Подпишись и читай
самые интересные
статьи первым!

Помехозащищенностью преимущества возможность использования любого. Помехозащищенность рса землеобзора

Помехозащищенность систем передачи КПИ

Функционирование СП КПИ происходит в условиях действия помех. В общем случае следует проводить оценку работоспособности СП КПИ при ведении противником радиоэлектронной борьбы (РЭБ). При этом важнейшим показателем качества функционирования СП КПИ является помехозащищенность.

Помехозащищенность РЭС – это ее свойство сохранять работоспособность в условиях ведения противником радиоэлектронной борьбы.

В общем случае РЭБ включает два последовательных этапа – радио­разведку и радиопротиводействие. Целью радиоразведки является установление факта работы РЭС на излучение и определение параметров РЭС, необходимых для организации радиопротиводействия. Целью радиопротиводействия является создание таких условий, которые затруднили бы работу РЭС или вообще привели к срыву выполнения задачи. Основным способом радиопротиводействия является постановка помех. Постановка помех будет тем эффективнее, чем больше информации о подавляемой РЭС будет выявлено на этапе радиоразведки и использовано при организации радиопротиводействия.

Отсюда следует, что помехозащищенность как качественный показатель функционирования СП КПИ предполагает и ведение противником радиоразведки (т.е. учитывает скрытность работы СП КПИ), и сохранение на допустимом уровне качества работы СП КПИ при действии помех (т. е. помехоустойчивость).

Помехозащищенность РЭС зависит от технических характеристик РЭС, от взаимного расположения РЭС и аппаратуры разведки и подавления, от тактики использования РЭС, от времени работы и т. д. Сочетание этих характеристик и условий носит случайный характер, поэтому оценивать помехозащищенность следует как вероятность Р пмз выполнения РЭС задач в условиях РЭБ, определяемую соотношением

Р пмз = 1 – Р р Р н

где Р р вероятность разведки параметров РЭС, необходимых для организации радиопротиводействия;

Р н – вероятность нарушения работы РЭС в результате радиопротиводействия.

Вероятность Р р количественно отражает скрытность РЭС –способность РЭС противостоять мерам радиотехнической разведки, направленным на обнаружение факта работы РЭС и определения необходимых для радиопротиводействия параметров сигнала. Соответственно величину Р скр = 1 – Р р можно принять в качестве критерия скрытности.

Вероятность Р н зависит от способности РЭС выполнять задачу при действии помех. Поэтому величина Р пму = 1 – Р н может быть принята в качестве критерия помехоустойчивости. Этот критерий определяет вероятность выполнения системой задачи в условиях радиоподавления.

Если противник не разведает параметры радиолинии, то очевидна постановка только шумовой заградительной помехи. Если параметры радиолинии в процессе разведки противником определены, то вероятнее всего постановка прицельной помехи. Таким образом, помехозащищенность РЭС определяется ее скрытностью и помехоустойчивостью. Рассмотрим отдельные показатели помехозащищенности.



Скрытность . Радиоразведка, как правило, предполагает последовательное выполнение трех основных задач: обнаружение факта работы РЭС (обнаружение сигнала), определение структуры обнаруженного сигнала (на основе определения ряда его параметров) и раскрытие содержащейся (передаваемой) в сигнале информации. Последняя задача иногда имеет самостоятельное значение (является одной из конечных целей). В общем случае раскрытие смысла передаваемой информации позволяет организовать более эффективное радиоподавление.

Перечисленным задачам радиоразведки могут быть противопоставлены три вида скрытности РЭС: энергетическая, структурная и информационная.

Энергетическая скрытность характеризует способность противостоять мерам, направленным на обнаружение сигнала разведывательным приемным устройством. Для обеспечения энергетической скрытности необходим выбор такой мощности излучения передатчика и такого спектра излучения, при которых мощность сигнала на входе разведывательного приемника была бы меньше его реальной чувствительности. Для обеспечения энергетической скрытности возможно использование широкополосных сигналов, поскольку при малой спектральной плотности и при условии относительно узкой полосы пропускания разведывательного приемника энергия принимаемого разведываемого сигнала будет невелика. Обнаружение сигнала разведывательным приемником происходит в условиях действия помех (шумов), и может сопровождаться ошибками двух видов: пропуск сигнала при его наличии на входе и ложное обнаружение (ложная тревога) при отсутствии сигнала. Эти ошибки носят вероятностный характер. Количественной мерой энергетической скрытности может являться вероятность правильного обнаружения Р обн (при заданной вероятности ложной тревоги Р лт), которые в свою очередь зависят от отношения сигнал-помеха в радиолинии и правила принятия решения на обнаружение сигнала.

Структурная скрытность характеризует способность противостоять мерам радиоразведки, направленным на раскрытие сигнала. Это означает распознавание формы сигнала, определяемой способами его кодирования и модуляции, т. е. отождествление обнаруженного сигнала с одним из множества априорно известных сигналов. Структурная скрытность обеспечивается использованием сигналов, сложная структура которых затрудняет их разведку противником. В качестве таких сигналов могут использоваться сигналы на основе псевдослучайных последовательностей большой длительности, сигналы со сложной модуляцией и т. п. Использование сложных сигналов предъявляет особые требования к системе по точности синхронизации приемной и передающей сторон. Для увеличения структурной скрытности необходимо иметь по возможности больший ансамбль используемых сигналов и достаточно часто изменять форму сигналов. Задача определения структуры сигнала является также статистической, а количественной мерой структурной скрытности может служить вероятность раскрытия структуры сигнала Р стр при условии, что сигнал обнаружен. Таким образом, Р стр является условной вероятностью.

Информационная скрытность определяется способностью противостоять мерам, направленным на раскрытие смысла передаваемой с помощью сигналов информации. Раскрытие смысла передаваемой информации означает отождествление каждого принятого сигнала или их совокупности с тем сообщением, которое передается. Эта задача решается выяснением ряда признаков сигнала, например, места данного сигнала в множестве принятых, частости его появления, связи факторов появления того или иного сигнала с изменением состояния управляемого объекта и т. д. Наличие априорной и апостериорной неопределенностей делает эту задачу вероятностной, а в качестве количественной меры информационной скрытности принимают вероятность раскрытия смысла передаваемой информации Р инф при условии, что сигнал обнаружен и выделен (т. е. структура его раскрыта). Следовательно, Р инф также является условной вероятностью.

Скрытность определяется вероятностью разведки сигнала РЭС. Часто задача раскрытия смысла передаваемой информации не ставится, и тогда можно принять Р инф = 1 и Р р = Р обн Р стр. В ряде случаев для организации радиопротиводействия достаточно обнаружить сигнал подавляемой РЭС. При этом Р р отождествляется с Р обн. Энергетическая и структурная скрытность являются важнейшими характеристиками РЭС, с которыми сталкиваются как инженеры-проектировщики радиоаппаратуры, так и инженеры, эксплуатирующие ее.

Таким образом, скрытность СП КПИ обеспечивается учетом реальных условий функционирования, сочетанием технических и организационных мер.

Критерием оценки помехоустойчивости СП КПИ является вероятность ошибки Р ош при декодировании кодовой комбинации, представляющей собой закодированную РК или отдельное слово ВП. Значение этой вероятности Р ош, в свою очередь зависит от вероятности искажения элементарного символа (разряда) кодовой комбинации р э и при безызбыточном кодировании

Р ош = 1 – (1 – р э) n

где п - число разрядов кодовой комбинации.

Обычно для систем ближнего космоса требуется обеспечить значение вероятности искажения сообщения (команды или слова программы управления) не более 10 -8 - 10 -10 . Вероятность искажения элементарного символа (элемента) сообщения для систем ближнего космоса обычно лежит в пределах 10 -3 - 10 -6 . Таким образом, вероятность искажения сообщения, представляемого в СП КПИ в виде кодовой комбинации, должна быть на несколько порядков меньше вероятности искажения символов этого сообщения. Этим определяется принципиальная необходимость применения в СП КПИ специальных мер по повышению достоверности передаваемых сообщений.

Министерство образования Российской Федерации

Бийский технологический институт (филиал)

Алтайский государственный технический университет

им. И.И. Ползунова

Кафедра МСИА

Реферат по курсу:

«Основы проектирования приборов и систем»

Помехозащищенность приборов и систем

Выполнили:

студент группы ИИТТ-02 Кулишкин М.А.

студент группы ИИТТ-02 Данилов А.В.

Руководитель:

доцент Сыпин Е.В.

Бийск – 2004

Стр.

Введение3

Помехоустойчивость 4

Статическая помехоустойчивость 4

Динамическая помехоустойчивость 5

Применение характеристики динамической помехоустойчивости 8

Заключение 10

Введение

Помехозащищенность - свойство прибора или системы противостоять внешним и внутренним электромагнитным помехам, реализуемое за счет схемоконструкторских способов, которые не нарушают выбранную структуру полезного сигнала и принцип построения прибора или системы.

Помехоустойчивость - свойство прибора или системы противостоять внешним и внутренним электромагнитным помехам, реализуемое за счет выбранной структуры полезного сигнала и принципа построения прибора или системы.

Таким образом, термин "помехоустойчивость " применим в большей степени к схемотехническим аспектам проектирования приборов или систем, а термин "помехозащищенность " к конструкции прибора или системы в целом, т.е. помехоустойчивость основная составляющая помехозащищенности.

Помехоустойчивость

Помехоустойчивость приборов может быть следующих видов:

1.Статическая помехоустойчивость - при воздействии постоянных напряжений.

2.Динамическая помехоустойчивость - к воздействию импульсных помех различной формы.

Статическая помехоустойчивость

На графике можно отметить ряд характерных уровней напряжения:

    U пор - пороговый уровень переключения микросхемы. При его достижении микросхема переходит из одного логического состояния в другое;

    U 0 ст.пу - уровень статической помехоустойчивости относительно уровня 0;

    U 1 ст.пу - уровень статической помехоустойчивости относительно уровня 1.

Пороговый уровень рассчитывается через статические уровни 0 и 1: U пор = 0,5· (U 0 + U 1 ) .

Уровни статической помехоустойчивости при этом рассчитываются следующим образом: U 0 ст.пу = U пор - U 0 ; U 1 ст.пу = U 1 - U пор .

Как видно |U 0 ст.пу | = |U 1 ст.пу | = U ст.пу .

Пример:

В целом, чем выше быстродействие микросхемы, тем ниже её помехоустойчивость, особенно динамическая.

Динамическая помехоустойчивость

В аппаратуре в основном преобладают динамические процессы, связанные с изменением во времени токов и напряжений. Эти изменения индуцируют изменяемые токи и ЭДС, воспринимаемых в виде помех, в проводниках на платах и межплатных соединениях. Поэтому импульсные помехи более типичны для ЭС.

Характеристика динамической помехоустойчивости графически описывает способность интегральных схем противостоять импульсным помехам, которые поступают на вход микросхем. Помехи в этом случае представляются импульсами произвольной формы. Измерения этой характеристики можно провести на установке, упрощенное изображение которой показано на (рисунке 2.11).

Генератор сигналов - это имитатор импульсных помех, который позволяет управлять параметрами импульсов. Форма импульсов должна быть максимально приближена к форме потенциальных помех. Возможные аппроксимации помех приведены на рисунке.

Рис. 3. Аппроксимация импульсов

Генерирование импульсов с управляемыми параметрами является весьма сложной задачей. По этой причине, основное распространение при анализе помехоустойчивости получил прямоугольный импульс, хотя импульсы № 2 - 4 имеют вид более близкий к форме реальных помех. При использовании прямоугольного импульса в качестве тестирующего возникает проблема исследования ИМС предельного быстродействия. При этом генератор сигналов должен быть построен на элементах, быстродействие которых на порядок выше быстродействия тестируемой микросхемы.

Переменными величинами здесь являются амплитуда импульса помехи U п и длительность импульса помехи t п .

Возможно проведение вычислительных экспериментов, что снижает ограничение на форму и параметры импульсов, но требует адекватной модели испытуемой микросхемы, что не всегда просто осуществить.

Индикатор - простейшее безинерционное устройство, например, светодиод, фиксирующее события переключения ИМС.

Для получения характристики динамической помехоустойчивости проводят ряд измерений, фиксируя состояние индикатора, приписывая, например, знак "+" событию срабатывания микросхемы, а знак "-" - отсутствию срабатывания. Пусть нами проведены 4 испытания. Итоги эксперимента следующие: в первом и четвёртом случаях срабатывания не происходит, а во втором и третьем - индикатор фиксирует событие срабатывания ИМС: 1.“-“; 2.“+”; 3.“+”; 4.“-“. Результаты эксперимента отражаются на графике в координатах t п , U п . Точки 1, 2, 3, ... имеют координаты, которые соответствуют длительностям и амплитудам задаваемых генератором импульсов.

При длительности помехи меньше t п.min микросхема работает устойчиво при любой амплитуде помехи, но эта длительность мала, что практически исключает наличие таких помех. При наличие на входе микросхемы весьма коротких импульсов помех значительной амплитуды их заряд мал, входные емкости не успевают перезарядиться, и напряжение на входе микросхемы не превосходит допустимое.

Применение характеристики динамической помехоустойчивости

Характеристика динамической помехоустойчивости широко используются при проектировании ЭС для оценки возможного нарушения работоспособности цифровых узлов при наличии индуцированных помех . В качестве примера рассмотрим линию связи, изображённую на рисунке.

В данной задаче при анализе качества функционирования цифровых узлов необходимо определить опасность воздействия помех с теми или иными параметрами. Итак:

    Сначала оцениваются взаимные электрические и магнитные параметры связи (т. е. М и С м);

    Определяются параметры помехи (U п , t п ) в пассивной линии;

    Оценивается опасность воздействия помех (U п , t п ) по характеристике динамической помехоустойчивости.

Если ведётся разработка аппаратуры на определенной серии микросхем, то один раз полученная характеристика для типового вентиля может быть применима для всей серии. При смене элементной базы характеристика должна быть получена заново. В нормативно-технической документации в обязательном порядке приводится статическая помехоустойчивость, и в большинстве случаев - динамическая

Заключение

Для повышения помехозащищенности приборов или систем к воздействию помех способствуют специальные меры, которые закладываются на этапе проектирования и конструирования (экранирование, заземление, рациональный монтаж и т.п.)

Помехозащищенность характеризует способность системы связи противостоять воздействию помех. Помехозащищенность включает в себя такие понятия как скрытность и помехоустойчивость. Известно, что помехоустойчивость приема сигналов на фоне широкополосной помехи (Δfn >Δfc) типа белый гауссовский шум определяется только отношением энергии сигнала Ес к спектральной плотности шума N

q0 = 2E/N = 2PcT/N, (2.3)

и не зависит от вида сигнала. Поэтому при известной спектральной плотности помех помехоустойчивость оптимального приема ШПС к широкополосным помехам равна помехозащищенности оптимального приема узкополосных сигналов в этих условиях.

Если ширина спектра помехи не превышает ширину спектра сигнала, то применение ШПС обеспечивает увеличение отношения сигнал/помеха относительно узкополосных сигналов

Таким образом, отношение сигнал/помеха в ШСС улучшается пропорционально базе сигнала.

Помехоустойчивость ШСС определяется соотношением, связывающим отношение сигнал/помеха на выходе приемника q2 с отношением сигнал/помеха на его входе р2

где - отношение мощности ШПС к мощности помехи; q2 = 2E/Nп - отношение энергии ШПС Е к спектральной плотности мощности помехи Nп в полосе ШПС, т.е. Е = РсТ, Nп = Рп /Δfc.

Из данного соотношения следует, что прием ШПС сопровождается усилением сигнала в 2В раз.

Скрытность системы связи определяет ее способность противостоять обнаружению и измерению параметров сигнала. Если известно, что в данном диапазоне частот может работать система связи, но параметры ее неизвестны, то в этом случае можно говорить об энергетической скрытности системы связи, так как ее обнаружение возможно только с помощью анализа спектра. Скрытность ШСС связана с уменьшением спектральной плотности сигнала в результате увеличения его базы, т.е.

(2.6)

т.е. в В раз меньше, чем у узкополосного сигнала при равных мощностях и скорости передачи информации. Отношение спектральной плотности мощности сигнала Nc к спектральной плотности мощности входных шумов N приемника, обнаруживающего сигнал, составляет

(2.7)

т.е. в В раз меньше, чем у узкополосных сигналов. Поэтому в точке приема при неизвестной структуре ШПС вероятность его обнаружения на фоне шума чрезвычайно низка . Таким образом, чем шире спектр ШПС и больше его база, тем выше энергетическая и параметрическая скрытность системы связи.

Другие публикации

Однополосный связной передатчик
техника радиопередающих устройств развивается непрерывно и интенсивно. Это обусловлено определяющей ролью передатчиков в энергопотреблении, качестве работы, надежност...

Расчет характеристик САР
1. Изобразить принципиальную схему САР для заданного варианта. Составить функциональную схему САР. 2. По заданным в варианте статическим характер...

Помехозащищенность РСА в условиях РЭБ

Помехозащищенность является важнейшей характеристикой РСА, определяющей возможность эффективного решения функциональных задач в условиях ведения радиоэлектронной борьбы (РЭБ) .

В настоящее время РЭБ определяется как комплекс мероприятий и действий конфликтующих сторон, направленных на обнаружение и радиоэлектронное подавление (РЭП) радиоэлектронных средств (РЭС) противника и радиоэлектронную защиту своих РЭС от преднамеренных и непреднамеренных помех, а также технической разведки сигналов РЭС. При этом помехозащищенность РЭС характеризует способность выполнения функциональных задач с заданной эффективностью в условиях воздействия преднамеренных и непреднамеренных помех, а также возможность противодействовать радиотехнической разведке (РТР) своих сигналов.

Анализ помехозащищенности требует системного (целостного) подхода с учетом всех структур, участвующих в РЭБ, взаимосвязей целей, задач и критериев оценки их функционирования в динамике взаимодействия и развития. Динамика взаимодействия (противоборства) средств и способов РЭП и РТР составляет основу РЭБ. В этом смысле, помехозащищенность как часть РЭБ является военно-технической категорией и означает способность реализовывать целевую функцию при организованном противодействии противника.

Помехозащищенность РЭС достигается путем сочетания оборонительных и наступательных действий (рис. 7.11). К наступательным действиям относится уничтожение постановщиков помех, например, ударной авиацией путем наведения ракет на источник излучения, а также радиоэлектронное подавление средств РТР и управления станциями активных помех противника (контрРЭП). К оборонительным действиям относится защита РЭС от конкретных помех и технической разведки, которая обеспечивается совокупностью устройств и алгоритмов РЭС, в том числе адаптацией к помехоцелевой обстановке, резервированием и комплексированием каналов, а также повышением скрытности излучения, имитации и маскировки.

Оценка помехозащищенности РЭС требует знания сил и средств РЭБ, возможностей и ТТХ систем противника, взаимной информации о действиях РЭП и РТР (тактики применения). Поэтому характеристики помехозащищенности могут быть определены, если заданы все возможные условия функционирования РЭС (помехоцелевая обстановка) и их изменения в процессе РЭБ.

Помехозащищенность как часть РЭБ оценивается по многим критериям: информационным, энергетическим, оперативно-тактическим и военно-экономическим. Учитывая сложный многофакторный характер взаимодействия РЭС и систем РЭП в процессе РЭБ, далее рассматриваются только технические характеристики конфликтующих систем, которые определяют частные показатели защиты РЭС от конкретных помех, входящих в общую оценку помехозащищенности.

Применительно к РСА землеобзора помехозащищенность определяется скрытностью и помехоустойчивостью работы.

Скрытность характеризует степень защищенности излучаемых сигналов РСА от обнаружения и измерения их параметров системой РТР противника.

Помехоустойчивость характеризует эффективность функционирования РСА в условиях воздействия заданных помех.

Таким образом, показатели помехозащищенности определяются в результате анализа антагонистического конфликта систем РТР, РЭП и РСА в условиях РЭБ. Так, создание эффективных помех работе РСА землеобзора возможно только при наличии достаточно полной информации о параметрах излучения РСА. Поэтому система непосредственной РТР комплекса РЭБ противника должна осуществлять с требуемой эффективностью обнаружение и оценку параметров сигналов РСА в интересах РЭП. В свою очередь, эффективность решения задач РТР зависит от характеристик излучаемых сигналов РСА, а эффективность воздействия помех зависит не только от вида помех, но и от алгоритмов обработки сигналов РСА.

Скрытность работы РСА землеобзора

Хотя скрытность и помехоустойчивость РСА взаимосвязаны прежде всего со структурой и алгоритмами обработки сигналов, целесообразно рассматривать их характеристики отдельно. Это обусловлено последовательностью действий конфликтующих сторон в ходе РЭБ.

На рис. 7.12 представлена функциональная схема информационного конфликта РСА и комплекса РЭП в виде станции активных помех (САП). Информационное обеспечение САП выполняет станция непосредственной радиотехнической разведки (НРТР).

На приемные антенны НРТР приходит поток сигналов РСА и других источников излучения, находящихся в зоне приема НРТР. Обнаружение и определение параметров излучения (несущую частоту, модуляцию, направление прихода) выполняет приемное устройство. На основе анализа полученных и хранящихся в базе данных (БД) характеристик сигналов распознаются источники излучения и принимается решение на подавление работы РСА.

На основе сведений о параметрах рациональных (оптимальных) помех для обнаруженных сигналов РСА, хранящихся в базе данных САПЭ формируется, усиливается (генерируется) и излучается помехо-вый сигнал в направлении РСА.

Процессор РСА анализирует помехоцелевую обстановку и изменяет параметры зондирующего сигнала и алгоритм обработки принимаемых сигналов и помех с целью оптимизации решения заданной тактической задачи, например картографирования.

Далее процесс противодействия РЭП и РСА повторяется. Важно отметить, что в информационном конфликте с РЭП инициатива принадлежит РСА. Реакция РЭП на появление сигналов РСА всегда запаздывает. Чем более непредсказуемо начало излучения и изменение параметров сигналов РСА, тем больше запаздывание помехи и тем больше эффективность работы РСА в условиях РЭБ.

Скрытность работы РСА определяется как свойствами излучаемого сигнала, так и возможностями системы НРТР по обнаружению и измерению их параметров.

Основными характеристиками НРТР являются: рабочая чувствительность, перекрытие по диапазону и одновременная (мгновенная) полоса частот приема, точность измерения параметров сигналов, запаздывание реакции и пропускная способность.

На входе приемника НРТР, при которой обеспечивается решение задач радиотехнической разведки с заданной эффективностью. Рабочая чувствительность НРТР изменяется в очень широких пределах в зависимости от вида сигнала и типа приемного устройства.

10 МГц. Кроме внутренних

шумов, на входе приемника РТР присутствуют внешние шумы, обусловленные многочисленными источниками излучения.

Для РСА землеобзора характерны широкие полосы частот зондирующего сигнала (100...500 МГц), определяемые требуемым разрешением по дальности (1,5...0,3) м. Поэтому даже потенциальная чувствительность не превышает-100...-110 дБВт при работе по сигналам РСА.

В настоящее время в качестве приемных устройств используют детекторные (энергетические) и супергетеродинные приемники. Супергетеродинные приемники обеспечивают чувствительность, близкую к потенциальной. При этом для просмотра всего диапазона частот (1...10 ГГц) используют быструю перестройку приемника (1...4 ГГц/с) при одновременной полосе анализа 2... 10 МГц. Последовательный просмотр диапазона частот приводит к пропуску сигналов и ошибкам измерения частоты. При быстрой перестройке несущей частоты сигнала РСА (от импульса к импульсу) последовательный анализ диапазона частот приводит к недопустимым ошибкам.

и ложной тревоги

в каждом стробируемом элементе сигнала, что требует

величины отношения сигнал/шум 13... 15 дБ.

С учетом всех шумов и потерь рабочая чувствительность, т.е. минимально необходимая мощность разведываемого сигнала на входе приемника НРТР, изменяется в широких пределах и зависит как от типа приемного устройства, так и от параметров сигнала. Так, при диапазоне частот 4 ГГц (8... 12 ГГц) многоканальный по частоте приемник с полосами фильтров 10 МГц имеет рабочую чувствительность -80...-90 дБВт. При расширении полосы фильтра до 100 МГц, что характерно для РСА, чувствительность снижается в 5... 10 раз.

Величина мощности сигнала РСА на входе приемника зависит от коэффициента усиления антенны системы НРТР. Обеспечение одновременного обнаружения и точного определения координат РСА требует применения многоканальных (многолучевых) антенн и многоканальных по частоте приемников. Это приводит к высокой сложности системы НРТР. Поэтому задачи обнаружения и определения направления прихода сигнала часто выполняют в два этапа. На первом этапе с помощью всенаправленной антенны (несколько лучей) производят обнаружение и измерение несущей частоты сигнала с помощью многоканального по частоте приемника. На втором этапе определяется направление прихода и параметры обнаруженного сигнала с помощью высоконаправленной (многолучевой) антенны. На основе результатов измерений сигнала и базы данных распознается тип РЛС.

Важнейшей характеристикой системы НРТР и комплекса РЭБ в целом является время реакции на появление сигнала РСА и его изменение. Это время определяется запаздыванием, обусловленным выполнением алгоритмов обнаружения, измерения параметров сигналов и распознавания типа РЛС, а также временем формирования помехи.

импульсов/с), которые необходимо обнаружить, определить параметры и распознать источник излучения. Возможности решения этих задач характеризуются пропускной способностью. Пропускная способность НРТР зависит от многоканальное ™ приемника и производительности процессора.

Одна и та же линия связи может использоваться для передачи сигналов между многими источниками и приемниками, т.е. линия связи может обслуживать несколько каналов.

При синтезе систем передачи информации приходится решать две основные проблемы, связанные с передачей сообщений:

1) обеспечение помехоустойчивости передачи сообщений

2) обеспечение высокой эффективности передачи сообщений

Под помехоустойчивостью понимается способность информации противостоять вредному воздействию помех. При данных условиях, т.е. при заданной помехе, помехоустойчивость определяет верность передачи информации. Под верностью понимается мера соответствия принятого сообщения (сигнала) переданному сообщению (сигналу).

Под эффективностью системы передачи информации понимается способность системы обеспечивать передачу заданного количества информации наиболее экономичным способом. Эффективность характеризует способность системы обеспечить передачу данного количества информации с наименьшими затратами мощности сигнала, времени и полосы частот.

Теория информации устанавливает критерии оценки помехоустойчивости и эффективности информационных систем, а также указывает общие пути повышения помехоустойчивости и эффективности.

Повышение помехоустойчивости практически всегда сопровождается ухудшением эффективности и наоборот

В основах всех способов повышения помехоустойчивости информационных систем лежит использование определенных различий между полезным сигналом и помехой. Поэтому для борьбы с помехами необходимы априорные сведения о свойствах помехи и сигнала.

В настоящее время известно большое число способов повышения помехоустойчивости систем. Эти способы удобно разбить на две группы.

I группа – основана на выборе метода передачи сообщений.

II группа – связана с построением помехоустойчивых приемников.

Простым и применяемым способом повышения помехоустойчивости является увеличение отношения сигнал/помеха за счет увеличения мощности передатчика. Но этот метод может оказаться экономически не выгодным, так как связан с существенным ростом сложности и стоимости оборудования. Кроме того, увеличение мощности передачи сопровождается усилением мешающего действия данного канала на другие.



Важным способом повышения помехоустойчивости передачи непрерывных сигналов является рациональный выбор вида модуляции сигналов. Применяя виды модуляции, обеспечивающие значительное расширение полосы частот сигнала, можно добиться существенного повышения помехоустойчивости передачи.

Радикальным способом повышения помехоустойчивости передачи дискретных сигналов является использование специальных помехоустойчивых кодов . При этом имеется два пути повышения помехоустойчивости кодов:

1. Выбор таких способов передачи, которые обеспечивают меньшую вероятность искажения кода;

2. Увеличение корректирующих свойств кодовых комбинаций. Этот путь связан с использованием кодов, позволяющих обнаруживать и устранять искажения в кодовых комбинациях. Такой способ кодирования связан с введением в код дополнительных, избыточных символов, что сопровождается увеличением времени передачи или частоты передачи символов кода.

Повышение помехоустойчивости передачи может быть также достигнуто путем повторной передачи одного и того же сообщения. На приемной стороне сравниваются полученные сообщения и в качестве истинных принимаются те, которые имеют наибольшее число совпадений. Чтобы исключить неопределенность при обработке принятой информации и обеспечить отбор по критерию большинства, сообщение должно повторяться не менее трёх раз. Этот способ повышения помехоустойчивости связан с увеличением времени передачи.

Системы с повторением передачи дискретной информации делятся на системы с групповым суммированием, у которых сравнение производится по кодовым комбинациям, и на системы с посимвольным суммированием, у которых сравнение осуществляется по символам кодовых комбинаций. Посимвольная проверка является более эффективной, чем групповая.

Разновидность систем, у которых повышение помехоустойчивости достигается за счет увеличения времени передачи, являются системы с обратной связью. При наличии искажений в передаваемых сообщениях информация, поступающая по обратному каналу, обеспечивает повторение передачи. Наличие обратного канала приводит к усложнению системы. Однако в отличие от систем с повторением передачи в системах с обратной связью повторение передачи будет иметь место лишь в случае обнаружения искажений в передаваемом сигнале, т.е. избыточность в целом оказывается меньшей.

Помехоустойчивый прием состоит в использовании избыточности, а также априорных сведений о сигналах и помехах для решения оптимальным способом задачи приема: обнаружения сигнала, различия сигналов или восстановления сообщений. В настоящее время для синтеза оптимальных приемников широко используется аппарат теории статистических решений.

Ошибки приемника уменьшаются с увеличением отношения сигнал/помеха на входе приемника. В связи с этим часто производят предварительную обработку принятого сигнала с целью увеличения отношений полезной составляющей к помехе. К таким методам предварительной обработки сигналов относится метод ШОУ (сочетание широкополосного усилителя, ограничителя и узкополосного усилителя), селекция сигналов по длительности, метод компенсации помехи, метод фильтрации, корреляционный метод, метод накопления и др.

Рассмотрим простые практические способы построения кодов, способных обнаруживать и исправлять ошибки. Ограничимся рассмотрением двоичных каналов и равномерных кодов.

Метод контроля четности. Это простой способ обнаружения некоторых из возможных ошибок. Будем использовать в качестве разрешенных половину возможных кодовых комбинаций, а именно те из них, которые имеют четное число единиц (или нулей). Однократная ошибка при передаче через канал неизбежно приведет к нарушению четности, что и будет обнаружено на выходе канала. Очевидно, что трехкратные, пятикратные и вообще ошибки нечетной кратности ведут к нарушению четности и обнаруживаются этим методом, в то время как двукратные, четырехкратные и вообще ошибки четной кратности – нет.

Практическая техника кодирования методом контроля четности следующая. Из последовательности символов, подлежащих передаче через канал, выбирается очередной блок из k-1 символов, называемых информационными , и к нему добавляется k-й символ, называемый контрольным. Значение контрольного символа выбирается так, чтобы обеспечить четность получаемого кодового слова, т.е. чтобы сделать его разрешенным.

Метод контроля четности представляет значительную ценность и широко применяется в тех случаях, в которых вероятность появления более одной ошибки пренебрежимо мала (во многих случаях, если наверняка знать, что кодовое слово принято с ошибкой, имеется возможность запросить повторную передачу). В то же время избыточность кода увеличивается минимально и незначительно при больших k k/(k-1) раз).

Метод контрольных сумм. Рассмотренный выше метод контроля четности может быть применен многократно для различных комбинаций разрядов передаваемых кодовых слов – и это позволит не только обнаруживать, но и исправлять определенные ошибки

Контрольные вопросы:

1. Что понимают под линией связи?

2. Какое устройство называется декодером?

3. Какое устройство называется решающим?

4. Какое устройство называются декодирующим?

5. Что называют шагом квантования?

6. Дайте определение квантования по уровню.

7. Дайте определение квантования по времени.

8. Какое устройство называется передатчиком?

9. Что называется приемником?

10. Что понимают под сообщением?

11. Дайте определение средствам передачи связи?

12. Какое устройство называют мультиплексором передачи данных?

13. Определите понятия концетратор, повторитель.

14. Определите пропускную способность непрерывного канала без помех.

15. Определите пропускную способность непрерывного канала с помехами.

16. Опишите назначение: источника, формирователя сигналов.

17. Как воздействует сигнал в линии связи?

18. Как работает устройство распознавания?

19. Дайте определение помехоустойчивости.

20. Что понимают под эффективностью системы?

21. Перечислите методы повышения помехоустйчивости.

22. Расскажите о методе контроля четности.

23. Что собой представляет метод контрольных сумм?

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.

7. Создайте многотомный архив с размером тома, равным 300Кб, содержащий созданную в предыдущем задании подпапку именной папки.

8. Выполните отчет о проделанной работе.

Отчет должен включать:

Титульный лист;

3. Оцените степени сжатия каждого из архивов - отношение объёмов сжатого и несжатого файлов (объём файла учитывать с точностью до бита). Оформите результаты сравнения в виде электронной таблицы. Проанализируйте степени сжатия, полученные для различных типов файлов и при использовании разных форматов и различных уровней сжатия.

4. Проведите проверку целостности одного из архивов.

5. Создайте защищённый паролем самораспаковывающийся 7z архив для файлов.txt с нормальным уровнем сжатия. Объясните разницу в объёмах файлов самораспаковывающегося и соответствующего не самораспаковывающегося архивов.

6. Создайте подпапку в именной папке и распакуйте туда содержимое самораспаковывающегося архива, а также любой из файлов, содержащийся в архиве с файлами *.bmp.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме