Подпишись и читай
самые интересные
статьи первым!

Дисперсия среднего значения формула. Пример нахождения дисперсии

Наряду с изучением вариации признака по всей по всей совокупности в целом часто бывает необходимо проследить количественные изменения признака по группам, на которые разделяется совокупность, а также и между группами. Такое изучение вариации достигается посредством вычисления и анализа различных видов дисперсии.
Выделяют дисперсию общую, межгрупповую и внутригрупповую .
Общая дисперсия σ 2 измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию, .

Межгрупповая дисперсия (δ) характеризует систематическую вариацию, т.е. различия в величине изучаемого признака, возникающие под влиянием признака-фактора, положенного в основание группировки. Она рассчитывается по формуле:
.

Внутригрупповая дисперсия (σ) отражает случайную вариацию, т.е. часть вариации, происходящую под влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она вычисляется по формуле:
.

Средняя из внутригрупповых дисперсий : .

Существует закон, связывающий 3 вида дисперсии. Общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсии: .
Данное соотношение называют правилом сложения дисперсий .

В анализе широко используется показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии. Он носит название эмпирического коэффициента детерминации (η 2): .
Корень квадратный из эмпирического коэффициента детерминации носит название эмпирического корреляционного отношения (η) :
.
Оно характеризует влияние признака, положенного в основание группировки, на вариацию результативного признака. Эмпирическое корреляционное отношение изменяется в пределах от 0 до 1.
Покажем его практическое использование на следующем примере (табл. 1).

Пример №1 . Таблица 1 - Производительность труда двух групп рабочих одного из цехов НПО «Циклон»

Рассчитаем общую и групповые средние и дисперсии:




Исходные данные для вычисления средней из внутригрупповых и межгрупповой дисперсии представлены в табл. 2.
Таблица 2
Расчет и δ 2 по двум группам рабочих.


Группы рабочих
Численность рабочих, чел. Средняя, дет./смен. Дисперсия

Прошедшие техническое обучение

5 95 42,0

Не прошедшие техническое обучение

5 81 231,2

Все рабочие

10 88 185,6
Рассчитаем показатели. Средняя из внутригрупповых дисперсий:
.
Межгрупповая дисперсия

Общая дисперсия:
Таким образом, эмпирическое корреляционное соотношение: .

Наряду с вариацией количественных признаков может наблюдаться и вариация качественных признаков. Такое изучение вариации достигается посредством вычисления следующих видов дисперсий:

Внутригрупповая дисперсия доли определяется по формуле

где n i – численность единиц в отдельных группах.
Доля изучаемого признака во всей совокупности, которая определяется по формуле:
Три вида дисперсии связаны между собой следующим образом:
.

Это соотношение дисперсий называется теоремой сложения дисперсий доли признака.

Однако только этой характеристики ещё не достаточно для исследования случайной величины. Представим двух стрелков, которые стреляют по мишени. Один стреляет метко и попадает близко к центру, а другой… просто развлекается и даже не целится. Но что забавно, его средний результат будет точно таким же, как и у первого стрелка! Эту ситуацию условно иллюстрируют следующие случайные величины:

«Снайперское» математическое ожидание равно , однако и у «интересной личности»: – оно тоже нулевое!

Таким образом, возникает потребность количественно оценить, насколько далеко рассеяны пули (значения случайной величины) относительно центра мишени (математического ожидания). Ну а рассеяние с латыни переводится не иначе, как дисперсия .

Посмотрим, как определяется эта числовая характеристика на одном из примеров 1-й части урока:

Там мы нашли неутешительное математическое ожидание этой игры, и сейчас нам предстоит вычислить её дисперсию, которая обозначается через .

Выясним, насколько далеко «разбросаны» выигрыши/проигрыши относительно среднего значения. Очевидно, что для этого нужно вычислить разности между значениями случайной величины и её математическим ожиданием :

–5 – (–0,5) = –4,5
2,5 – (–0,5) = 3
10 – (–0,5) = 10,5

Теперь вроде бы нужно просуммировать результаты, но этот путь не годится – по той причине, что колебания влево будут взаимоуничтожаться с колебаниями вправо. Так, например, у стрелка-«любителя» (пример выше) разности составят , и при сложении дадут ноль, поэтому никакой оценки рассеяния его стрельбы мы не получим.

Чтобы обойти эту неприятность можно рассмотреть модули разностей, но по техническим причинам прижился подход, когда их возводят в квадрат. Решение удобнее оформить таблицей:

И здесь напрашивается вычислить средневзвешенное значение квадратов отклонений. А это ЧТО такое? Это их математическое ожидание , которое и является мерилом рассеяния:

определение дисперсии. Из определения сразу понятно, что дисперсия не может быть отрицательной – возьмите на заметку для практики!

Вспоминаем, как находить матожидание. Перемножаем квадраты разностей на соответствующие вероятности (продолжение таблицы) :
– образно говоря, это «сила тяги»,
и суммируем результаты:

Не кажется ли вам, что на фоне выигрышей результат получился великоватым? Всё верно – мы возводили в квадрат, и чтобы вернуться в размерность нашей игры, нужно извлечь квадратный корень. Данная величина называется средним квадратическим отклонением и обозначается греческой буквой «сигма»:

Иногда это значение называют стандартным отклонением .

В чём его смысл? Если мы отклонимся от математического ожидания влево и вправо на среднее квадратическое отклонение:

– то на этом интервале будут «сконцентрированы» наиболее вероятные значения случайной величины. Что мы, собственно, и наблюдаем:

Однако так сложилось, что при анализе рассеяния почти всегда оперируют понятием дисперсии. Давайте разберёмся, что она означает применительно к играм. Если в случае со стрелками речь идёт о «кучности» попаданий относительно центра мишени, то здесь дисперсия характеризует две вещи:

Во-первых, очевидно то, что при увеличении ставок, дисперсия тоже возрастает. Так, например, если мы увеличим в 10 раз, то математическое ожидание увеличится в 10 раз, а дисперсия – в 100 раз (коль скоро, это квадратичная величина) . Но, заметьте, что сами-то правила игры не изменились! Изменились лишь ставки, грубо говоря, раньше мы ставили 10 рублей, теперь 100.

Второй, более интересный момент состоит в том, что дисперсия характеризует стиль игры. Мысленно зафиксируем игровые ставки на каком-то определённом уровне , и посмотрим, что здесь к чему:

Игра с низкой дисперсией – это осторожная игра. Игрок склонен выбирать самые надёжные схемы, где за 1 раз он не проигрывает/выигрывает слишком много. Например, система «красное/чёрное» в рулетке (см. Пример 4 статьи Случайные величины ) .

Игра с высокой дисперсией. Её часто называют дисперсионной игрой. Это авантюрный или агрессивный стиль игры, где игрок выбирает «адреналиновые» схемы. Вспомним хотя бы «Мартингейл» , в котором на кону оказываются суммы, на порядки превосходящие «тихую» игру предыдущего пункта.

Показательна ситуация в покере: здесь есть так называемые тайтовые игроки, которые склонны осторожничать и «трястись» над своими игровыми средствами (банкроллом) . Неудивительно, что их банкролл не подвергается значительным колебаниям (низкая дисперсия). Наоборот, если у игрока высокая дисперсия, то это агрессор. Он часто рискует, делает крупные ставки и может, как сорвать огромный банк, так и програться в пух и прах.

То же самое происходит на Форексе, и так далее – примеров масса.

Причём, во всех случаях не важно – на копейки ли идёт игра или на тысячи долларов. На любом уровне есть свои низко- и высокодисперсионные игроки. Ну а за средний выигрыш, как мы помним, «отвечает» математическое ожидание .

Наверное, вы заметили, что нахождение дисперсии – есть процесс длительный и кропотливый. Но математика щедрА:

Формула для нахождения дисперсии

Данная формула выводится непосредственно из определения дисперсии, и мы незамедлительно пускаем её в оборот. Скопирую сверху табличку с нашей игрой:

и найденное матожидание .

Вычислим дисперсию вторым способом. Сначала найдём математическое ожидание – квадрата случайной величины . По определению математического ожидания :

В данном случае:

Таким образом, по формуле:

Как говорится, почувствуйте разницу. И на практике, конечно, лучше применять формулу (если иного не требует условие).

Осваиваем технику решения и оформления:

Пример 6

Найти её математическое ожидание, дисперсию и среднее квадратическое отклонение.

Эта задача встречается повсеместно, и, как правило, идёт без содержательного смысла.
Можете представлять себе несколько лампочек с числами, которые загораются в дурдоме с определёнными вероятностями:)

Решение : Основные вычисления удобно свести в таблицу. Сначала в верхние две строки записываем исходные данные. Затем рассчитываем произведения , затем и, наконец, суммы в правом столбце:

Собственно, почти всё готово. В третьей строке нарисовалось готовенькое математическое ожидание: .

Дисперсию вычислим по формуле:

И, наконец, среднее квадратическое отклонение:
– лично я обычно округляю до 2 знаков после запятой.

Все вычисления можно провести на калькуляторе, а ещё лучше – в Экселе:

вот здесь уже трудно ошибиться:)

Ответ :

Желающие могут ещё более упростить свою жизнь и воспользоваться моим калькулятором (демо) , который не только моментально решит данную задачу, но и построит тематические графики (скоро дойдём) . Программу можно скачать в библиотеке – если вы загрузили хотя бы один учебный материал, либо получить другим способом . Спасибо за поддержку проекта!

Пара заданий для самостоятельного решения:

Пример 7

Вычислить дисперсию случайной величины предыдущего примера по определению.

И аналогичный пример:

Пример 8

Дискретная случайная величина задана своим законом распределения:

Да, значения случайной величины бывают достаточно большими (пример из реальной работы) , и здесь по возможности используйте Эксель. Как, кстати, и в Примере 7 – это быстрее, надёжнее и приятнее.

Решения и ответы внизу страницы.

В заключение 2-й части урока разберём ещё одну типовую задачу, можно даже сказать, небольшой ребус:

Пример 9

Дискретная случайная величина может принимать только два значения: и , причём . Известна вероятность , математическое ожидание и дисперсия .

Решение : начнём с неизвестной вероятности. Так как случайная величина может принять только два значения, то сумма вероятностей соответствующих событий:

и поскольку , то .

Осталось найти …, легко сказать:) Но да ладно, понеслось. По определению математического ожидания:
– подставляем известные величины:

– и больше из этого уравнения ничего не выжать, разве что можно переписать его в привычном направлении:

или:

О дальнейших действиях, думаю, вы догадываетесь. Составим и решим систему:

Десятичные дроби – это, конечно, полное безобразие; умножаем оба уравнения на 10:

и делим на 2:

Вот так-то лучше. Из 1-го уравнения выражаем:
(это более простой путь) – подставляем во 2-е уравнение:


Возводим в квадрат и проводим упрощения:

Умножаем на :

В результате получено квадратное уравнение , находим его дискриминант:
– отлично!

и у нас получается два решения:

1) если , то ;

2) если , то .

Условию удовлетворяет первая пара значений. С высокой вероятностью всё правильно, но, тем не менее, запишем закон распределения:

и выполним проверку, а именно, найдём матожидание:

Дисперсия в статистике находится как индивидуальных значений признака в квадрате от . В зависимости от исходных данных она определяется по формулам простой и взвешенной дисперсий:

1. (для несгруппированных данных) вычисляется по формуле:

2. Взвешенная дисперсия (для вариационного ряда):

где n — частота (повторяемость фактора Х)

Пример нахождения дисперсии

На данной странице описан стандартный пример нахождения дисперсии, также Вы можете посмотреть другие задачи на её нахождение

Пример 1. Имеются следующие данные по группе из 20 студентов заочного отделения. Нужно построить интервальный ряд распределения признака, рассчитать среднее значение признака и изучить его дисперсию

Построим интервальную группировку. Определим размах интервала по формуле:

где X max– максимальное значение группировочного признака;
X min–минимальное значение группировочного признака;
n – количество интервалов:

Принимаем n=5. Шаг равен: h = (192 — 159)/ 5 = 6,6

Составим интервальную группировку

Для дальнейших расчетов построим вспомогательную таблицу:

X’i– середина интервала. (например середина интервала 159 – 165,6 = 162,3)

Среднюю величину роста студентов определим по формуле средней арифметической взвешенной:

Определим дисперсию по формуле:

Формулу дисперсии можно преобразовать так:

Из этой формулы следует, что дисперсия равна разности средней из квадратов вариантов и квадрата и средней.

Дисперсия в вариационных рядах с равными интервалами по способу моментов может быть рассчитана следующим способом при использовании второго свойства дисперсии (разделив все варианты на величину интервала). Определении дисперсии , вычисленной по способу моментов, по следующей формуле менее трудоемок:

где i - величина интервала;
А - условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой;
m1 — квадрат момента первого порядка;
m2 — момент второго порядка

(если в статистической совокупности признак изменяется так, что имеются только два взаимно исключающих друг друга варианта, то такая изменчивость называется альтернативной) может быть вычислена по формуле:

Подставляя в данную формулу дисперсии q =1- р, получаем:

Виды дисперсии

Общая дисперсия измеряет вариацию признака по всей совокупности в целом под влиянием всех факторов, обуславливающих эту вариацию. Она равняется среднему квадрату отклонений отдельных значений признака х от общего среднего значения х и может быть определена как простая дисперсия или взвешенная дисперсия.

характеризует случайную вариацию, т.е. часть вариации, которая обусловлена влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Такая дисперсия равна среднему квадрату отклонений отдельных значений признака внутри группы X от средней арифметической группы и может быть вычислена как простая дисперсия или как взвешенная дисперсия.

Таким образом, внутригрупповая дисперсия измеряет вариацию признака внутри группы и определяется по формуле:

где хi - групповая средняя;
ni - число единиц в группе.

Например, внутригрупповые дисперсии, которые надо определить в задаче изучения влияния квалификации рабочих на уровень производительности труда в цехе показывают вариации выработки в каждой группе, вызванные всеми возможными факторами (техническое состояние оборудования, обеспеченность инструментами и материалами, возраст рабочих, интенсивность труда и т.д.), кроме отличий в квалификационном разряде (внутри группы все рабочие имеют одну и ту же квалификацию).

Средняя из внутри групповых дисперсий отражает случайную , т. е. ту часть вариации, которая происходила под влиянием всех прочих факторов, за исключением фактора группировки. Она рассчитывается по формуле:

Характеризует систематическую вариацию результативного признака, которая обусловлена влиянием признака-фактора, положенного в основание группировки. Она равняется среднему квадрату отклонений групповых средних от общей средней. Межгрупповая дисперсия рассчитывается по формуле:

Правило сложения дисперсии в статистике

Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповых дисперсий:

Смысл этого правила заключается в том, что общая дисперсия, которая возникает под влиянием всех факторов, равняется сумме дисперсий, которые возникают под влиянием всех прочих факторов, и дисперсии, возникающей за счет фактора группировки.

Пользуясь формулой сложения дисперсий, можно определить по двум известным дисперсиям третью неизвестную, а также судить о силе влияния группировочного признака.

Свойства дисперсии

1. Если все значения признака уменьшить (увеличить) на одну и ту же постоянную величину, то дисперсия от этого не изменится.
2. Если все значения признака уменьшить (увеличить) в одно и то же число раз n, то дисперсия соответственно уменьшится (увеличить) в n^2 раз.

По данным выборочного обследования произведена группировка вкладчиков по размеру вклада в Сбербанке города:

Определите:

1) размах вариации;

2) средний размер вклада;

3) среднее линейное отклонение;

4) дисперсию;

5) среднее квадратическое отклонение;

6) коэффициент вариации вкладов.

Решение:

Данный ряд распределения содержит открытые интервалы. В таких рядах условно принимается величина интервала первой группы равна величине интервала последующей, а величина интервала последней группы равна величине интервала предыдущей.

Величина интервала второй группы равна 200, следовательно, и величина первой группы также равна 200. Величина интервала предпоследней группы равна 200, значит и последний интервал будет иметь величину, равную 200.

1) Определим размах вариации как разность между наибольшим и наименьшим значением признака:

Размах вариации размера вклада равен 1000 рублей.

2) Средний размер вклада определим по формуле средней арифметической взвешенной.

Предварительно определим дискретную величину признака в каждом интервале. Для этого по формуле средней арифметической простой найдём середины интервалов.

Среднее значение первого интервала будет равно:

второго - 500 и т. д.

Занесём результаты вычислений в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х xf
200-400 32 300 9600
400-600 56 500 28000
600-800 120 700 84000
800-1000 104 900 93600
1000-1200 88 1100 96800
Итого 400 - 312000

Средний размер вклада в Сбербанке города будет равен 780 рублей:

3) Среднее линейное отклонение есть средняя арифметическая из абсолютных отклонений отдельных значений признака от общей средней:

Порядок расчёта среднего линейонго отклонения в интервальном ряду распределения следующий:

1. Вычисляется средняя арифметическая взвешенная, как показано в п. 2).

2. Определяются абсолютные отклонения вариант от средней:

3. Полученные отклонения умножаются на частоты:

4. Находится сумма взвешенных отклонений без учёта знака:

5. Сумма взвешенных отклонений делится на сумму частот:

Удобно пользоваться таблицей расчётных данных:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 480 15360
400-600 56 500 -280 280 15680
600-800 120 700 -80 80 9600
800-1000 104 900 120 120 12480
1000-1200 88 1100 320 320 28160
Итого 400 - - - 81280

Среднее линейное отклонение размера вклада клиентов Сбербанка составляет 203,2 рубля.

4) Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от средней арифметической.

Расчёт дисперсии в интервальных рядах распределения производится по формуле:

Порядок расчёта дисперсии в этом случае следующий:

1. Определяют среднюю арифметическую взвешенную, как показано в п. 2).

2. Находят отклонения вариант от средней:

3. Возводят в квадрат отклонения каждой варианты от средней:

4. Умножают квадраты отклонений на веса (частоты):

5. Суммируют полученные произведения:

6. Полученная сумма делится на сумму весов (частот):

Расчёты оформим в таблицу:

Размер вклада, руб. Число вкладчиков, f Середина интервала, х
200-400 32 300 -480 230400 7372800
400-600 56 500 -280 78400 4390400
600-800 120 700 -80 6400 768000
800-1000 104 900 120 14400 1497600
1000-1200 88 1100 320 102400 9011200
Итого 400 - - - 23040000

Виды дисперсий:

Общая дисперсия характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле

где - общая средняя арифметическая всей исследуемой совокупности.

Средняя внутригрупповая дисперсия свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам (), затем рассчитывается средняя внутригрупповая дисперсия:

где n i - число единиц в группе

Межгрупповая дисперсия (дисперсия групповых средних) характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки.

где - средняя величина по отдельной группе.

Все три вида дисперсии связаны между собой: общая дисперсия равна сумме средней внутригрупповой дисперсии и межгрупповой дисперсии:

Свойства:

25 Относительные показатели вариации

Коэффициент осцилляции

Относительное линейное отклонение

Коэффициент вариации

Коэф. Осц. о тражает относительную колеблемость крайних значений признака вокруг средней. Отн. лин. откл . характеризует долю усредненного значения признака абсолютных отклонений от средней величины. Коэф. Вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.

В статистике совокупности, имеющие коэффициент вариации больше 30–35 %, принято считать неоднородными.

    Закономерность рядов распределения. Моменты распределения. Показатели формы распределения

В вариационных рядах существует связь между частотами и значениями варьирующего признака: с увеличением признака величина частоты сначала возрастает до определённой границы, а потом уменьшается. Такие изменения называются закономерностями распределения.

Форму распределения изучают с помощью показателей асимметрии и эксцесса. При исчислении указанных показателей используют моменты распределения.

Моментом k-го порядка называют среднюю из k-х степеней отклонений вариантов значений признака от некоторой постоянной величины. Порядок момента определяется величиной k. При анализе вариационных рядов ограничиваются расчетом моментов первых четырех порядков. При исчислении моментов в качестве весов могут быть использованы частоты или частости. В зависимости от выбора постоянной величины различают начальные, условные и центральные моменты.

Показатели формы распределения:

Асимметрия (As) показатель характеризующий степень асимметричности распределения.

Следовательно, при (левосторонней) отрицательной асимметрии . При (правосторонней) положительной асимметрии.

Для расчета асимметрии можно использовать центральные моменты. Тогда:

,

где μ 3 – центральный момент третьего порядка.

- эксцесс (Е к ) характеризует крутизну графика функции в сравнении с с нормальным распределением при той же силе вариации:

,

где μ 4 – центральный момент 4-ого порядка.

    Закон нормального распределения

Для нормального распределения (распределения Гаусса) функция распределения имеет следующий вид:

Матожидание- стандартное отклонение

Нормальное распределение симметрично и для него характерно следующее соотношение: Хср=Ме=Мо

Эксцесс нормального распределения равен 3, а коэффициент асимметрии 0.

Кривая нормального распределения представляет собой полигон(симметричная колокобразная прямая)

    Виды дисперсий. Правило сложения дисперсий. Сущность эмпирического коэффициента детерминации.

Если исходная совокупность разделена на группы по какому-то существенному признаку, то вычисляют следующие виды дисперсий:

    Общая дисперсия исходной совокупности:

где - общая средняя величина исходной совокупности;f– частоты исходной совокупности. Общая дисперсия характеризует отклонение индивидуальных значений признака от общей средней величины исходной совокупности.

    Внутригрупповые дисперсии:

где j- номер группы;- средняя величина в каждойj-ой группе;- частотыj-ой группы. Внутригрупповые дисперсии характеризуют отклонение индивидуального значения признака в каждой группе от групповой средней величины. Из всех внутригрупповых дисперсий вычисляют среднюю по формуле:, где- численность единиц в каждойj-ой группе.

    Межгрупповая дисперсия:

Межгрупповая дисперсия характеризует отклонение групповых средних величин от общей средней величины исходной совокупности.

Правило сложения дисперсий заключается в том, что общая дисперсия исходной совокупности должна быть равна сумме межгрупповой и средней из внутригрупповых дисперсий:

Эмпирический коэффициент детерминации показывает долю вариации изучаемого признака, обусловленную вариацией группировочного признака, и рассчитывается по формуле:

    Способ отсчета от условного нуля (способ моментов) для расчета средней величины и дисперсии

Расчет дисперсии способом моментов основан на использовании формулы и 3 и 4 свойств дисперсии.

(3.Если все значения признака (варианты) увеличить (уменьшить) на какое-то постоянное число А, то дисперсия новой совокупности не изменится.

4.Если все значения признака (варианты) увеличить (умножить) в К раз, где К – постоянное число, то дисперсия новой совокупности увеличится (уменьшится) в К 2 раз.)

Получим формулу вычисления дисперсии в вариационных рядах с равными интервалами способом моментов:

А- условный ноль, равный варианте с максимальной частотой (середина интервала с максимальной частотой)

Расчет средней величины способом моментов также основан на использовании свойств средней.

    Понятие о выборочном наблюдении. Этапы исследования экономических явлений выборочным методом

Выборочным называют наблюдение, при котором обследованию и изучению подвергаются не все единицы исходной совокупности, а только часть единиц, при этом результат обследования части совокупности распространяется на всю исходную совокупность. Совокупность, из которой производится отбор единиц для дальнейшего обследования и изучения называется генеральной и все показатели, характеризующие эту совокупность, называютсягенеральными .

Возможные пределы отклонений выборочной средней величины от генеральной средней величины называют ошибкой выборки .

Совокупность отобранных единиц называется выборочной и все показатели, характеризующие эту совокупность, называютсявыборочными .

Выборочное исследование включает следующие этапы:

Характеристика объекта исследования (массовые экономические явления). Если генеральная совокупность небольшая, то выборку проводить не рекомендуется, необходимо сплошное исследование;

Расчет объема выборки. Важно определить оптимальный объем, который позволит при наименьших затратах получить ошибку выборки в пределах допустимой;

Проведение отбора единиц наблюдения с учетом требований случайности, пропорциональности.

Доказательство репрезентативности, основанное на оценке ошибки выборки. Для случайной выборки ошибка рассчитывается с использованием формул. Для целевой выборки репрезентативность оценивается с помощью качественных методов (сравнения, эксперимента);

Анализ выборочной совокупности. Если сформированная выборка отвечает требованиям репрезентативности, то проводится ее анализ с использованием аналитических показателей (средних, относительных и проч.)



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме