Подпишись и читай
самые интересные
статьи первым!

Матрица парных коэффициентов корреляции r. Корреляция, вычисление коэффициентов корреляции

Коэффициент корреляции отражает степень взаимосвязи между двумя показателями. Всегда принимает значение от -1 до 1. Если коэффициент расположился около 0, то говорят об отсутствии связи между переменными.

Если значение близко к единице (от 0,9, например), то между наблюдаемыми объектами существует сильная прямая взаимосвязь. Если коэффициент близок к другой крайней точке диапазона (-1), то между переменными имеется сильная обратная взаимосвязь. Когда значение находится где-то посередине от 0 до 1 или от 0 до -1, то речь идет о слабой связи (прямой или обратной). Такую взаимосвязь обычно не учитывают: считается, что ее нет.

Расчет коэффициента корреляции в Excel

Рассмотрим на примере способы расчета коэффициента корреляции, особенности прямой и обратной взаимосвязи между переменными.

Значения показателей x и y:

Y – независимая переменная, x – зависимая. Необходимо найти силу (сильная / слабая) и направление (прямая / обратная) связи между ними. Формула коэффициента корреляции выглядит так:


Чтобы упростить ее понимание, разобьем на несколько несложных элементов.

Между переменными определяется сильная прямая связь.

Встроенная функция КОРРЕЛ позволяет избежать сложных расчетов. Рассчитаем коэффициент парной корреляции в Excel с ее помощью. Вызываем мастер функций. Находим нужную. Аргументы функции – массив значений y и массив значений х:

Покажем значения переменных на графике:


Видна сильная связь между y и х, т.к. линии идут практически параллельно друг другу. Взаимосвязь прямая: растет y – растет х, уменьшается y – уменьшается х.



Матрица парных коэффициентов корреляции в Excel

Корреляционная матрица представляет собой таблицу, на пересечении строк и столбцов которой находятся коэффициенты корреляции между соответствующими значениями. Имеет смысл ее строить для нескольких переменных.

Матрица коэффициентов корреляции в Excel строится с помощью инструмента «Корреляция» из пакета «Анализ данных».


Между значениями y и х1 обнаружена сильная прямая взаимосвязь. Между х1 и х2 имеется сильная обратная связь. Связь со значениями в столбце х3 практически отсутствует.

Коллинеарными являются факторы …

Решение:

Считается, что две переменные явно коллинеарны, т.е. находятся между собой в линейной зависимости, если . В нашей модели только коэффициент парной линейной регрессии между факторами и больше 0,7. , значит, факторы и коллинеарны.

4. В модели множественной регрессии определитель матрицы парных коэффициентов корреляции между факторами , и близок к нулю. Это означает, что факторы , и …

мультиколлинеарны

независимы

количественно измеримы

Решение:

Для оценки мультиколлинеарности факторов может использоваться определитель матрицы парных коэффициентов корреляции между факторами. Если факторы не коррелированы между собой, то матрица парных коэффициентов корреляции между факторами была бы единичной. Поскольку все недиагональные элементы были бы равны нулю.
, поскольку = = и = = =0.
Если между факторами существует полная линейная зависимость и все коэффициенты парной корреляции равны единице, то определитель такой матрицы равен нулю.


Чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность факторов и ненадежнее результаты множественной регрессии. И, наоборот, чем ближе к единице определитель матрицы межфакторной корреляции, тем меньше мультиколлинеарность факторов.

5. Для эконометрической модели линейного уравнения множественной регрессии вида построена матрица парных коэффициентов линейной корреляции (y – зависимая переменная; х (1) , х (2) , х (3) , x (4) – независимые переменные):


Коллинеарными (тесно связанными) независимыми (объясняющими) переменными не являются

x (2) и x (3)

x (1) и x (3)

x (1) и x (4)

x (2) и x (4)

Решение:

При построении модели множественной регрессии необходимо исключить возможность существования тесной линейной зависимости между независимыми (объясняющими) переменными, которая ведет к проблеме мультиколлинеарности. При этом осуществляют проверку коэффициентов линейной корреляции для каждой пары независимых (объясняющих) переменных. Эти значения отражены в матрице парных коэффициентов линейной корреляции. Считается, что наличие значений коэффициентов парной корреляции между объясняющими переменными, превышающих по абсолютной величине 0,7, отражает тесную связь между этими переменными (теснота связи с переменной y в данном случае не рассматривается). Такие независимые переменные называются коллинеарными. Если значение коэффициента парной корреляции между объясняющими переменными не превышает по абсолютной величине 0,7, то такие объясняющие переменные не являются коллинеарными. Рассмотрим значения парных коэффициентов межфакторной корреляции: между x (1) и x (2) значение равно 0,45; между x (1) и x (3) – равно 0,82; между x (1) и x (4) – равно 0,94; между x (2) и x (3) – равно 0,3; между x (2) и x (4) – равно 0,7; между x (3) и x (4) – равно 0,12. Таким образом, не превышают 0,7 значения , , . Следовательно, коллинеарными не являются факторы x (1) и x (2) , x (2) и x (3) , x (3) и x (4) . Из последних перечисленных пар в вариантах ответов присутствует пара x (2) и x (3) – это верный вариант ответа. Для остальных пар: x (1 и x (3) , x (1) и x (4) , x (2) и x (4) – значения парных коэффициентов межфакторной корреляции превышают 0,7, и эти факторы являются коллинеарными.

Тема 3: Фиктивные переменные

1. Дана таблица исходных данных для построения эконометрической регрессионной модели:

Фиктивными переменными не являются

стаж работы

производительность труда

уровень образования

уровень квалификации работника

Решение:

При построении регрессионной модели может возникнуть ситуация, когда необходимо включить в уравнение помимо количественных переменных переменные, отражающие некоторые атрибутивные признаки (пол, образование, регион и т.п.). Такого рода качественные переменные называются «фиктивными» (dummy) переменными. Для построения указанной в постановке задания модели используются фиктивные переменные: уровень образования и уровень квалификации работника. Остальные переменные не являются фиктивными, из предложенных вариантов это стаж работы и производительность труда.

2. При исследовании зависимости потребления мяса от уровня дохода и пола потребителя можно рекомендовать …

использовать фиктивную переменную – пол потребителя

разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола

использовать фиктивную переменную – уровень дохода

исключить из рассмотрения пол потребителя, так как данный фактор нельзя измерить количественным образом

Решение:

При построении регрессионной модели может возникнуть ситуация, когда необходимо включить в уравнение помимо количественных переменных переменные, отражающие некоторые атрибутивные признаки (пол, образование, регион и т.п.). Такого рода качественные переменные называются «фиктивными» (dummy) переменными. Они отражают неоднородность исследуемой статистической совокупности и используются для более качественного моделирования зависимостей в таких неоднородных объектах наблюдения. При моделировании отдельных зависимостей по неоднородным данным можно также воспользоваться способом разделения всей совокупности неоднородных данных на несколько отдельных совокупностей, количество которых равно количеству состояний dummy-переменной. Таким образом правильными вариантами ответов являются: «использовать фиктивную переменную – пол потребителя» и «разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола».

3. Изучается зависимость цены квартиры (у ) от ее жилой площади (х ) и типа дома. В модель включены фиктивные переменные, отражающие рассматриваемые типы домов: монолитный, панельный, кирпичный. Получено уравнение регрессии: ,
где ,
Частными уравнениями регрессии для кирпичного и монолитного являются …

для типа дома кирпичный

для типа дома монолитный

для типа дома кирпичный

для типа дома монолитный

Решение:

Требуется узнать частное уравнение регрессии для кирпичного и монолитного домов. Для кирпичного дома значения фиктивных переменных следующие , . Уравнение примет вид: или для типа дома кирпичный.
Для монолитного дома значения фиктивных переменных следующие , . Уравнение примет вид
или для типа дома монолитный.

Контрольная работа №2

Вариант№5

Задание1. Используя компьютерные технологии, провести корреляционно-регрессионный анализ исследуемых экономических показателей и построить регрессионную модель………………………..…..3

1.1 Построение корреляционного поля ………………………………………4

1.2 Построение матрицы коэффициентов парной корреляции……………6

1.3 Построение и анализ однофакторных регрессионных моделей линейного и экспонентного вида средствами встроенных функций ТП MS Excel…………………………………………………………………………...6

1.4 Построение линейной однофакторной регрессионной модели……….10

1.5 Выводы………………………………………………………………………15

Задание 2. Используя компьютерные технологии, решить задачи линейного программирования……………………………………………….18

а) Задача оптимального планирования производства……………….19

1. Математическую постановку задачи……………………………………..19

2. Размещение на рабочем листе ТП MS Excel исходных данных, расчёт значений ограничений, расчёт значений целевой функции……………...19

3. Формулировка математической модели задачи в терминах ячеек рабочего листа ТП MS Excel…………………………………………………..20

4. Поиск оптимального решения поставленной задачи средствами надстройки «Поиск решения»………………………………………………..20

5. Анализ результатов………………………………………………………….21

б) Задача оптимизации плана перевозок (транспортная задача)…23

1. Математическую постановку задачи……………………………………..23

2. Размещение данных на рабочем листе ТП MS Excel …………………...24

3. Постановка задачи в терминах рабочего листа Excel для использования утилиты «Поиск решения»….…………………………25

4. Анализ результатов………………………………………………………….26

Список использованной литературы………………………………………..28

Задание 1. Используя компьютерные технологии, провести корреляционно-регрессионный анализ исследуемых экономических показателей и построить регрессионную модель.

В качестве инструментария исследования использовать:



Инструменты надстройки Пакет Анализа ТП MS Excel;

Встроенные функции библиотеки Stats (Statistics) CKM Maple.

Условия задания 1:

По выборочным данным исследовать влияние факторов X1, X2 и Х3 на результативный признак Y.

Построить корреляционное поле и сделать предположение о наличии и типе связи между исследуемыми факторами;

Оценив тесноту связи между исследуемыми факторами, построить многофакторную (однофакторную) линейную регрессионную модель вида Y=f(X1,X2 Х3)или вида Y=f(X).

Оценить:

Адекватность уравнения регрессии по значению коэффициента детерминированности R 2 ;

Значимость коэффициентов уравнения регрессии по t- критерию Стьюдента при заданном уровне доверительной вероятности р=0,05;

Степень случайности связи между каждым факторам Х и признаком Y (критерий Фишера);

Зависимость между показателями Х 1 , Х 2 , Х 3 основных фондов и объемом валовой продукции У предприятия одной из отраслей промышленности характеризуется следующими данными:

Вариант 5

X 1 1.5 2.6 3.5 4.8 5.9 6.3 7.2 8.9 9.5 11.1 15.0
X 2 10.2 15.3 18.4 20.5 24.7 25.6 27.3 28.3 29.6 30.1 31.0
X 3 1.1 2.3 3.5 4.1 5.7 6.6 7.3 8.5 9.8 10.1 12.0
Y

Решение задания 1.

Решение задания 1 предполагает.

1. Построение корреляционного поля.

2. Построение матрицы коэффициентов парной корреляции.

3. Построение и анализ однофакторных регрессионных моделей линейного и экспонентного вида средствами встроенных функций ТП MS Excel.

4. Построение линейных однофакторных регрессионных моделей средствами надстройки «Пакет анализа».

5. Выводы.

Построение корреляционного поля.

Разместим таблицу с исходными данными в ячейках A3:D15 рабочего листа Excel.

Приложение1.1
Y X1 X2 X3
1,5 10,2 1,1
2,6 15,3 2,3
3,5 18,4 3,5
4,8 20,5 4,1
5,9 24,7 5,7
6,3 25,6 6,6
7,2 27,3 7,3
8,9 28,3 8,5
9,5 29,6 9,8
11,1 30,1 10,1
?

Используя возможности мастера диаграмм ТП MS Excel, построим корреляционное поле, то есть представим графически связь между результирующим признаком Y и каждым из факторов X. Из графиков видно, что между результирующим признаком Y и каждым из факторов X существует прямо пропорциональная зависимость, приближающаяся к линейной.

.

.

Исследуем тесноту и характер связи между факторами.

Построение матрицы коэффициентов парной корреляции.

Используя надстройку «Пакет анализа» ТП MS Excel (Сервис – Анализ данных – Корреляция), построим матрицу коэффициентов парной корреляции. Окно инструмента «Корреляция» представлено на рисунке 1. Матрица коэффициентов парной корреляции представлена на рисунке 2.

Рис.1. –Окно «Корреляция»

Рис.2. – Матрица коэффициентов парной корреляции.

Из этой матрицы видно, что все рассматриваемые факторы X1 – X3 имеют тесную связь с результативным признаком Y. Кроме того, все факторы Х между собой мультиколлинеарны. Поэтому построение многофакторной модели вида Y=f(Х1,Х2,Х3) невозможно.

Коллинеарными являются факторы …

И коллинеарны.

4. В модели множественной регрессии определитель матрицы парных коэффициентов корреляции между факторами , и близок к нулю. Это означает, что факторы , и … мультиколлинеарность факторов.

5. Для эконометрической модели линейного уравнения множественной регрессии вида построена матрица парных коэффициентов линейной корреляции (y – зависимая переменная; х (1) , х (2) , х (3) , x (4) – независимые переменные):


Коллинеарными (тесно связанными) независимыми (объясняющими) переменными не являются x (2) и x (3)

1. Дана таблица исходных данных для построения эконометрической регрессионной модели:

Фиктивными переменными не являются

стаж работы

производительность труда

2. При исследовании зависимости потребления мяса от уровня дохода и пола потребителя можно рекомендовать …

использовать фиктивную переменную – пол потребителя

разделить совокупность на две: для потребителей женского пола и для потребителей мужского пола

3. Изучается зависимость цены квартиры (у ) от ее жилой площади (х ) и типа дома. В модель включены фиктивные переменные, отражающие рассматриваемые типы домов: монолитный, панельный, кирпичный. Получено уравнение регрессии: ,
где ,
Частными уравнениями регрессии для кирпичного и монолитного являются …

для типа дома кирпичный

для типа дома монолитный

4. При анализе промышленных предприятий в трех регионах (Республика Марий Эл, Республика Чувашия, Республика Татарстан) были построены три частных уравнения регрессии:

для Республики Марий Эл;

для Республики Чувашия;

для Республики Татарстан.

Укажите вид фиктивных переменных и уравнение с фиктивными переменными, обобщающее три частных уравнения регрессии.

5. В эконометрике фиктивной переменной принято считать …

переменную, принимающую значения 0 и 1

описывающую количественным образом качественный признак

1. Для регрессионной модели зависимости среднедушевого денежного дохода населения (руб., у ) от объема валового регионального продукта (тыс. р., х 1 ) и уровня безработицы в субъекте (%, х 2 ) получено уравнение . Величина коэффициента регрессии при переменной х 2 свидетельствует о том, что при изменении уровня безработицы на 1% среднедушевой денежный доход ______ рубля при неизменной величине валового регионального продукта.

изменится на (-1,67)

2. В уравнении линейной множественной регрессии: , где – стоимость основных фондов (тыс. руб.); – численность занятых (тыс. чел.); y – объем промышленного производства (тыс. руб.) параметр при переменной х 1 , равный 10,8, означает, что при увеличении объема основных фондов на _____ объем промышленного производства _____ при постоянной численности занятых.


на 1 тыс. руб. … увеличится на 10,8 тыс. руб.

3. Известно, что доля остаточной дисперсии зависимой переменной в ее общей дисперсии равна 0,2. Тогда значение коэффициента детерминации составляет … 0,8

4. Построена эконометрическая модель для зависимости прибыли от реализации единицы продукции (руб., у ) от величины оборотных средств предприятия (тыс. р., х 1 ): . Следовательно, средний размер прибыли от реализации, не зависящий от объема оборотных средств предприятия, составляет _____ рубля. 10,75

5. F-статистика рассчитывается как отношение ______ дисперсии к ________ дисперсии, рассчитанных на одну степень свободы. факторной … остаточной

1. Для эконометрической модели уравнения регрессии ошибка модели определяется как ______ между фактическим значением зависимой переменной и ее расчетным значением. Разность

2. Величина называется … случайной составляющей

3. В эконометрической модели уравнения регрессии величина отклонения фактического значения зависимой переменной от ее расчетного значения характеризует … ошибку модели

4. Известно, что доля объясненной дисперсии в общей дисперсии равна 0,2. Тогда значение коэффициента детерминации составляет … 0,2

5. При методе наименьших квадратов параметры уравнения парной линейной регрессии определяются из условия ______ остатков . минимизации суммы квадратов

1. Для обнаружения автокорреляции в остатках используется …

статистика Дарбина – Уотсона

2. Известно, что коэффициент автокорреляции остатков первого порядка равен –0,3. Также даны критические значения статистики Дарбина – Уотсона для заданного количества параметров при неизвестном и количестве наблюдений , . По данным характеристикам можно сделать вывод о том, что …автокорреляция остатков отсутствует

Первоначально в модель у включают все главные компоненты (в скобках указаны расчетные значения t -критерия):

Качество модели характеризуют: множественный коэффициент детерминации r = 0,517, средняя относительная ошибка аппроксимации = 10,4%, остаточная дисперсия s 2 = 1,79 и F набл = 121. Ввиду того что F набл > F кр =2,85 при α = 0,05, v 1 = 6, v 2 = 14, уравнение регрессии значимо и хотя бы один из коэффициентов регрессии - β 1 , β 2 , β 3 , β 4 - не равен нулю.

Если значимость уравнения регрессии (гипотеза Н 0: β 1 = β 2 = β 3 = β 4 = 0проверялась при α = 0,05, то значимость коэффициентов регрессии, т.е. гипотезы H 0: β j = 0 (j = 1, 2, 3, 4), следует проверять при уровне значимости, большем, чем 0,05, например при α = 0,1. Тогда при α = 0,1, v = 14 величина t кр = 1,76, и значимыми, как следует из уравнения (53.41), являются коэффициенты регрессии β 1 , β 2 , β 3 .

Учитывая, что главные компоненты не коррелированы между собой, можно сразу исключить из уравнения все незначимые коэффициенты, и уравнение примет вид

(53.42)

Сравнив уравнения (53.41) и (53.42), видим, что исключение незначимых главных компонент f 4 и f 5 , не отразилось на значениях коэффициентов уравнения b 0 = 9,52, b 1 = 0,93, b 2 = 0,66 и соответствующих t j (j = 0, 1, 2, 3).

Это обусловлено некоррелированностью главных компонент. Здесь интересна параллель уравнений регрессии по исходным показателям (53.22), (53.23) и главным компонентам (53.41), (53.42).

Уравнение (53.42) значимо, поскольку F набл = 194 > F кр = 3,01, найденного при α = 0,05, v 1 = 4, v 2 = 16. Значимы и коэффициенты уравнения, так как t j > t кр . = 1,746, соответствующего α = 0,01, v = 16 для j = 0, 1, 2, 3. Коэффициент детерминации r = 0,486 свидетельствует о том, что 48,6% вариации у обусловлено влияниемтрех первых главных компонент.

Уравнение (53.42) характеризуется средней относительной ошибкой аппроксимации = 9,99% и остаточной дисперсией s 2 = 1,91.

Уравнение регрессии на главных компонентах (53.42) обладает несколько лучшими аппроксимирующими свойствами по сравнению с регрессионной моделью (53.23) по исходным показателям: r = 0,486 > r = 0,469; = 9,99% < (х ) = 10,5% и s 2 (f) = 1,91 < s 2 (x) = 1,97. Кроме того, в уравнении (53.42) главные компоненты являются линейными функциями всех исходных показателей, в то время как в уравнение (53.23) входят только две переменные (x 1 и х 4 ). В ряде случаев приходится учитывать, что модель (53.42) трудноинтерпретируема, так как в нее входит третья главная компонента f 3 , которая нами не интерпретирована и вклад которой в суммарную дисперсию исходных показателей (x 1 , ..., х 5) составляет всего 8,6%. Однако исключение f 3 из уравнения (53.42) значительно ухудшает аппроксимирующие свойства модели: r = 0,349; = 12,4% и s 2 (f ) = 2,41. Тогда в качестве регрессионной модели урожайности целесообразно выбрать уравнение (53.23).

Кластерный анализ

В статистических исследованиях группировка первичных данных является основным приемом решения задачи классификации, а поэтому и основой всей дальнейшей работы с собранной информацией.

Традиционно эта задача решается следующим образом. Из множества признаков, описывающих объект, отбирается один, наиболее информативный, с точки зрения исследователя, и производится группировка данных в соответствии со значениями этого признака. Если требуется провести классификацию по нескольким признакам, ранжированным между собой по степени важности, то сначала осуществляется классификация по первому признаку, затем каждый из полученных классов разбивается на подклассы по второму признаку и т.д. Подобным образом строится большинство комбинационных статистических группировок.

В тех случаях, когда не представляется возможным упорядочить классификационные признаки, применяется наиболее простой метод многомерной группировки - создание интегрального показателя (индекса), функционально зависящего от исходных признаков, с последующей классификацией по этому показателю.

Развитием этого подхода является вариант классификации по нескольким обобщающим показателям (главным компонентам), полученным с помощью методов факторного или компонентного анализа.

При наличии нескольких признаков (исходных или обобщенных) задача классификации может быть решена методами кластерного анализа, которые отличаются от других методов многомерной классификации отсутствием обучающих выборок, т.е. априорной информации о распределении генеральной совокупности.

Различия между схемами решения задачи по классификации во многом определяются тем, что понимают под понятиями «сходство» и «степень сходства».

После того как сформулирована цель работы, естественно попытаться определить критерии качества, целевую функцию, значения которой позволят сопоставить различные схемы классификации.

В экономических исследованиях целевая функция, как правило, должна минимизировать некоторый параметр, определенный на множестве объектов (например, целью классификации оборудования может явиться группировка, минимизирующая совокупность затрат времени и средств на ремонтные работы).

В случаях когда формализовать цель задачи не удается, критерием качества классификации может служить возможность содержательной интерпретации найденных групп.

Рассмотрим следующую задачу. Пусть исследуется совокупность п объектов, каждый из которых характеризуется k измеренными признаками. Требуется разбить эту совокупность на однородные в некотором смысле группы (классы). При этом практически отсутствует априорная информация о характере распределения k -мерного вектора Х внутри классов.

Полученные в результате разбиения группы обычно называются кластерами* (таксонами**, образами), методы их нахождения - кластер-анализом (соответственно численной таксономией или распознаванием образов с самообучением).

* Clаster (англ.) - группа элементов, характеризуемых каким-либо общимсвойством.

**Тахоп (англ.) - систематизированная группа любой категории.

Необходимо с самого начала четко представлять, какая из двух задач классификации подлежит решению. Если решается обычная задача типизации, то совокупность наблюдений разбивают на сравнительно небольшое число областей группирования (например, интервальный вариационный ряд в случае одномерных наблюдений) так, чтобы элементы одной такой области находились друг от друга по возможности на небольшом расстоянии.

Решение другой задачи заключается в определении естественного расслоения результатов наблюдений на четко выраженные кластеры, лежащие друг от друга на некотором расстоянии.

Если первая задача типизации всегда имеет решение, то во втором случае может оказаться, что множество наблюдений не обнаруживает естественного расслоения на кластеры, т.е. образует один кластер.

Хотя многие методы кластерного анализа довольно элементарны, основная часть работ, в которых они были предложены, относится к последнему десятилетию. Это объясняется тем, что эффективное решение задач поиска кластеров, требующее выполнения большого числа арифметических и логических операций, стало возможным только с возникновением и развитием вычислительной техники.

Обычной формой представления исходных данных в задачах кластерного анализа служит матрица

каждая строка которой представляет результаты измерений k рассматриваемых признаков у одного из обследованных объектов. В конкретных ситуациях может представлять интерес как группировка объектов, так и группировка признаков. В тех случаях, когда разница между двумя этими задачами не существенна, например при описании некоторых алгоритмов, мы будем пользоваться только термином «объект», включая в это понятие и термин «признак».

Матрица Х не является единственным способом представления данных в задачах кластерного анализа. Иногда исходная информация задана в виде квадратной матрицы

элемент r ij которой определяет степень близости i -го объекта к j -му.

Большинство алгоритмов кластерного анализа полностью исходит из матрицы расстояний (или близостей) либо требует вычисления отдельных ее элементов, поэтому если данные представлены в форме X, то первым этапом решения задачи поиска кластеров будет выбор способа вычисления расстояний, или близости, между объектами или признаками.

Несколько проще решается вопрос об определении близости между признаками. Как правило, кластерный анализ признаков преследует те же цели, что и факторный анализ: выделение групп связанных между собой признаков, отражающих определенную сторону изучаемых объектов. Мерой близости в этом случае служат различные статистические коэффициенты связи.


Похожая информация.




Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме