Подпишись и читай
самые интересные
статьи первым!

Экологический срез: правило оптимума, законы Либиха и Шелфорда. Закон ограничивающего фактора примеры

Одной из полезных концепций в отношении систем является понятие бочки Либиха. И она играет важную роль в управлении личными ресурсами здоровья, позволяя действовать минималистично, искать правильные точки приложения сил и позволяет избегать лишних и опасных действий

Закон минимума Либиха

Одной из полезных концепций в отношении систем является понятие бочки Либиха. И она играет важную роль в управлении личными ресурсами здоровья, позволяя действовать минималистично, искать правильные точки приложения сил и позволяет избегать лишних и опасных действий.

Итак, в совокупном давлении среды выделяются факторы, которые сильнее всего ограничивают успешность жизни организмов . Такие факторы называют ограничивающими, или лимитирующими.

Если говорить про здоровье, то один из низких ресурсов здоровья может значительно ухудшать все здоровье в целом . И попытки исправить здоровье прокачкой других факторов не помогут.

Например, у вас синдром апноэ (Как узнать, храп или апноэ? Разница в 20 лет жизни). Так вот, консультации у психолога по поводу потери удовольствия в жизни вам не помогут. Более того, они скорее навредят и лишать вас денег. Апноэ – это ограничивающий (лимитирующий) ваше здоровье фактор.

Закон ограничивающего (лимитирующего) фактора, или Закон минимума Либиха - один из фундаментальных законов в экологии, гласящий, что наиболее значим для организма тот фактор, который более всего отклоняется от оптимального его значения . Поэтому во время прогнозирования экологических условий или выполнения экспертиз очень важно определить слабое звено в жизни организма.

Юстус фон Либих – очень талантливый ученый, один из основателей агрохимии. Ему мы обязаны обильными урожаями. Так вот, он установил, что организмам для жизни нужны вещества и элементы в определённых соотношениях . Этот закон учитывается в практике сельского хозяйства.

Немецкий химик Юстус фон Либих (1803-1873) установил, что продуктивность культурных растений, в первую очередь, зависит от того питательного вещества (минерального элемента), который представлен в почве наиболее слабо.

Например, когда растёт картофель, ему тре­буются азот, фосфор и калий в соотношении 9:4:16. Именно в таких пропорциях (с не­которыми вариациями) он и будет поглощать элементы из почвы. Если, допустим, соотношение доступных азо­та, фосфора и калия в почве 20: 4:20, то лишние азот и калий останутся в земле, а картофель вырастет ровно настолько, на­сколько ему хватит фосфора. И даже если залить поле азотны­ми удобрениями, урожай не поднимется.

Чтобы урожай увели­чился, а азот и калий поглотились, нужно внести фосфорные удобрения, т. е. тот элемент, который находится в относительном недостатке. Например, если фосфора в почве лишь 20 % от необходимой нормы, а кальция - 50 % от нормы, то ограничивающим фактором будет недостаток фосфора; необходимо в первую очередь внести в почву именно фосфорсодержащие удобрения.

Бочка Либиха

В 1840 г. он сформулировал следующий принцип: «Рост организма ограни­чивается тем ресурсом, который находится в относительном недостатке (лимитирующим ресурсом)» . Этот принцип получил на­звание закона Либиха, или «бочки Либиха» (по аналогии с бочкой, уровень воды в которой не может быть выше, чем высота самой низкой рейки).

Бочка сделана из дощечек (клёпок) не одинаковой, а разной длины. Чтобы увеличить количество воды в бочке, нужно увеличить самую короткую дощечку (клёпку) в бочке. Суть модели состоит в том, что вода при наполнении бочки начинает переливаться через наименьшую доску в бочке и длина остальных досок уже не имеет значения .

Если в минимуме будет солнце (освещенность), бесполезно увеличивать все другие условия. А на практике – от такого увеличения будет только хуже. Если полить растения на солнечном месте, они начинают бурно расти. А если поливать растения в тени, они могут и загнить. Так и в здоровье – одна из самых распространенных ошибок людей в том, что они не делают то, что нужно. Или разбивают себе лоб тем, что у них в порядке.

В среде своего обитания организмы одновременно подвергаются действию огромного числа факторов. Степень их выносливости к разным факторам никогда не является одинаковой: один и тот же вид может иметь высокую толерантность к одному фактору, но низкую – к другому или другим.

У разных людей в зависимости от их генов, воспитания и др. их ресурсы здоровья могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон относительно другого. Кто-то более устойчив к стрессу, а кто-то сильно страдает от недосыпания. Один человек хорошо устваивает жиры, а другой плохо – фруктозу.


Есть несколько следствий из этого закона Либиха:

1. Если условия по одному из факторов становятся неоптимальными, то может измениться и предел толерантности по другим факторам . Например, потребность в жидкости меняется в зависимости от температуры тела и влажности.

2. Экстремальные (стрессовые) значения одного из факторов ведут к снижению предела толерантности по другим факторам. Если вы работаете на пределе, то вам нужно больше отдыха. Сильно занимаетесь в зале – больше спите, чтобы восстановится. При стрессовых значениях фактора адаптация к нему становится все более и более «дорогостоящей».

3. Улучшив здоровье одним способом, например, питанием, часто бесполезно увеличивать его дальше одним и тем же способом. Более того, на какой-то стадии любое лекарство превращается в яд. Например, если вам помог бег, то это не значит, что пробежав марафонскую дистанцию, вы решите вообще все проблемы со своим здоровьем. В то же время есть много других ресурсов здоровья, с которыми можно работать и их прокачивать. Не сдавая достигнутых позиций, надо искать и применять все новые и новые, затем возвращаться к уже освоенным, чтобы улучшить их на новом, более высоком уровне. Не зацикливайтесь на чем-то одном.


Заключение.

Важно измерять свои ресурсы здоровья и тщательно выбирать самый главный лимитирующий фактор. Ведь иначе даже самые развитые ресурсы нашего избыточного здоровья нам не помогут. Его изменение и улучшение может дать существенный прирост хорошего самочувствия и здоровья. Но помните, что один метод не поможет решить все ваши проблемы со здоровьем .опубликовано

5.06. Закон минимума Либиха

В 1840 году немецкий агрохимик Юстус Либих, который изучал минеральное питание растений, сформулировал так называемый закон минимума . Исходная формулировка этого закона скорее афористична, чем понятна: «урожай управляется фактором, находящимся в минимуме». В то же время выражаемая этим законом мысль вполне соответствует здравому смыслу. Поясним ее на конкретном примере.

Некоему растению для развития необходимо 400 единиц N (азота), 60 единиц P (фосфора), 50 - K (калия) и 0,1 - B (бора). В «распоряжении» растения, в почве, в которой оно развивается, есть 100 ед. N, 30 ед. P, 30 ед. K и 0,08 ед. B (рис. 5.6.1). Итак, растение сталкивается с недостатком всех рассмотренных элементов питания. Недостаток какого ресурса скажется на растении в наибольшей степени?

Рис. 5.6.1. Обеспеченность каким ресурсом сильнее всего влияет на это растение?

Предположение, что сильнее всего будет влиять бор, поскольку его абсолютное количество минимально, ошибочно. Для организма важно не абсолютное значение количества ресурса, а относительное - его доля от потребности. Вы можете убедиться, что потребности растения в азоте удовлетворены на 25%, в фосфоре на 50%, в калии на 60% и в боре - на 80%. Итак, острее всего растение ощутит недостаток азота. А какой элемент питания станет самым важным для растения, если в почву добавить 200 единиц азота? Естественно, фосфор!

Обратите внимание, что растение будет по-разному реагировать на изменение доступности важных для него ресурсов. В приведенном примере (в начальных условиях) даже небольшое изменение доступности азота вызовет сильную реакцию растения. Напротив, изменение концентрации калия или бора окажет весьма слабое влияние на страдающий от недостатка азота организм. Мы можем убедиться, что предел развития организма определяет наиболее недостающий ресурс.

Фактор, небольшие изменения которого оказывают наибольшие воздействия на рассматриваемые организмы и который в силу этого определяет предел их развитию или распространению, называется лимитирующим (ограничивающим).

Рассмотрев этот пример, можно выразить закон минимума Либиха более понятным образом. Далее приведены две формулировки: относительно краткая и более развернутая.

Лимитирующим является тот ресурс, которого более всего недостает .

На рост и развитие организма наибольшее влияние оказывает тот ресурс, доля обеспеченности которым минимальна .

Как вы понимаете, определение того, какой именно из факторов является лимитирующим, чрезвычайно важно. Чтобы повлиять на организм, необходимо обеспечивать его именно лимитирующим ресурсом, а не каким-либо другим.

На рис. 5.6.2 показана типичная форма зависимости реакции организма (например, его роста, биомассы, урожая и т.п.) на обеспеченность ресурсом. В левой части графика ресурс может быть лимитирующим. Небольшие изменения его доступности оказывают сильное влияние на организм. В правой части данного графика ресурса уже достаточно, и наступает насыщение.

Рис. 5.6.2. Реакция организма на обеспеченность ресурсом. Кривая не может быть продолжена вправо, так как там рассматриваемый фактор перестает действовать как ресурс, и становится условием

Существуют ситуации, когда закон минимума «не работает». Это касается случаев возможной взаимозаменяемости некоторых ресурсов (для растений соли аммония и нитраты в большой степени взаимозаменяемы; насекомоядные растения и вовсе могут получать азот из «поедаемых» животных), а также в условиях изменяющейся среды. Так, в ручье, даже при условии недостатка одного из биогенов, водное растение может обеспечить свои потребности в нем (вода, из которой извлечен какой-то элемент питания, утекает, вместо нее притекает другая; обеспеченность данным элементом теряет важнейшее свойство ресурса - исчерпываемость).

Лимитирующие факторы. "Закон минимума" Либиха

Понятно, что потребности у разных видов в каждых конкретных условиях разные. Однако, наряду с этим, есть минимум факторов, которые необходимы для существования живого организма. При так называемом стационарном состоянии (состояние системы более или менее стабилен и не является переходным) лимитирующим будет вещество, количество которой будет наиболее близка к необходимому минимуму. Впервые вопросом минимального количества необходимого вещества занимался Ю. Либих, который в 1840 г.., Еще задолго до появления самого термина «экология», на основе изучения минерального питания растений исследовал зависимость их роста от тех или иных химических элементов или веществ. На основе своих исследований Ю. Либих вывел так называемый закон минимума: рост растений зависит не столько от наличия всех веществ, сколько от минимального количества какого-либо вещества, отсутствие которой, в свою очередь, приводит к задержке роста. Компенсация недостатка одного элемента другим не проходит. Веществом, которое находится в минимальных количествах, регулируется урожай и определяются величина и устойчивость его во времени.

Со временем к этому закону вносили определенные дополнения, но они не меняли сути самого закона (температура, время и т.д.), а значительно усложняли применения установленной закономерности. Кроме того, со времени установления Ю. Либих этой закономерности учеными было отмечено, что она при применении на практике требует уточнения. Ю. Одум для применения закона минимума предлагает пользоваться вспомогательными принципами, которых, по его мнению, должно быть два.

Первый вспомогательный принцип - ограничивающий принцип: закон Либиха можно применять без уточнений только к условиям стационарного состояния, когда приток энергии и веществ регулируется утечкой, то есть система находится в состоянии равновесия.

Ю. Одум обращает внимание на то, что система характеризуется динамикой, и поэтому введение ограничивающего принципа ограничит погрешности, возникающие при длительных исследованиях экосистем.

Второй вспомогательный принцип касается взаимодействия факторов. Было отмечено, что в определенных условиях высокая концентрация или достаточность определенного вещества, или действие вторых, лимитирующего, фактора может изменять потребность в минимальном количестве вещества.

Примером может быть замена использования моллюсками кальция стронцием, или такая закономерность: растениям, которые растут на солнце, потребность в цинке меньше, поэтому цинк перестает быть лимитирующим элементом. Второй вспомогательный при

нципа, введен Ю. Одум, указывает на нецелесообразность анализа состояния системы на основе небольшого количества элементов. Он настаивает на необходимости комплексного анализа при любом экологическом исследовании.

Взаимодействие экологических факторов. "Закон толерантности" Шелфорда

Как показали исследования Либиха, развитие живого организма обусловлен не только недостаточностью того или иного фактора, но также и их избытком. Итак, каждый организм имеет свои пределы, которые колеблются между минимумом и максимумом, то есть оптимум, который обеспечивает существование организма. У каждого вида - свои пределы. Понятие о лимитирующий роль максимума и минимума и необходимость оптимальных условий для существования вида ввел В.Шелфорда (1913). Его принцип более известен как закон толерантности;

Естественным ограничивающим фактором существования организма может быть как минимальный, так и максимальный экологическое воздействие, диапазон между которыми определяет степень выносливости (толерантности) организма к этому фактору.

Ю. Одум (1975) вводит ряд дополнений в закон Шелфорда, касающихся неоднородности воздействия экологических факторов и реакции на них живых организмов:

Организмам присущ более широкий диапазон толерантности к другу фактора, так и узкий к другому;

Организмы с большим диапазоном толерантности, как правило, широко распространенные;

Если условия существования, определенные одним экологическим фактором, меняются за пределы оптимума, то меняется и диапазон толерантности к другим экологических факторов;

В природе организмы часто попадают в условия, далекие от оптимально установленных в лабораторных экспериментах;

Период размножения, роста, как правило, является критическим, границы толерантности организма в это время гораздо уже, чем у взрослой особи.

Разъяснения, предоставленные Ю. Одум, во многом помогают при выяснении причин неоднородности полученных результатов при проведении экологических исследований. Следовательно, при любом экологическом исследовании необходимость тщательного анализа не только физико-химических условий среды или степени влияния живых организмов друг на друга, но и фаз существования организма. Наглядно влияние оптимальных условий на рост, размножение и существование определенных организмов можно продемонстрировать на темпах развития и плодоношения сельскохозяйственных культур зависимости от температурных параметров. Те из них, которые будут выращивать в оптимальных условиях, расти быстрее и созревать раньше тех, которые растут в условиях, близких к критическим.

Рис. 2.3. Рост растения по отношению к температуре (Назарук, Сенчина, 2000)

Для характеристики амплитуды толерантности видов в экологии используют ряд терминов. К названию екофактора, характеризующий влияние на живой организм, добавляются два слова: стен (гр. Стенос) - узкий и евры (гр. Еурос - широкий) стенотермным - эвритермные отношению к температуры

Стеногидричний - евригидричний - // - воды

Стенофаґний - еврифагний - // - пищи

Стеногалинные - Эвригалинные - // - cолоности

Стеноойкний - евриойкний - // - места проживания

Пример: развитие икры разных рыб происходит при различных температурах. Если икра лосося развивается при температуре от 0 до 14 ° С при оптимуме 4 ° С, то по отношению к икры лягушки она будет стенотермным, поскольку температурные пределы развития икры лягушки - от 0 ° С до 30 ° С при оптимуме 22 ° С.

Взаимодействие основных экологических факторов может зависеть от изменений, которые происходят в системе, то есть от взаимодействия абиотических и биотических факторов. Изменение солнечного излучения (свет, как известно, принадлежит к главным климатических факторов) приводит к изменению освещенности земной поверхности, что, в свою очередь, может привести к изменению фотопериодизма в жизни животных и растений. Изменение освещенности может привести к изменению температурного режима и влажности данной системы. Повышение влажности вместе с солнечным излучением может изменять температурный режим. Ярким примером взаимодействия факторов может быть лес, где ярусность и изменение определенных биотических и абиотических факторов хорошо выражены. Для Закарпатья, в частности для горной части области, характерно перевыпас скота, и, как следствие, имеется быстрое нарушение функционирования лесных участков, где ветви и листья обглоданные до определенной высоты, а дорастание отсутствует. Нередко человек выступает основным биотическим элементом экосистемы и благодаря ее деятельности появляется новый тип системы. Наглядным примером в этом плане является высокогорные луга Карпат. Долгое время считали, что высокогорные луга (горная Руна, Красная, Тяпиш и другие) - это природные образования. На ошибочность такого мнения указывает эксперимент профессора С.С. Фодора. Им было замечено, что совокупность екофакторив отдельных участков высокогорья не является характерной для субальпийских лугов. Чтобы убедиться в правильности этого предположения, им был основан эксперимент в долине Руна (1 428 м н. У. М.) По восстановлению верхней границы леса. В течение 35 лет проводились наблюдения за искусственными насаждениями хвойных деревьев. Все деревья, насаженные в данном месте, прекрасно чувствуют себя, то есть комплекс екофакторив обеспечивает им оптимальные условия существования. Вывод: подавляющее большинство долин Карпат искусственные, созданные человеком. Каждый вид или видовое группировки выбирает условия, обеспечивающие ему оптимальное существования, то есть распределяется по Градиент условий.

В основу экологической характеристики организмов положено их реакцию на воздействие факторов среды. Организм способен выжить только в диапазоне изменчивости данного фактора, который еще называют амплитудой. Как очень высокие (максимальные), так и очень низкие (малые) значения факторов среды могут быть губительными для организма. Критическое значение данного фактора, выраженного в цифрах, выше или ниже которого организм на может существовать, называют критической точкой. Между этими критическими значениями и расположена зона экологической толерантности (рис. 2.4).

В пределах зоны экологической толерантности напряженность факторов среды различна. Наряду с критическими точками расположены песимальни зоны, в которых активность организма значительно ограничена действием внешних условий. Далее расположены зоны комфорта, в которых наблюдается четкое роста экологических ре

акций организма. В центре находится зона оптимума, которая является благоприятной для функционирования организма.

Схема отношений в диапазоне экологической толерантности была предложена в 1924 г.. Немецким экологом и зоогеографы Р. Гессе, который назвал ее валентности экологических факторов. Стоит отметить, что кривая, которая представляет экологическую валентность в пределах зоны толерантности, не всегда имеет симметричный вид с оптимальной зоной, расположенной в центре. Например, для пресноводных организмов оптимум находится в нижней границе содержания соли в воде, тогда как в морских организмов - на противоположном конце изменчивости фактора в зоне толерантности, где содержание соли высокий.

В 1840 году немецкий химик Юстус Либих, выращивая растения на синтетических средах, обнаружил, что для нормального роста растения необходимо определенное число и количество химических элементов и соединений. Одни из них должны находится в среде в очень больших количествах, другие в малых, а третьи вообще в виде следов. И, что особенно важно: одни элементы не могут быть заменены другими. Среда, содержащая все элементы в изобилии, кроме одного, обеспечивает рост растения лишь до того момента, пока количество последнего не будет исчерпано. Рост ограничивается, таким образом, нехваткой единственного элемента, количество которого было ниже необходимого минимума. Этот закон, сформулированный Ю. Либихом применительно к роли химических эдафических факторов в жизни растений и названный им законом минимума, имеет, как выяснилось позже, универсальный экологический характер и играет важную роль в экологии.

Закон минимума: “Если все условия окружающей среды оказываются благоприятными для рассматриваемого организма за исключением одного, проявленного недостаточно (значение которого приближается к экологическому минимуму), то в этом случае это последнее условие, называемое лимитирующим фактором, приобретает решающее значение для жизни или смерти рассматриваемого организма, а следовательно, его присутствия или отсутствия в данной экосистеме”.

2. Закон толерантности шелфорда.

В 1913 году американский эколог В. Шелфорд обобщил закон минимума Либиха, открыв, что кроме нижнего предела интенсивности существует также и верхний предел интенсивности факторов внешней среды, определяющий верхнюю границу диапазона интенсивностей, соответствующего условиям нормальной жизнедеятельности организмов. В этой формулировке закон, названный экологическим законом толерантности, стал иметь более общий универсальный характер.

Закон толерантности (лат. tolerantia - терпение): ” Каждый организм характеризуется экологическим минимумом и экологическим максимумом интенсивности каждого фактора внешней среды, в пределах которых возможна жизнедеятельность“.

Диапазон экологического фактора между минимумом и максимумом называется диапазоном или областью толерантности.

Несмотря на большое разнообразие экологических факторов, в характере их воздействия и в ответных реакциях живых организмов можно выявить ряд общих закономерностей.

Количественный диапазон фактора, наиболее благоприятный для жизнедеятельности, называется экологическим оптимумом (лат. оptimus -

наилучший).

Значения фактора, лежащие в зоне угнетения, называются экологическим пессимумом (лат. pessimum - наихудший).

Минимальные и максимальные значения фактора, при которых наступает гибель, называются соответственно экологическим минимумом и экологическим максимумом .

Графически это иллюстрируется на рис.3-1 . Кривая на рис.3-1, как правило, не является симметричной.

Например, по такому фактору как температура, экологический максимум соответствует температурам, при которых разрушаются ферменты и белки (+50 ¸ +60 °С). Однако, отдельные организмы могут существовать и при более высоких температурах. Так, в горячих источниках Комчатки и Америки обнаружены водоросли при t > +80 °С. Нижний предел температуры, при котором возможна жизнь, около -70 °С, хотя кустарники в Якутии не вымерзают даже при такой температуре. В анабиозе (гр. anabiosis - выживание), т.е. в неактивном состоянии, некоторые организмы сохраняются при абсолютном нуле (-273 °С).

Рис. 3-1. Зависимость жизнедеятельности от интенсивности

экологического фактора.

Можно сформулировать ряд положений, дополняющих закон толерантности:

1. Организмы могут иметь широкий диапазон толерантности в отношении одного фактора внешней среды и узкий диапазон в отношении другого.

2. Организмы с широким диапазоном толерантности по большинству факторов обычно наиболее широко распространены.

3. Если условия по одному экологическому фактору не оптимальны для данного вида, то может сузиться и диапазон толерантности по другим экологическим факторам. Например, при близком к минимальному содержанию азота в почве снижается засухоустойчивость злаков.

4. В период размножения диапазон толерантности, как правило, сужается.

Организмы с узким диапазоном толерантности, или узкоприспособленные виды, способные существовать лишь при небольших отклонениях фактора от оптимального значения, носят название стенобионтных, или стеноэков (гр. stenos - узкий, тесный).

Организмы с широким диапазоном толерантности, или широкоприспособленные виды, способные выдерживать большую амплитуду колебаний экологического фактора, носят название эврибионтных, или эвриэков (гр. eurys - широкий).

Свойство организмов адаптироваться к существованию в том или ином диапазоне экологического фактора называется экологической пластичностью .

Близким к экологической пластичности является понятие экологической валентности , которое определяется как способность организма заселять разнообразные среды.

Таким образом, стенобионты экологически непластичны, т.е. маловыносливы, имеют низкую экологическую валентность; эврибионты напротив - экологически пластичны, т.е. более выносливы, и имеют высокую экологическую валентность.

Для обозначения отношения организмов к конкретному фактору к его названию прибавляют приставки: стено- и эври- . Так, по отношению к температуре бывают стенотермные (карликовая береза, банановое дерево) и эвритермные (растения умеренного пояса) виды; по отношению к солености - стеногалинные (карась, камбала) и эвригалинные (колюшка); по отношению к свету - стенофонтные (ель) и эврифонтные (шиповник) и т.д.

Стено- и эврибионтность проявляется, как правило, по отношению к одному или немногим факторам. Эврибионты обычно широко распространены. Многие простейшие эврибионты (бактерии, грибы, водоросли) являются космополитами. Стенобионты, напротив, имеют ограниченный ареал распространения. Экологическая пластичность и экологическая валентность организмов часто изменяется при переходе от одной стадии развития к другой; молодые особи, как правило, более уязвимы и более требовательны к условиям среды, чем взрослые.

Вместе с тем организмы не являются рабами физических условий среды; они приспосабливаются сами и изменяют условия среды так, чтобы ослабить влияние лимитирующего фактора. Такая компенсация лимитирующих факторов особенно эффективна на уровне сообщества, но возможна и на уровне популяции.

Виды с широким географическим распространением почти всегда образуют адаптированные к местным условиям популяции, называемые экотипами . Их оптимумы и пределы толерантности соответствуют местным условиям. Появление экотипов иногда сопровождается генетическим закреплением приобретенных свойств и признаков, т.е. к появлению рас.

Организмы, живущие длительное время в относительно стабильных условиях, утрачивают экологическую пластичность, а те, которые были подвержены значительным колебаниям фактора, становятся более выносливыми к нему, т.е. увеличивают экологическую пластичность. У животных компенсация лимитирующих факторов возможна благодаря адаптивному поведению - они избегают крайних значений лимитирующих факторов.

При приближении к экстремальным условиям возрастает энергетическая цена адаптации. Если в реку сбрасывается перегретая вода, то рыбы и другие организмы тратят почти всю энергию на преодоление этого стресса. Им не хватает энергии на добывание пищи, защиту от хищников, размножение, что приводит к вымиранию.

Итак, организмы в природе зависят от:

Закон Либиха

Определение 1

Правила минимума - это один из принципов, которые определяют роль экологического фактора в распространение и количестве организмов.

Относительные действия некоторых экологических факторов тем сильней, чем в значительной степени по сопоставлению с другими чувствуется его дефицит. Сформулированный Г.О. Либихом (1840) закон в использовании к сельскохозяйственным культурам - любым живым организмам нужны не просто органические и минеральные вещества, влажность, температура или какие-либо иные факторы, а их режим.

Реакции организмов зависят от количеств факторов. Кроме этого, живые организмы при естественных условиях подвергаются воздействиям различных экологических факторов (как биотических, так и абиотических) одновременно. Растение нуждается в значительном количестве питательных веществ и влаги (калий, азот, фосфор) и в то же время в сравнительно "незначительных" количествах такого элемента, как молибден (бор).

Любые виды животных или растений обладают отчетливой избирательностью к составу пищи: каждому растению нужен определенный минеральный элемент. Любые виды животных по-своему требовательны к качествам пищи. Для того чтобы благоприятно существовать и нормально развиваться, организмы должны обладать всем набором нужных факторов в оптимальном режиме и достаточном количестве.

Тот факт, что ограничения доз (или отсутствия) любых из необходимых растениям веществ, которые относятся как к микро, так и к макроэлементам, ведет к одинаковым результатам замедления роста, открыт и изучен немецким химиком, основоположником агрохимии Юстасом фон Либихом. Сформулированные им правила называются законом минимума Либиха: размеры урожаев определяются числом в почвах тех из элементов питания, потребности растений в котором удовлетворена ниже всего. Для этого Либих изображал дырявую бочку, выказывая то, что нижняя дырка устанавливает величину жидкости в ней.

Замечание 1

Закон минимума верен как для животных, так и для растений, охватывая и человека, которому в некоторых условиях доводится применять витамины или минеральную воду для возмещения недостатка какого-либо элемента в организме.

Уточнения и изменения, внесенные к закону Либиха

В дальнейшем в закон Либиха было внесено некоторое количество уточнений. Значимая поправка и дополнение - закон селективных действий факторов на разные функции организма: любые экологические факторы по-разному влияют на функции организмов, оптимум для одного процесса, например дыхание, не будет оптимумом для другого, например пищеварения, и наоборот. К данной группе уточнений закона Либиха относят немного непохожее на другие правило фазовых реакций " вред польза ": небольшая концентрация токсиканта воздействует на организмы в направленности увеличения его функций, тогда как более значительная концентрация угнетает или даже приводит к смерти организма. Данные токсикологические закономерности справедливы для большого количества (так, знаменито лечебное свойство небольших концентраций змеиного яда), но не для всех ядовитых веществ.

Замечание 2

Закон Либиха – это правило минимума, является одним из принципов, который определяет роль экологических факторов в развитии и распространении организмов. Сформулирован Г.О. Либихом (1840) для сельскохозяйственных культур.

Согласно закону Либиха «Веществом, которое находится в минимуме, управляет урожай и устанавливается размер и стабильность последнего во времени» При этом имелось в виду лимитирующее действие жизненно важных веществ, присутствующих в почве в небольших и непостоянных количествах. в дальнейшем это обобщение стало истолковываться шире с учётом других факторов среды (например, температуры, времени и др.).



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме