стоящего на грунте - одним точечным анодом или изогнутым отрезком протяженного анода. Если есть возможность менять анодные заземления и сопротивление грунта мало, то вместо точечных анодов можно установить протекторные установки, срок эффективной работы которых обычно составляет 5-7 лет.

Теперь перейдем к не очень распространенному, но очень продуктивному способу электрохимической защиты от коррозии внутренней поверхности трубопроводов и резервуаров (сосудов) любой емкости и назначения, имеющих контакт с агрессивным водным электролитом (промышленными сточными водами или просто водой с высоким содержанием минеральных солей и кислорода). В этом случае применение ЭХЗ позволяет продлить срок безремонтной эксплуатации объекта в несколько раз. Более простой случай - внутренняя ЭХЗ резервуара, когда во внутреннем пространстве резервуара размещаются протекторы или анодные заземления. Эффективность ЭХЗ существенно повысится, если внутренняя поверхность резервуара будет дополнительно защищена изоляционным покрытием с хорошими диэлектрическими свойствами. Более сложное техническое решение применяется для внутренней электрохимической защиты трубопровода. В этом случае наиболее эффективно ввести во внутреннюю полость трубопровода протяженный гибкий анод (ПГА) из токопроводящей резины. Длина такого анода обычно равна протяженности защищаемого участка трубопровода. Определенную техническую сложность вызывает укладка такого анода в уже эксплуатируемый трубопровод, хотя это также выполнимо на практике. Иногда для защиты участков ограниченной протяженности (5-30 м) достаточно установки во внутреннюю полость единичного точечного анода или протектора.

Внутренняя ЭХЗ трубопровода с применением протекторов

Такие системы внутренней электрохимзащиты чрезвычайно эффективны, даже когда ничего больше не помогает в принципе. Например, срок службы трубопроводов и различных очистительных установок - очень коррозионно-агрессивных сточных вод промышленных предприятий - продлевается за счет внутренней ЭХЗ в 5-20 раз!

Следующий интересный случай применения систем ЭХЗ - это причальные сооружения, основания нефтегазовых платформ, опоры мостов или любые другие металлические конструкции в морской воде. Кстати, воды некоторых пресных водоемов в нашей "экологически чистой" стране, особенно вблизи крупных городов и промышленных предприятий, по коррозионной агрессивности приближаются к морской воде, поэтому все излагаемое ниже распространяется и на них с небольшими оговорками.

Коррозия сваи в зоне переменного смачивания и забрызгивания

Итак, металлические конструкции в морской воде подвергаются активной электрохимической коррозии, которая не может быть остановлена обычной покраской. По механизму коррозионного процесса на таких объектах обычно выделяют три основных зоны:

  • зона переменного смачивания и забрызгивания;
  • зона полного погружения в воду;
  • зона погружения сваи в грунт.

Наибольшую сложность при реализации систем электрохимической защиты представляет зона переменного смачивания, где нет постоянной электрической цепи "сооружение - электролит - анод". Для этих зон необходимы анодные заземления (протекторы) сетчатой или браслетной формы, обеспечивающие раздельную защиту локально увлажненных участков металлической конструкции. В самых сложных случаях имеет смысл обеспечить принудительное постоянное увлажнение зоны переменного смачивания конструкции, для постоянной работы средств ЭХЗ.

Электрохимзащита зоны полного смачивания металлических свай в водной среде может быть реализована в зависимости от конструкции разными способами, среди которых имеет смысл выделить следующие:

  • размещение нескольких подвесных точечных анодов, каждый из которых защищает ближайшие, окружающие его, сваи;
  • на более глубоких участках возможно использование протяженных гибких анодов, которые крепятся к тросам, закрепляемым концами на металлическом сооружении и дне водоема;
  • если нет возможности подвести электричество к защищаемому сооружению, тогда приемлемым методом электрохимической защиты будет использование больших глубинных протекторов с длительными расчетными сроками эксплуатации.

Магниевый протектор для электрохимзащиты морских сооружений

Теперь вернемся к анонсированной ЭХЗ от атмосферной коррозии металлического сооружения во влажном морском или промышленном воздухе. По своему механизму этот случай чем-то напоминает коррозию в зоне переменного смачивания - также большое количество локально-увлажненных участков, только еще более маленьких. В этом случае единственный способ обеспечить электрохимическую защиту всей поверхности защищаемого изделия - это обеспечить свою локальную систему ЭХЗ на каждом увлажненном участке. Эта цель достигается путем нанесения на поверхность изделия специального покрытия, содержащего частицы металла, обладающего защитными протекторными свойствами по отношению к стали. Обычно этим металлом является цинк. Таким образом, на каждом участке поверхности обеспечивается своя маленькая установка протекторной защиты, которая активируется при увлажнении.

В этой статье мы рассказали только о нескольких основных случаях применения электрохимической защиты разнообразных металлических конструкций. На самом деле можно привести гораздо больше таких примеров - ЭХЗ может использоваться повсеместно: кузова автомобилей, корпуса морских судов, бытовые нагреватели воды, морские трубопроводы и т.д. Иногда даже приходится обеспечивать электрохимзащиту железобетонных конструкций, но это настолько объемная тема, что требует отдельного обзора. Поэтому можно смело говорить, что пока наш век металла не сменился веком композиционных материалов, именно электрохимическая защита будет одной из наиболее важных и востребованных человечеством технологий.

До сих пор при обустройстве протяжённых промышленных трубопроводов наиболее востребованным материалом изготовления труб является сталь. Обладая множеством замечательных свойств, таких как механическая прочность, способность функционировать при больших значениях внутренних давления и температуры и стойкость к сезонным изменениям погоды, сталь имеет и серьёзный недостаток: склонность к коррозии, приводящей к разрушению изделия и, соответственно, неработоспособности всей системы.

Один из способов защиты от этой угрозы – электрохимический, включающий катодную и анодную защиту трубопроводов; об особенностях и разновидностях катодной защиты будет рассказано ниже.

Определение электрохимической защиты

Электрохимическая защита трубопроводов от коррозии – процесс, осуществляемый при воздействии постоянного электрического поля на предохраняемый объект из металлов или сплавов. Поскольку обычно доступен для работы переменный ток, используются специальные выпрямители для преобразования его в постоянный.

В случае катодной защиты трубопроводов защищаемый объект путём подачи на него электромагнитного поля приобретает отрицательный потенциал, то есть делается катодом.

Соответственно, если ограждаемый от коррозии отрезок трубы становится «минусом», то заземление, подводящееся к нему, – «плюсом» (т.е. анодом).


Антикоррозионная защита по такой методике невозможна без присутствия электролитической, с хорошей проводимостью, среды. В случае обустройства трубопроводов под землёй её функцию выполняет грунт. Контакт же электродов обеспечивается путём применения хорошо проводящих электрический ток элементов из металлов и сплавов.

В ходе протекания процесса между средой-электролитом (в данном случае грунтом) и защищаемым от коррозии элементом возникает постоянная разница потенциалов, значение которой контролируется при помощи высоковольтных вольтметров.

Классификация методик электрохимической катодной защиты

Такой способ предупреждения коррозии был предложен в 20-х годах XIX века и поначалу использовался в судостроении: медные корпуса кораблей обшивались протекторами-анодами, значительно снижающими скорость корродирования металла.

После того, как была установлена эффективность новой технологии, изобретение стало активно применяться в других областях промышленности. Через некоторое время оно было признано одним из самых эффективных способов защиты металлов.


В настоящее время используется два основных типа катодной защиты трубопроводов от коррозии:

  1. Самый простой способ : к металлическому изделию, требующему предохранения от коррозии, подводится внешний источник электрического тока. В таком исполнении сама деталь приобретает отрицательный заряд и становится катодом, роль же анода выполняют инертные, не зависящие от конструкции, электроды.
  2. Гальванический метод . Нуждающаяся в защите деталь соприкасается с защитной (протекторной) пластиной, изготавливаемой из металлов с большими значениями отрицательного электрического потенциала: алюминия, магния, цинка и их сплавов. Анодами в этом случае становятся оба металлических элемента, а медленное электрохимическое разрушение пластины-протектора гарантирует поддержание в стальном изделии требуемого катодного тока. Через более или менее долгое время, в зависимости от параметров пластины, она растворяется полностью.

Характеристики первого метода

Этот способ ЭХЗ трубопроводов, в силу простоты, наиболее распространён. Применятся он для предохранения крупных конструкций и элементов, в частности, трубопроводов подземного и наземного типов.


Методика помогает противостоять:

  • питтинговой коррозии;
  • коррозии из-за присутствия в зоне расположения элемента блуждающих токов;
  • коррозии нержавеющей стали межкристального типа;
  • растрескиванию латунных элементов вследствие повышенного напряжения.

Характеристики второго метода

Эта технология предназначается, в отличие от первой, в том числе для защиты изделий небольших размеров. Методика наиболее популярна в США, в то время как в Российской Федерации используется редко. Причина в том, что для проведения гальванической электрохимическая защита трубопроводов необходимо наличие на изделии изоляционного покрытия, а в России магистральные трубопроводы таким образом не обрабатываются.

Особенности ЭХЗ трубопроводов

Главной причиной выхода трубопроводов из строя (частичной разгерметизации или полного разрушения отдельных элементов) является коррозия металла. В результате образования на поверхности изделия ржавчины на его поверхности появляются микроразрывы, раковины (каверны) и трещины, постепенно приводящие к выходу системы из строя. Особенно эта проблема актуальна для труб, пролегающих под землёй и всё время соприкасающихся с грунтовыми водами.

Принцип действия катодной защиты трубопроводов от коррозии предполагает создание разности электрических потенциалов и реализуется двумя вышеописанными способами.

После проведения измерений на местности было установлено, что необходимый потенциал, при котором замедляется любой коррозионный процесс, составляет –0,85 В; у находящихся же под слоем земли элементов трубопровода его естественное значение равно –0,55 В.

Чтобы существенно замедлить процессы разрушения материалов, нужно добиться снижения катодного потенциала защищаемой детали на 0,3 В. Если добиться этого, скорость коррозии стальных элементов не будет превышать значений 10 мкм/год.


Одну из самых серьёзных угроз металлическим изделиям представляют блуждающие токи, то есть электрические разряды, проникающие в грунт вследствие работы заземлений линий энергопередачи (ЛЭП), громоотводов или передвижения по рельсам поездов. Невозможно определить, в какое время и где они проявятся.

Разрушающее воздействие блуждающих токов на стальные элементы конструкций проявляется, когда эти детали обладают положительным электрическим потенциалом относительно электролитической среды (в случае трубопроводов – грунта). Катодная методика сообщает защищаемому изделию отрицательный потенциал, в результате чего опасность коррозии из-за этого фактора исключается.

Оптимальным способом обеспечения контура электрическим током является использование внешнего источника энергии: он гарантирует подачу напряжения, достаточного для «пробивания» удельного сопротивления грунта.

Обычно в роли такого источника выступают воздушные линии энергопередачи с мощностями 6 и 10 кВт. В случае отсутствия на участке пролегания трубопровода ЛЭП следует использовать генераторы мобильного типа, функционирующие на газе и дизельном топливе.

Что нужно для катодной электрохимической защиты

Для обеспечения снижения коррозии на участках пролегания трубопроводов используются особые приспособления, называемые станциями катодной защиты (СКЗ).

Эти станции включают в себя следующие элементы:

  • заземление, выступающее в роли анода;
  • генератор постоянного тока;
  • пункт контроля, измерений и управления процессом;
  • соединительные приспособления (провода и кабели).

Станции катодной защиты вполне эффективно выполняют основную функцию, при подключении к независимому генератору или ЛЭП защищая одновременно несколько расположенных поблизости участков трубопроводов.

Регулировать параметры тока можно как вручную (заменяя трансформаторные обмотки), так и в автоматизированном режиме (в случае, когда в контуре имеются тиристоры).


Наиболее совершенной среди применяемых на территории РФ станций катодной защиты признаётся «Минерва-3000» (проект СКЗ по заказу «Газпрома» был создан французскими инженерами). Одна такая станция позволяет обеспечить безопасность около 30 км пролегающего под землей трубопровода.

Плюсы «Минервы-3000»:

  • высокий уровень мощности;
  • возможность быстрого восстановления после возникновения перегрузок (не более 15 секунд);
  • оснащённость необходимыми для контроля рабочих режимов узлами цифровой регулировки системы;
  • абсолютно герметичные ответственные узлы;
  • возможность контролировать функционирование установки удалённо, при подключении специального оборудования.

Вторая наиболее популярная в России СКЗ – «АСКГ-ТМ» (адаптивная телемеханизированная станция катодной защиты). Мощность таких станций меньше, чем упомянутых выше (от 1 до 5 кВт), но их возможности автоматического контроля работы улучшены за счёт наличия в исходной комплектации телеметрического комплекса с дистанционным управлением.


Обе станции требуют источника напряжения мощностью 220 В, управляются с помощью модулей GPRS и характеризуются достаточно скромными габаритами - 500×400×900 мм при весе 50 кг. Срок эксплуатации СКЗ – от 20 лет.

Пассивная защита подземных газопроводов изолиру-ющими покрытиями дополняется электрической защитой. Задачи электрической защиты следующие.

  1. Отвод блуждающих электрических токов с защищаемого газо-провода и организованный возврат их к электрическим установкам и сетям постоянного тока, являющимся источником этих токов.
  2. Подавление протекающих по газопроводу токов в местах их вы-хода в землю (анодные зоны) токами от внешнего источника, а также токов, возникающих за счет почвенной электрохимической коррозии, созданием гальванической цепи и защитного электрического потен-циала на трубах газопровода.
  3. Предотвращение распространения электрических токов по газопроводам путем секционирования последних изолирующими фланцами.

Задача отвода блуждающих токов может быть решена путем создания:

  1. дополнительных заземлений для отвода токов в землю. Недо-статок — возможность вредного влияния на соседние трубопроводы токов, стекающих с защищаемого газопровода;
  2. простой или прямой дренажной защиты, т.е. электрического соединения защищаемого газопровода с рельсами трамвая или элек-трической железной дороги с целью возврата через них токов к их источнику. Простой дренаж имеет двустороннюю проводимость, т.е. может пропускать ток туда и обратно, и поэтому применяется в устойчивых анодных зонах. Недостатком этой защиты является не-обходимость выключения дренажа, если изменилась полярность тока или если потенциал на газопроводе стал меньшим, чем на рельсах;
  3. поляризованной дренажной защиты, т.е. дренажа с односто-ронней проводимостью, исключающей обратное течение тока от рельсов к защищаемому газопроводу;
  4. усиленной дренажной защиты, т.е. такой защиты, в цепь кото-рой для повышения эффективности включен внешний источник тока. Таким образом, усиленный дренаж — это объединение поля-ризованного дренажа с катодной защитой.

Задача подавления токов, протекающих по защищаемому газо-проводу, может быть решена с помощью:

  1. Катодной защиты внешним током (электрозащита), т.е. при-соединением защищаемого газопровода к внешнему источнику тока — к его отрицательному полюсу в качестве катода. Положитель-ный полюс источника тока присоединяется к заземлению — аноду. Создается замкнутая цепь, в которой ток течет от анода через землю к защищаемому газопроводу и далее к отрицательному полюсу внешнего источника тока. При этом происходит постепенное разрушение анодных зазем-лений, но обеспечивается защита газопровода за счет его катодной поляризации и предотвращения стекания токов с труб в землю. В ка-честве внешнего источника могут применяться станции катодной защиты(СКЗ);
  2. Протекторной защиты, т.е. защиты путем использования в электрической цепи протекторов из металлов, обладающих в кор-розионной среде более отрицательным потенциалом, чем металл трубопровода. Электрический ток возникает в системе протекторной защиты, так же как в гальваническом элементе, причем электроли-том служит грунт, содержащий влагу, а электродами являются газопровод и металл протектора. Возникающий защитный ток подавля-ет токи электрохимической коррозии и обеспечивает создание за-щитного электрического потенциала на газопроводе.

Принципиальная схема катодной защиты подземного газопровода

1 — анодное заземление; 2,4 — дренажные кабели; 3 — внешний источник электри-ческого тока; 5 — точка при-соединения дренажного кабеля; 6 — защищаемый газопровод

Принципиальная схема протекторной защиты подземного газопровода

1 — защищаемый газопровод; 2 — изолированные кабели; 3 — контрольный вывод; 4 — протектор; 5 — заполнитель для протектора

Задача электрического секционирования трубопроводов решается установкой изолирующих фланцев с паронитовыми или текстолито-выми прокладками, текстолитовыми втулками и шайбами. Пример конструкции изолирующих фланцев представлен на рисунке ниже.

Устройство изолирующих фланцев

1— изолирующая текстолитовая или паронитовая втулка; 2— изолирующая шайба из текстолита, резины или хлорвинила; 3 — стальная шайба; 4 — свинцовые шайбы; 5— текстолитовое кольцо-прокладка

Основными факторами, характеризующими степень коррозион-ного воздействия на подземные стальные газопроводы, являются:

  • величина и направление блуждающих токов в грунте;
  • величина и полярность потенциала газопровода относительно других металлических подземных коммуникаций и рельсов электри-фицированного транспорта;
  • направление и сила токов, протекающих по газопроводу;
  • состояние противокоррозионной защиты газопроводов;
  • величина удельного электрического сопротивления фунта.

Все эти факторы подлежат периодическому контролю.

Периодичность элекфических измерений такова:

  • в районах установок электрозащиты газопроводов и других за-щищаемых сооружений, а также около тяговых подстанций и депо элекфотранспорта, вблизи рельсов фамвая и элекфифицированных железных дорог и в местах пересечений газопроводов с ними — не реже одного раза в 3 месяца, а также при изменениях режимов уста-новок электрозащиты, защищаемых сооружений или источников блуждающих токов;
  • в неопасных с точки зрения электрозащиты участках — не реже одного раза в год в летнее время, а также при всяких изменениях ус-ловий, могущих вызвать электрокоррозию.

Для протекторной защиты применяют протекторы из цветных металлов — обычно магния, цинка, алюминия и их сплавов.

Контроль работы электрозащитных установок и измерение по-тенциалов на контактах производятся (не реже): на дренажных уста-новках — 4 раза в месяц; на катодных установках — 2 раза в месяц; на протекторных установках — 1 раз в месяц.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме