Подпишись и читай
самые интересные
статьи первым!

Раздел Fuzzy Logic Toolbox. С.Д.Штовба

ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ И ЛИНГВИСТИЧЕСКИХ ПЕРЕМЕННЫХ

1. Понятие и основные характеристики нечеткого множества

Определение 1.1. ПустьX – универсальное множество.Нечетким множеством A на множествеX (нечетким подмножествомA множестваX ) называется совокупность пар

A = {<μ A (x ),x >}, (1.1)

где x X ,μ A (x ) .X называетсяобластью определения нечеткого множестваA , аμ A –функцией принадлежности этого множества. Значение функции принадлежностиμ A (x ) для конкретного элементаx X называетсястепенью принадлежности этого элемента нечеткому множествуA .

Интерпретацией функции принадлежности является субъективная мера того, насколько элемент x X соответствует понятию, смысл которого формализуется нечетким множествомA . При этом значение, равное 1, означает полное (абсолютное) соответствие, значение, равное 0 – полное (абсолютное) несоответствие.

Определение 1.2. Нечеткие множества с дискретной областью определения называютдискретными нечеткими множествами , не-

четкие множества с непрерывной областью определения – непрерыв-

ными нечеткими множествами.

Обычные (четкие) множества можно также рассматривать в нечетком контексте. Функция принадлежности обычного множества может принимать только два значения: 0, если элемент не принадлежит множеству, и 1, если элемент ему принадлежит.

В литературе можно встретить различные формы записи нечетких множеств. Для дискретной области определения X ={x 1 ,x 2 , …,x n } (возможен также случайn = ∞) существуют следующие формы:

A = {, , …, };

A = {μ A (x 1 )/x 1 ,μ A (x 2 )/x 2 , …,μ A (x n )/x n };

A =μ A (x 1 )/x 1 +μ A (x 2 )/x 2 +…+μ A (x n )/x n =∑ μ A (x j ) /x j .

j = 1

где знак интеграла имеет смысл поточечного объединения наX . Кроме того, как для дискретного, так и для непрерывного случаев применяется обобщенная форма записи:

B = {x x ≈ 2} – множество вещественных чисел,приблизительно равных 2, иC = {x x >> 1} – множество вещественных чисел,на-

много бóльших 1. Возможные формы функций принадлежности этих множеств схематически представлены на рис.1.1 и рис.1.2 соответственно.

Рис. 1.1. Функция принадлежности

Рис. 1.2. Функция принадлежности

нечеткого множества чисел,

нечеткого множества чисел,

приблизительно равных 2

намного бóльших 1

В качестве примера дискретного нечеткого множества можно рассмотреть D = {n n ≈ 1} – множество целых чисел,близких к 1,

возможная форма задания которого следующая:

N = {0.2/-3; 0.4/-2; 0.6/-1; 0.8/0; 1/1; 0.8/2; 0.6/3; 0.4/4; 0.2/5} (остальные точки имеют нулевую степень принадлежности).

Конкретный вид функции принадлежности зависит от смысла, вкладываемого в формализуемое понятие в условиях конкретной задачи, и часто имеет субъективную природу. Большинство методов построения функций принадлежности в той или иной мере основано на обработке информации, получаемой экспертным путем.

Примечание 1. Здесь sup (супремум) – точная верхняя грань функции принадлежности. Если множествоX (область определения) является замкнутым, то супремум функции совпадает с ее максимумом.

Определение 1.5. Еслиh A = 1, то нечеткое множествоA называ-

ется нормальным, иначе (hA < 1) – субнормальным.

Определение 1.6. Носителем нечеткого множестваA называется множество

элементы области определения, хоть в какой-то степени соответствующие формализуемому понятию.

Примечание 2. Не следует путать обозначения sup и Supp. Первое является сокращением отsupremum , второе – отsupport .

Определение 1.7. Множеством уровняα (α -срезом) нечеткого

Ядро нечеткого множества, тем самым, содержит все элементы области определения, полностью соответствующие формализуемому понятию.

откуда следует, что элемент, принадлежащий множеству уровня α , принадлежит также всем множествам меньших уровнейβ ≤α .

Определение 1.9. ПустьA иB – нечеткие множества на множествеX с функциями принадлежностиμ A иμ B соответственно. Гово-

рят, что Aявляется нечетким подмножеством B(B включает в себя

A ), если выполнено следующее условие:

Среди нечетких множеств с числовой областью определения выделяют также класс нечетких чисел инечетких интервалов . Для определения этого класса вводится понятие выпуклости нечетких множеств.

Определение 1.11. Нечеткое подмножествоA вещественной оси называетсявыпуклым , если выполняется следующее условие:

На рис. 1.3 показаны примеры выпуклого (слева) и невыпуклого (справа) нечетких множеств.

Рис. 1.3. К определению выпуклости нечеткого множества

Основные понятия теории нечетких множеств

Определение 1.12. Нечетким интерваломназывается выпуклое нормальное нечеткое множество на числовой области определения, имеющее непрерывную функцию принадлежности и непустое ядро. Нечетким числомназывается нечеткий интервал, ядро которого содержит в точности один элемент.

Для нечетких интервалов и чисел существует теорема представления, согласно которой нечеткое подмножество A вещественной оси является нечетким интервалом тогда и только тогда, когда его функция принадлежности представима в виде:

LA (x), a0 ≤ x< a1 ,

1, a1 ≤ x≤ b1

(x )=

(x), b< u≤ b

Функции L A иR A называются соответственно левой и правой ветвью функции принадлежности нечеткого числа. Эти функции непрерывны, при этомL A на отрезке возрастает отL A (a 0 ) = 0 до

L A (a 1 ) = 1, аR A на отрезке убывает отR A (b 1 ) = 1 доR A (b 0 ) = 0 (рис. 1.4).

Рис. 1.4. К определению нечеткого интервала

Определение 1.13. ПустьA = {A 1 ,A 2 ,… ,A n } – семейство нечетких множеств, заданных на области определенияX .Ã называетсянечетким разбиением X с параметромα (0 <α ≤ 1), если все множестваA j являются выпуклыми и нормальными, и выполняется условие:

x X j {1,… ,n }μ A j (x )≥ α

(т.е. любой элемент области определения принадлежит хотя бы одному из множеств семейства Ã со степенью, не меньшейα – рис. 1.5).

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью

Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:

Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.

Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.

1.1 Основные термины и определения

Понятие нечеткого множества - эта попытка математической формализации нечеткой информации для построения математических моделей. В основе этого понятия лежит представление о том, что составляющие данное множество элементы, обладающие общим свойством, могут обладать этим свойством в различной степени и, следовательно принадлежать к данному множеству с различной степенью. При таком подходе высказывания типа “такой-то элемент принадлежит данному множеству” теряют смысл, поскольку необходимо указать “насколько сильно” или с какой степенью конкретный элемент удовлетворяет свойствам данного множества.

Определение 1. Нечетким множеством (fuzzy set) на универсальном множестве U называется совокупность пар (), где - степень принадлежности элемента к нечеткому множеству . Степень принадлежности - это число из диапазона . Чем выше степень принадлежности, тем в большей мерой элемент универсального множества соответствует свойствам нечеткого множества.

Определение 2. Функцией принадлежности (membership function) называется функция, которая позволяет вычислить степень принадлежности произвольного элемента универсального множества к нечеткому множеству.

Если универсальное множество состоит из конечного количества элементов , тогда нечеткое множество записывается в виде . В случае непрерывного множества U используют такое обозначение

Примечание: знаки и в этих формулах означают совокупность пар и u.

Пример 1. Представить в виде нечеткого множества понятие “мужчина среднего роста”.

Решение: = 0/155+0.1/160 + 0.3/165 + 0.8/170 +1/175 +1/180 + 0.5/185 +0/180.

Определение 3. Лингвистической переменной (linguistic variable) называется переменная, значениями которой могут быть слова или словосочетания некоторого естественного или искусственного языка.

Определение 4. Терм–множеством (term set) называется множество всех возможных значений лингвистической переменной.

Определение 5. Термом (term) называется любой элемент терм–множества. В теории нечетких множеств терм формализуется нечетким множеством с помощью функции принадлежности.

Пример 2. Рассмотрим переменную “скорость автомобиля ”, которая оценивается по шкале “низкая ", "средняя ", "высокая ” и “очень высокая ".

В этом примере лингвистической переменной является “скорость автомобиля ”, термами - лингвистические оценки “низкая ", "средняя ", "высокая ” и “очень высокая ”, которые и составляют терм–множество.

Определение 6. Дефаззификацией (defuzzification) называется процедура преобразования нечеткого множества в четкое число.

В теории нечетких множеств процедура дефаззификации аналогична нахождения характеристик положения (математического ожидания, моды, медианы) случайных величин в теории вероятности. Простейшим способом выполнения процедуры дефаззификации является выбор четкого числа, соответствующего максимуму функции принадлежности. Однако пригодность этого способа ограничивается лишь одноэкстремальными функциями принадлежности. Для многоэкстремальных функций принадлежности в Fuzzy Logic Toolbox запрограммированы такие методы дефаззификации:

Centroid - центр тяжести;

Bisector - медиана;

LOM (Largest Of Maximums) - наибольший из максимумов;

SOM (Smallest Of Maximums) - наименьший из максимумов;

Mom (Mean Of Maximums) - центр максимумов.

Определение 7. Дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Физическим аналогом этой формулы является нахождение центра тяжести плоской фигуры, ограниченной осями координат и графиком функции принадлежности нечеткого множества. В случае дискретного универсального множества дефаззификация нечеткого множества по методу центра тяжести осуществляется по формуле .

Определение 8. Дефаззификация нечеткого множества по методу медианы состоит в нахождении такого числа a, что .

Геометрической интерпретацией метода медианы является нахождения такой точки на оси абцисс, что перпендикуляр, восстановленный в этой точке, делит площадь под кривой функции принадлежности на две равные части. В случае дискретного универсального множества дефаззификация нечеткого множества по методу медианы осуществляется по формуле .

Определение 9. Дефаззификация нечеткого множества по методу центра максимумов осуществляется по формуле:

где G – множество всех элементов из интервала , имеющих максимальную степень принадлежности нечеткому множеству .

В методе центра максимумов находится среднее арифметическое элементов универсального множества, имеющих максимальные степени принадлежностей. Если множество таких элементов конечно, то формула из определения 9 упрощается к следующему виду:

где - мощность множества G.

В дискретном случае дефаззификация по методам наибольшего из максимумов и наименьшего из максимумов осуществляется по формулам и , соответственно. Из последних трех формулы видно, что если функция принадлежности имеет только один максимум, то его координата и является четким аналогом нечеткого множества.

Пример 3. Провести дефаззификацию нечеткого множества “мужчина среднего роста ” из примера 1 по методу центра тяжести.

Решение: Применяя формулу из определения 7, получаем:

Определение 10. Нечеткой базой знаний (fuzzy knowledge base) о влиянии факторов на значение параметра y называется совокупность логических высказываний типа:

ТО , для всех ,

где - нечеткий терм, которым оценивается переменная в строчке с номером jp ();

Количество строчек-конъюнкций, в которых выход y оценивается нечетким термом , ;

Количество термов, используемых для лингвистической оценки выходного параметра y.

С помощью операций (ИЛИ) и (И) нечеткую базу знаний из определения 10 перепишем в более компактном виде:

Определение 11. Нечетким логическим выводом (fuzzy logic inference) называется апроксимация зависимости с помощью нечеткой базы знаний и операций над нечеткими множествами.

Пусть - функция принадлежности входа нечеткому терму , , , , т. е. ; - функция принадлежности выхода y нечеткому терму , , т. е. . Тогда степень принадлежности конкретного входного вектора нечетким термам из базы знаний (1) определяется следующей системой нечетких логических уравнений:

где - операция максимума (минимума).

Нечеткое множество , соответствующее входному вектору , определяется следующим образом:

где - операция объединения нечетких множеств.

Четкое значение выхода y, соответствующее входному вектору определяется в результате деффаззификации нечеткого .

1.2. Свойства нечетких множеств

Определение 12. Высотой нечеткого множества называется верхняя граница его функции принадлежности: . Для дискретного универсального множества супремум становится максимумом, а значит высотой нечеткого множества будет максимум степеней принадлежности его элементов

Определение 13. нормальным, если его высота равна единице. Нечеткие множества не являющиеся нормальными называются субнормальными . Нормализация ‑ преобразование субнормального нечеткого множества в нормальное определяется так: . В качестве примера на рис. 1 показана нормализация нечеткого множества с функцией принадлежности .

Рисунок 1 - Нормализация нечеткого множества

Определение 14. Носителем нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют ненулевые степени принадлежности: .

Определение 15. Нечеткое множество называется пустым , если его носитель является пустым множеством.

Определение 16. Ядром нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности равные единице: . Ядро субнормального нечеткого множества пустое.

Определение 17. - сечением (или множеством -уровня) нечеткого множества называется четкое подмножество универсального множества , элементы которого имеют степени принадлежности большие или равные : , . Значение называют -уровнем . Носитель (ядро) можно рассматривать как сечение нечеткого множества на нулевом (единичном) -уровне.

Рис. 2 иллюстрирует определения носителя, ядра, - сечения и - уровня нечеткого множества.

Рисунок 2 - Ядро, носитель и - сечение нечеткого множества

Определение 18. Нечеткое множество называется выпуклым если: , , . Альтернативное определение: нечеткое множество будет выпуклым , если все его - сечения - выпуклые множества. На рис. 3 приведены примеры выпуклого и невыпуклого нечетких множеств.

Рисунок 3 - К определению выпуклого нечеткого множества

Определение 19. Нечеткие множества и равны () если .

1.3. Операции над нечеткими множеств

Определения нечетких теоретико-множественных операций объединения, пересечения и дополнения могут быть обобщены из обычной теории множеств. В отличие от обычных множеств, в теории нечетких множеств степень принадлежности не ограничена лишь бинарной значениями 0 и 1 ‑ она может принимать значения из интервала . Поэтому, нечеткие теоретико-множественные операции могут быть определены по-разному. Ясно, что выполнение нечетких операций объединения, пересечения и дополнения над не нечеткими множествами должно дать такие же результаты, как и при использование обычных канторовских теоретико-множественных операций. Ниже приведены определения нечетких теоретико-множественных операций, предложенных Л. Заде.

Определение 20. Дополнением нечеткого множества заданного на называется нечеткое множество с функцией принадлежности для всех . На рис. 4 приведен пример выполнения операции нечеткого дополнения.

Рисунок 4 - Дополнение нечеткого множества

Определение 21. Пересечением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения минимума также обозначается знаком , т.е. .

Определение 22. Объединением нечетких множеств и заданных на называется нечеткое множество с функцией принадлежности для всех . Операция нахождения максимума также обозначается знаком , т.е. .

Обобщенные определения операций нечеткого пересечения и объединения - треугольной нормы (t-нормы) и треугольной конормы (t-конормы или s-нормы) приведены ниже.

Определение 23. Треугольной нормой (t-нормой)

Наиболее часто используются такие t-нормы: пересечение по Заде ‑ ; вероятностное пересечение ‑ ; пересечение по Лукасевичу ‑ . Примеры выполнения пересечения нечетких множеств с использованием этих t-норм показаны на рис. 5.

Рисунок 5 - Пересечение нечетких множеств с использованием различных t-норм

Определение 25. Треугольной конормой (s-нормой) называется бинарная операция на единичном интервале , удовлетворяющая следующим аксиомам для любых :

Наиболее часто используются такие s-нормы: объединение по Заде ‑ ; вероятностное объединение ‑ ; объединение по Лукасевичу ‑ . Примеры выполнения объединения нечетких множеств с использованием этих s-норм показаны на рис. 6.

Наиболее известные треугольные нормы приведены в табл. 1.

Рисунок 6 - Объединение нечетких множеств с использованием различных s-норм

Таблица 1 - Примеры треугольных норм

Параметр

1.4. Нечеткая арифметика

В этом разделе рассматриваются способы расчета значений четких алгебраических функций от нечетких аргументов. Материал основывается на понятиях нечеткого числа и принципа нечеткого обобщения. В конце раздела приводятся правила выполнения арифметических операций над нечеткими числами.

Определение 25. Нечетким числом называется выпуклое нормальное нечеткое множество с кусочно-непрерывной функцией принадлежности, заданное на множестве действительных чисел. Например, нечеткое число "около 10" можно задать следующей функцией принадлежности: .

Определение 26. Нечеткое число называется положительным (отрицательным) если , ().

Определение 27. Принцип обобщения Заде. Если ‑ функция от n независимых переменных и аргументы заданы нечеткими числами , соответственно, то значением функции называется нечеткое число с функцией принадлежности:

Принцип обобщения позволяет найти функцию принадлежности нечеткого числа, соответствующего значения четкой функции от нечетких аргументов. Компьютерно-ориентированная реализация принципа нечеткого обобщения осуществляется по следующему алгоритму:

Шаг 1. Зафиксировать значение .

Шаг 2. Найти все n-ки , , удовлетворяющие условиям и , .

Шаг 3. Степень принадлежности элемента нечеткому числу вычислить по формуле: .

Шаг 4. Проверить условие "Взяты все элементы y?". Если "да", то перейти к шагу 5. Иначе зафиксировать новое значение и перейти к шагу 2.

Шаг 5. Конец.

Приведенный алгоритм основан на представлении нечеткого числа на дискретном универсальном множестве, т.е. . Обычно исходные данные , задаются кусочно-непрерывными функциями принадлежности: . Для вычисления значений функции аргументы , дискретизируют, т.е. представляют в виде . Число точек выбирают так, чтобы обеспечить требуемую точность вычислений. На выходе этого алгоритма получается нечеткое множество, также заданное на дискретном универсальном множестве. Результирующую кусочно-непрерывную функцию принадлежности нечеткого числа получают как верхнюю огибающую точек .

Пример 4. Нечеткие числа и заданы следующими трапециевидными функциями принадлежности:

Необходимо найти нечеткое число с использованием принципа обобщения из определения 27.

Зададим нечеткие аргументы на четырех точках (дискретах): {1, 2, 3 4} для и {2, 3, 4 8} для . Тогда: и . Процесс выполнения умножения над нечеткими числами сведен в табл. 2. Каждый столбец таблицы соответствует одной итерации алгоритма нечеткого обобщения. Результирующее нечеткое множество задано первой и последней строчками таблицы. В первой строке записаны элементы универсального множества, а в последней строке - степени их принадлежности к значению выражения . В результате получаем: . Предположим, что тип функция принадлежности будет таким же, как и аргументов и , т. е. трапециевидной. В этом случае функция принадлежности задается выражением: . На рис. 7 показаны результаты выполнения операции с представлением нечетких множителей на 4-х дискретах. Красными звездочками показаны элементы нечеткого множества из табл. 2, а тонкой красной линией - трапециевидная функция принадлежности.

Исследуем, как измениться результат нечеткого обобщения при увеличении числа дискрет, на которых задаются аргументы. Нечеткое число при задании аргументов и на 30 дискретах приведено на рис. 7. Синими точками показаны элементы нечеткого множества , найденные по принципу обобщения, а зеленой линией - верхняя огибающая этих точек ‑ функция принадлежности . Функция принадлежности результата имеет форму криволинейной трапеции, немного выгнутой влево.

Таблица 2 - К примеру 4

1 , где. По -сечения нечеткого множества, а жирной синей линией -кусочно-линейная аппроксимация функции принадлежности нечеткого числа

Под четким множеством или просто множеством, обычно понимают некоторую совокупность определенных и различимых между собой объектов нашей интуиции и интеллекта мыслимую как единое целое. В данном высказывании отметим следующий момент: множество A есть совокупность определенных объектов. Это означает, что относительно любого х можно однозначно сказать, принадлежит ли он множеству A или нет.

Условие принадлежности элемента х множеству A можно записать, используя понятие функции принадлежности m(х), a именно

Следовательно, множество можно задать в виде совокупности пар: элемента и значения его функции принадлежности

A = {(х|m(х)} (1)

Пример 1. Кафедра предлагает пять элективных курсов x 1 , x 2 , x 3 , x 4 и x 5 . В соответствии с программой необходимо сд три курса. Студент выбрал для изучения курсы x 2 , х 3 и x 5 . Запишем этот факт с помощью функции принадлежности

где первый элемент каждой пары означает название курса, а второй - описывает факт принадлежности его к подмножеству выбранному данным студентом ("да" или "нет").

Примеров четких множеств можно привести бесконечно много: список студентов учебной группы, множество домов на данной улице города, множество молекул в капле воды и т.д.

Между тем, огромный объем человеческих знаний и связей с внешним миром включают такие понятия, которые нельзя назвать множествами в смысле (1). Их следует скорее считать классами с нечеткими границами, когда переход от принадлежности одному классу к принадлежности другому происходит постепенно, не резко. Тем самым предполагается, что логика человеческого рассуждения основывается не на классической двузначной логике, а на логике с нечеткими значениями истинности, - нечеткими связками и нечеткими правилами вывода . Вот несколько тому примеров: объем статьи примерно 12 страниц, большая часть территории, подавляющее превосходство в игре, группа из нескольких человек.

Остановимся на последнем примере. Ясно, что группа людей из 3, 5, или 9 человек принадлежит к понятию: "группа людей, состоящее из нескольких человек". Однако для них будет неодинаковой степень уверенности в принадлежности к этому понятию, которая зависит от различных, в том числе и от субъективных, обстоятельств. Формализовать эти обстоятельства можно, если предположить, что функция принадлежности может принимать любые значения на отрезке . Причем крайние значения предписываются в том случае, если элемент безусловно не принадлежит или однозначно принадлежит данному понятию. В частности, множество людей A из нескольких человек может быть описано выражением вида:


A = {(1½0), 2½0.1), 3½0.4), (4½1), (5½1), (6½1), (7½0.8), (8½0.3), (9½0.1), (a½0)

Приведем определение нечеткого множества, данное основателем теории нечетких множеств Л.А.Заде. Пусть х есть элемент конкретного универсального (так называемого базового) множества E. Тогда нечетким (размытым) множеством A заданным на базовом множестве E называют множество упорядоченных пар

A = {xúm A ((x)}, "x Î E,

где m A (х) - функция принадлежности , отображающая множество E в единичный интервал , т.е. m A (х): E ® .

Очевидно, что если область значений m A (х) ограничить двумя числами 0 и 1, то данное определение будет совпадать с понятием обычного (четкого) множества.

Функция принадлежности нечеткого множества может задаваться не только перечислением всех ее значений для каждого элемента базового множества, но и в виде аналитического выражения. Например, множество вещественных чисел Z очень близких к числу 2, может быть задано так:

Z = {xúm Z (x)}, "x Î R,

где m Z (x) = .

Множество же вещественных чисел Y, достаточно близких к числу 2, есть

Y = {xúm Y (x)}, "x Î R,

M Y Z (x) = .

Графическое изображение этих двух функций принадлежности дано на рис.3.9.

Определение. Нечеткое множество A называется нечетким подмножеством B , если и A и B заданы на одном и том же базовом множестве E и "x Î E: m A (x) £ m B (x), что обозначают как A Ì B .

Условия равенства двух нечетких множеств A и B , заданных на одном и том же базовом множестве E, имеет следующий вид

A = B или "х Î E: m A (x) = m B (x).

Замечание . Между разными по своей сути понятиями "нечеткости" и "вероятности" чувствуется некоторое сходство. Во-первых, эти понятия используются в задачах, где встречается неопределенность либо неточность наших знаний или же принципиальная невозможность точных предсказаний результатов решений. Во-вторых, интервалы изменения и вероятности и функции принадлежности совпадают:

и P Î и m A (x) Î .

Вместе с тем вероятность является характеристикой объективной и выводы, полученные на основе применения теории вероятностей, в принципе могут быть проверены на опыте.

Функция же принадлежности определяется субъективно, хотя обычно она отражает реальные соотношения между рассматриваемыми объектами. Об эффективности применения методов, основанных на теории нечетких множеств, обычно судят после получения конкретных результатов.

Если в теории вероятностей предполагается, что вероятность достоверного события равна единице, т.е.

то соответствующая сумма всех значений функции принадлежности может принимать любые значения от 0 до ¥.

Итак, чтобы задать нечеткое множество A необходимо определить базовое множество элементов E, и сформировать функцию принадлежности m A (х), являющуюся субъективной мерой уверенности, с которой каждый элемент x из E принадлежит данному нечеткому множеству A .

Нечеткое множество - ключевое понятие нечеткой логики. Пусть Е — универсальное множество, х — элемент Е, a R — некоторое свойство. Обычное (четкое) подмножество А универ-сального множества Е, элементы которого удовлетворяют свойству R, определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) —характеристическая функция, принимающая значе-ние 1, если х удовлетворяет свойству R, и 0 - в противном случае.

Нечеткое подмножество отличается от обычного тем, что для элементов х из Е нет однозначного ответа «да-нет» относительно свойства R. В связи с этим нечеткое подмножество А универсаль-ного множества Е определяется как множество упорядоченных пар

А = { μ A (x ) / x },

где μ А (х) характеристическая функция принадлежности (или просто функция принадлежности) , принимающая значения в некотором вполне упорядоченном множестве М (например, М = ).

Функция принадлежности указывает степень (или уровень) принадлежности элемента х подмножеству А. Множество М назы-вают множеством принадлежностей. Если М = {0, 1}, то нечеткое подмножество А может рассматриваться как обычное или четкое множество.

Примеры записи нечеткого множества

Пусть Е = {x 1 , x 2 , х з, x 4 , x 5 }, М = ; А — нечеткое множество, для которого μ A (x 1 )= 0,3; μ A (х 2 )= 0; μ A (х 3) = 1; μ A (x 4) = 0,5; μ A (х 5 )= 0,9.

Тогда А можно представить в виде

А = {0,3/x 1 ; 0/х 2 ; 1/х 3 ; 0,5/х 4 ; 0,9/х 5 },

или

А ={0,3/x 1 +0/х 2 +1/х 3 +0,5/х 4 +0,9/х 5 },

или

Замечание . Здесь знак «+» не является обозначением операции сложения, а имеет смысл объединения.

Основные характеристики нечетких множеств

Пусть М = и А — нечеткое множество с элементами из универсаль-ного множества Е и множеством принадлежностей М.

Величина называется высотой нечеткого множества А. Нечеткое множество А нормально, если его высота рав-на 1,т.е. верхняя граница его функции принадлежности равна 1 (= 1). При < 1нечеткое множество называется субнормальным.

Нечеткое множество пусто, если ∀x ϵ E μ A (x ) = 0. Непу-стое субнормальное множество можно нормализовать по формуле

Нечеткое множество унимодально, если μ A (x ) = 1 только на одном х из Е.

. Носителем нечеткого множества А является обычное под-множество со свойством μ A (x )>0, т.е. носитель А = {x /x ϵ E, μ A (x )>0}.

Элементы x ϵ E , для которых μ A (x ) = 0,5 , называются точками перехода множества А.

Примеры нечетких множеств

1. Пусть Е = {0, 1, 2, . . ., 10}, М = . Нечеткое множество «Несколько» можно определить следующим образом:

«Несколько» = 0,5/3 + 0,8/4 + 1/5 + 1/6 + 0,8/7 + 0,5/8; его характеристики: высота = 1, носитель = {3, 4, 5, 6, 7, 8}, точки перехода — {3, 8}.

2. Пусть Е = {0, 1, 2, 3,…, n ,}. Нечеткое множество «Малый» можно определить:

3. Пусть Е = {1, 2, 3, . . ., 100} и соответствует понятию «Возраст», тогда нечеткое множество «Молодой» может быть определено с помощью

Нечеткое множество «Молодой» на универсальном множестве Е" = {ИВАНОВ, ПЕТРОВ, СИДОРОВ,...} задается с помощью функции при-надлежности μ Молодой (x ) на Е = {1, 2, 3, . . ., 100} (возраст), называемой по отношению к Е" функцией совместимости, при этом:

где х — возраст СИДОРОВА.

4. Пусть Е = {ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,… } - множе-ство марок автомобилей, а Е" = — универсальное множество «Сто-имость», тогда на Е" мы можем определить нечеткие множества типа:

Рис. 1.1. Примеры функций принадлежности

«Для бедных», «Для среднего класса», «Престижные», с функциями при-надлежности вида рис. 1.1.

Имея эти функции и зная стоимости автомобилей из Е в данный момент времени, мы тем самым определим на Е" нечеткие множества с этими же названиями.

Так, например, нечеткое множество «Для бедных», заданное на уни-версальном множестве Е = { ЗАПОРОЖЕЦ, ЖИГУЛИ, МЕРСЕДЕС,...}, выглядит так, как показано на рис. 1.2.

Рис. 1.2. Пример задания нечеткого множества

Аналогично можно определить нечеткое множество «Скоростные», «Средние», «Тихоходные» и т. д.

5. Пусть Е — множество целых чисел:

Е = {-8, -5, -3, 0, 1, 2, 4, 6, 9}.

Тогда нечеткое подмножество чисел, по абсолютной величине близких к нулю, можно определить, например, так:

А = {0/-8 + 0,5/-5 + 0,6/-3 +1/0 + 0,9/1 + 0,8/2 + 0,6/4 + 0,3/6 + 0/9}.

О методах построения функций принадлежности нечет-ких множеств

В приведенных выше примерах использованы пря-мые методы, когда эксперт либо просто задает для каждого х ϵ Е значение μ А (х), либо определяет функцию совместимости. Как правило, прямые методы задания функции принадлежности ис-пользуются для измеримых понятий, таких как скорость, время, расстояние, давление, температура и т.д., или когда выделяются полярные значения.

Во многих задачах при характеристике объекта можно выде-лить набор признаков и для каждого из них определить полярные значения, соответствующие значениям функции принадлежности, 0 или 1.

Например, в задаче распознавания лиц можно выделить шкалы, приведенные в табл. 1.1.

Таблица 1.1. Шкалы в задаче распознавания лиц

x 1

высота лба

x 2

профиль носа

курносый

горбатый

длина носа

короткий

x 4

разрез глаз

цвет глаз

форма подбородка

остроконечный

квадратный

x 7

толщина губ

цвет лица

очертание лица

овальное

квадратное

Для конкретного лица А эксперт, исходя из приведенной шка-лы, задает μ A (х) ϵ , формируя векторную функцию принад-лежности { μ A (х 1 ) , μ A (х 2 ),…, μ A (х 9) }.

При прямых методах используются также групповые прямые методы, когда, например, группе экспертов предъявляют конкрет-ное лицо и каждый должен дать один из двух ответов: «этот че-ловек лысый» или «этот человек не лысый», тогда количество утвердительных ответов, деленное на общее число экспертов, дает значение μ лысый (данного лица). (В этом примере можно действо-вать через функцию совместимости, но тогда придется считать число волосинок на голове у каждого из предъявленных эксперту лиц.)

Косвенные методы определения значений функции принад-лежности используются в случаях, когда нет элементарных из-меримых свойств, через которые определяется интересующее нас нечеткое множество. Как правило, это методы попарных сравне-ний. Если бы значения функций принадлежности были нам из-вестны, например, μ A (х- i ) = ω i , i = 1, 2, ..., n ,то попарные срав-нения можно представить матрицей отношений А = { a ij }, где a ij = ω i / ω j (операция деления).

На практике эксперт сам формирует матрицу А , при этом пред-полагается, что диагональные элементы равны 1, а для элемен-тов симметричных относительно диагонали a ij = 1/a ij , т.е. если один элемент оценивается в α раз сильнее, чем другой, то этот по-следний должен быть в 1/α раз сильнее, чем первый. В общем случае задача сводится к поиску вектора ω, удовлетворяющего уравнению вида Aw = λ max w , где λ max — наибольшее собствен-ное значение матрицы А . Поскольку матрица А положительна по построению, решение данной задачи существует и является поло-жительным.

Можно отметить еще два подхода:

  • использование типовых форм кривых для задания функций принадлежности (в форме (L-R)-Типа - см. ниже) с уточнением их параметров в соответствии с данными эксперимента;
  • использование относительных частот по данным экспе-римента в качестве значений принадлежности.


Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме