Подпишись и читай
самые интересные
статьи первым!

Что значит "красное смещение". Феномен красного смещения

Большинство квазаров интенсивно излучают радиоволны . Когда астрономы точно определили положения этих радиоисточников на фотографиях, полученных в видимом свете, они обнаружили звездообразные объекты.

Чтобы установить природу странных небесных тел, сфотографировали их спектр. И увидели совсем неожиданное! Эти “звезды” имели спектр, резко отличающийся от всех других звезд. Спектры были совершенно незнакомыми. У большинства квазаров они не содержали не только хорошо известных и характерных для обычных звезд линий водорода, в них вообще с первого взгляда нельзя было обнаружить ни одной линии даже какого-либо другого химического элемента. Работавший в США молодой голландский астрофизик М.Шмидт выяснил, что линии в спектрах странных источников неузнаваемы лишь потому, что они сильно смещены в красную область спектра, а на самом деле это линии хорошо известных химических элементов (прежде всего водорода).

Причина смещения спектральных линий квазаров была предметом больших научных дискуссий, в итоге которых подавляющее большинство астрофизиков пришли к выводу, что красное смещение спектральных линий связано с общим расширением Метагалактики.

В спектре объектов 3С273 и 3С48 красное смещение достигает небывалой величины. Смещение линий к красному концу спектра может быть признаком удаления источника от наблюдателя. Чем быстрее удаляется источник света, тем больше красное смещение в его спектре.

Характерно, что в спектре практически всех галактик (а для далеких галактик это правило не имеет ни одного исключения) линии в спектре всегда смещены к его красному концу. Грубо говоря, красное смещение пропорционально расстоянию до галактики. Именно в этом выражается ЗАКОН КРАСНОГО СМЕЩЕНИЯ , объясняемый ныне как результат стремительного расширения всей наблюдаемой совокупности галактик.

Скорость удаления

У наиболее далеких из известных до сих галактик красное смещение весьма велико. Соответствующие ему скорости удаления измеряются десятками тысяч километров в секунду. Но у объекта 3С48 красное смещение превзошло все рекорды. Получилось, что он уносится от Земли со скоростью только примерно вдвое меньше скорости света! Если считать, что этот объект подчиняется общему закону красного смещения, легко вычислить, что расстояние от Земли до объекта 3С48 равно 3,78 млрд. световых лет! К примеру, за 8 1/3 минут луч света долетит до Солнца, за 4 года - до ближайшей звезды. А здесь почти 4 млрд.лет непрерывного сверхстремительного полета - время, сравнимое с продолжительностью жизни нашей планеты.

Для объекта 3С196 расстояние, также найденное по красному смещению, получилось равным 12 млрд. световых лет, т.е. мы уловили луч света, который был послан к нам еще тогда, когда ни Земли, ни Солнца не существовало! Объект 3С196 очень быстрый - его скорость удаления по лучу зрения достигает 200 тысяч километров в секунду.

Возраст квазаров

По современным оценкам, возрасты квазаров измеряются миллиардами лет. За это время каждый квазар излучает огромную энергию. Нам неизвестны процессы, которые могли бы служить причиной такого энерговыделения. Если предположить, что перед нами сверхзвезда, в которой “сгорает” водород, то ее масса должна в миллиард раз превышать массу Солнца. Между тем современная теоретическая астрофизика доказывает, что при массе более чем в 100 раз превышающей солнечную, звезда неизбежно теряет устойчивость и распадается на ряд фрагментов.

Из известных ныне квазаров, общее число которых более 10 000, самый близкий удален на 260 000 000 световых лет, самый далекий - на 15 млрд. световых лет. Квазары, пожалуй, наиболее старые из объектов, наблюдаемых нами, т.к. с расстояния в миллиарды световых лет обычные галактики не видны ни в один телескоп. Однако это “живое прошлое” пока что совершенно непонятно нам. Природа квазаров до сих пор полностью не выяснена.

красное смещение

увеличение длин волн линий в спектре источника излучения (смещение линий в сторону красной части спектра) по сравнению с линиями эталонных спектров. Красное смещение возникает, когда расстояние между источником излучения и его приемником (наблюдателем) увеличивается (см. Доплера эффект) или когда источник находится в сильном гравитационном поле (гравитационное красное смещение). В астрономии наибольшее красное смещение наблюдается в спектрах далеких внегалактических объектов (галактик и квазаров) и рассматривается как следствие космологического расширения Вселенной.

Красное смещение

понижение частот электромагнитного излучения, одно из проявлений Доплера эффекта. Название «К. с.» связано с тем, что в видимой части спектра в результате этого явления линии оказываются смещенными к его красному концу; К. с. наблюдается и в излучениях любых др. частот, например в радиодиапазоне. Противоположный эффект, связанный с повышением частот, называется синим (или фиолетовым) смещением. Чаще всего термин «К. с.» используется для обозначения двух явлений ≈ космологическое К. с. и гравитационное К. с.

Космологическим (метагалактическим) К. с. называют наблюдаемое для всех далёких источников (галактик, квазаров) понижение частот излучения, свидетельствующее об удалении этих источников друг от друга и, в частности, от нашей Галактики, т. е. о нестационарности (расширении) Метагалактики. К. с. для галактик было обнаружено американским астрономом В. Слайфером в 1912≈14; в 1929 Э. Хаббл открыл, что К. с. для далёких галактик больше, чем для близких, и возрастает приблизительно пропорционально расстоянию (закон К. с., или закон Хаббла). Предлагались различные объяснения наблюдаемого смещения спектральных линий. Такова, например, гипотеза о распаде световых квантов за время, составляющее миллионы и миллиарды лет, в течение которого свет далёких источников достигает земного наблюдателя; согласно этой гипотезе, при распаде уменьшается энергия, с чем связано и изменение частоты излучения. Однако эта гипотеза не подтверждается наблюдениями. В частности, К. с. в разных участках спектра одного и того же источника, в рамках гипотезы, должно быть различным. Между тем все данные наблюдений свидетельствуют о том, что К. с. не зависит от частоты, относительное изменение частоты z = (n0≈ n)/n0 совершенно одинаково для всех частот излучения не только в оптическом, но и в радиодиапазоне данного источника (n0 ≈ частота некоторой линии спектра источника, n ≈ частота той же линии, регистрируемая приёмником; n

В относительности теории доплеровское К. с. рассматривается как результат замедления течения времени в движущейся системе отсчёта (эффект специальной теории относительности). Если скорость системы источника относительно системы приёмника составляет u (в случае метагалактич. К. с. u ≈ это лучевая скорость), то

═(c ≈ скорость света в вакууме) и по наблюдаемому К. с. легко определить лучевую скорость источника: . Из этого уравнения следует, что при z ╝ ¥ скорость v приближается к скорости света, оставаясь всегда меньше её (v < с). При скорости v, намного меньшей скорости света (u << с), формула упрощается: u » cz. Закон Хаббла в этом случае записывается в форме u = cz = Hr (r ≈ расстояние, Н ≈ постоянная Хаббла). Для определения расстояний до внегалактических объектов по этой формуле нужно знать численное значение постоянной Хаббла Н. Знание этой постоянной очень важно и для космологии: с ней связан т. н. возраст Вселенной.

Вплоть до 50-х гг. 20 в. внегалактические расстояния (измерение которых связано, естественно, с большими трудностями) сильно занижались, в связи с чем значение Н, определённое по этим расстояниям, получилось сильно завышенным. В начале 70-х гг. 20 в. для постоянной Хаббла принято значение Н = 53 ╠ 5 (км/сек)/Мгпс, обратная величина Т = 1/Н = 18 млрд. лет.

Фотографирование спектров слабых (далёких) источников для измерения К. с., даже при использовании наиболее крупных инструментов и чувствительных фотопластинок, требует благоприятных условий наблюдений и длительных экспозиций. Для галактик уверенно измеряются смещения z » 0,2, соответствующие скорости u » 60 000 км/сек и расстоянию свыше 1 млрд. пс. При таких скоростях и расстояниях закон Хаббла применим в простейшей форме (погрешность порядка 10%, т. е. такая же, как погрешность определения Н). Квазары в среднем в сто раз ярче галактик и, следовательно, могут наблюдаться на расстояниях в десять раз больших (если пространство евклидово). Для квазаров действительно регистрируются z » 2 и больше. При смещениях z = 2 скорость u » 0,8×с = 240 000 км/сек. При таких скоростях уже сказываются специфические космологические эффекты ≈ нестационарность и кривизна пространства ≈ времени; в частности, становится неприменимым понятие единого однозначного расстояния (одно из расстояний ≈ расстояние по К. с. ≈ составляет здесь, очевидно, r= ulH = 4,5 млрд. пс). К. с. свидетельствует о расширении всей доступной наблюдениям части Вселенной; это явление обычно называется расширением (астрономической) Вселенной.

Гравитационное К. с. является следствием замедления темпа времени и обусловлено гравитационным полем (эффект общей теории относительности). Это явление (называется также эффектом Эйнштейна, обобщённым эффектом Доплера) было предсказано А. Эйнштейном в 1911, наблюдалось начиная с 1919 сначала в излучении Солнца, а затем и некоторых др. звёзд. Гравитационное К. с. принято характеризовать условной скоростью u, вычисляемой формально по тем же формулам, что и в случаях космологического К. с. Значения условной скорости: для Солнца u = 0,6 км/сек, для плотной звезды Сириус В u = 20 км/сек. В 1959 впервые удалось измерить К. с., обусловленное гравитационным полем Земли, которое очень мало: u = 7,5×10-5см/ сек (см. Мёссбауэра эффект). В некоторых случаях (например, при коллапсе гравитационном) должно наблюдаться К. с. обоих типов (в виде суммарного эффекта).

Лит.: Ландау Л. Д., Лифшиц Е. М., Теория поля, 4 изд., М., 1962, ╖ 89, 107; Наблюдательные основы космологии, пер. с англ., М., 1965.

Г. И. Наан.

Википедия

Красное смещение

Красное смещение - сдвиг спектральных линий химических элементов в красную сторону. Это явление может быть выражением эффекта Доплера или гравитационного красного смещения, или их комбинацией. Сдвиг спектральных линий в фиолетовую сторону называется синим смещением. Впервые сдвиг спектральных линий в спектрах звёзд описал французский физик Ипполит Физо в 1848 году, и предложил для объяснения сдвига эффект Доплера, вызванный лучевой скоростью звезды.

Звезды находятся далеко и кажутся просто светящимися точками в небе. Для простого наблюдателя практически неразличимы ни форма, ни размеры звезд. Для подавляющего большинства звезд существует только одно характерное свойство, которое можно наблюдать - это цвет идущего от них света.

В XII в. Исаак Ньютон открыл, что, проходя через трехгранный кусок стекла, называемый призмой, солнечный свет разлагается, как в радуге, на цветовые компоненты (спектры).

Используя современную оптику можно аналогичным образом разложить в спектр свет, испускаемый звездой или галактикой. Разные звезды имеют разные спектры, но относительная яркость разных цветов всегда в точности такая же, как в свете, который излучает какой-нибудь раскаленный докрасна, не имеющий отношения к звездам предмет. Кроме того, некоторые очень специфические цвета вообще отсутствуют в спектрах звезд, причем отсутствующие цвета разные для разных звезд. Т.к. каждый химический элемент поглощает или излучает электромагнитные волны на строго определённых частотах и образует в спектре неповторимую картину из линий, возможно сравнить их с теми цветами, которых нет в спектре исследуемого объекта, и таким образом точно определить, какие элементы присутствуют в ее атмосфере.

Космологическое красное смешение - это смешение линий в сторону длинных волн в спектре, который получен от далёкого космического источника (например, галактики или квазара), по сравнению с длинами волн тех же линий, измеренными от неподвижного источника. Известны два механизма, приводящих к появлению красного смещения, соответственно космологического и гравитационного:

1. Космологическое красное смещение, обусловленное эффектом Доплера, возникает в том случае, когда движение источника света относительно наблюдателя приводит к увеличению расстояния между ними. В результате эффекта Доплера, частота излучения от удалённых объектов, например, звёзд, может изменяться (понижаться или повышаться), а линии соответственно могут смещаться в красную (длинноволновую) или синюю (коротковолновую) часть спектра, сохраняя, однако, своё неповторимое относительное расположение.

Рассмотрим подробнее эффект Доплера. Видимый свет - это колебания электромагнитного поля. Частота (число волн в одну секунду) световых колебаний чрезвычайно высока - от 400 до 700000000 млн. волн в секунду. Человеческий глаз воспринимает свет разных частот как разные цвета, причём самые низкие частоты соответствуют красному концу спектра, самые высокие - фиолетовому. Очевидно, что частота приходящих волн от источника света, расположенного на фиксированном расстоянии будет такой же, как та, с которой они излучаются (пусть гравитационное поле галактики невелико и его влияние несущественно).

При движении источника в сторону наблюдателя, он окажется ближе к нам, а потому время, за которое гребень этой волны дойдет до наблюдателя, будет меньше, чем в случае неподвижной звезды. Стало быть, время между гребнями двух пришедших волн будет меньше, а число волн, принимаемых за одну секунду (т.е. частота), будет больше, чем когда звезда была неподвижна. При удалении же источника частота приходящих волн будет меньше. Это означает, что спектры удаляющихся звезд будут сдвинуты к красному концу (красное смещение), а спектры приближающихся звезд должны испытывать фиолетовое смещение. Такое соотношение между скоростью и частотой и называется эффектом Доплера.

В релятивистском случае (в случае использования теории относительности), когда скорость движения источника сравнима со скоростью света, красное смещение может возникнуть и в том случае, если расстояние между движущимся источником и приёмником не изменяется (т.н. поперечный эффект Доплера). Красное смещение, возникающее при этом, интерпретируется как результат релятивистского «замедления» времени на источнике по отношению к наблюдателю.

2. Гравитационное красное смещение возникает, когда приёмник света находится в области с меньшим (по модулю) гравитационным потенциалом, чем источник. В классической интерпретации этого эффекта фотоны теряют часть энергии на преодоление сил гравитации. В результате характеризующая фотон частота уменьшается, а длина волны излучения растёт. Примером гравитационного красного смещения может служить наблюдаемое смещение линий в спектрах плотных звёзд - белых карликов.

В дальнейшем мы будем говорить о космологическом красном смещении.

Математически красное смещение выражается отношением разницы принятой и испущенной длин волн к испущенной длине волны. Линии в спектре движущегося источника смещаются на величину, пропорциональную скорости его приближения или удаления, поэтому скорость галактики всегда можно вычислить по изменению положения её спектральных линий.

Зная красное смешение z, можно определить скорость удаления галактики v. Если эта скорость невелика по сравнению со скоростью света (с = 300000 км/с), она выражается простой формулой:

Если измеренное по спектральным линиям z > 1, то скорость связана с ним более сложным образом и зависит от принятой модели Вселенной (см. ниже модели Фридмана).

КРАСНОЕ СМЕЩЕНИЕ, увеличение длин волн (уменьшение частот) электромагнитного излучения источника, проявляющееся в сдвиге спектральных линий или других деталей спектра в сторону красного (длинноволнового) конца спектра. Оценку красного смещения обычно производят, измеряя смещение положения линий в спектре наблюдаемого объекта относительно спектральных линий эталонного источника с известными длинами волн. Количественно красное смещение измеряется величиной относительного увеличения длин волн:

Z = (λ прин -λ исп)/λ исп,

где λ прин и λ исп - соответственно длины принимаемой волны и волны, испущенной источником.

Выделяют две возможные причины красного смещения. Оно может быть обусловлено Доплера эффектом, когда наблюдаемый источник излучения удаляется. Если при этом z « 1, то скорость удаления ν = cz, где с - скорость света. Если расстояние до источника сокращается, наблюдается смещение противоположного знака (так называемое фиолетовое смещение). Для объектов нашей Галактики как красное, так и фиолетовое смещение не превышает z= 10 -3 . В случае больших скоростей движения, сопоставимых со скоростью света, красное смещение возникает вследствие релятивистских эффектов даже в том случае, если скорость источника направлена поперёк луча зрения (поперечный эффект Доплера).

Частным случаем доплеровского красного смещения является космологическое красное смещение, наблюдаемое в спектрах галактик. Впервые космологические красное смещение обнаружено В. Слайфером в 1912-14. Оно возникает вследствие увеличения расстояний между галактиками, обусловленного расширением Вселенной, и в среднем линейно растёт с увеличением расстояний до галактики (Хаббла закон). При не слишком больших значениях красного смещения (z < 1) закон Хаббла обычно используется для оценки расстояний до внегалактических объектов. Наиболее далёкие наблюдаемые объекты (галактики, квазары) имеют красные смещения, существенно превышающие z = 1. Известно несколько объектов с z > 6. При таких величинах z излучение, испущенное источником в видимой области спектра, принимается в ИК-области. В силу конечности скорости света объекты с большими космологическими красными смещениями наблюдаются такими, какими они были миллиарды лет назад, в эпоху их молодости.

Гравитационное красное смещение возникает, когда приёмник света находится в области с меньшим гравитационным потенциалом φ, чем источник. В классической интерпретации этого эффекта фотоны теряют часть энергии на преодоление сил гравитации. В результате частота, характеризующая энергию фотона, уменьшается, а длина волны соответственно возрастает. Для слабых гравитационных полей значение гравитационного красного смещения равно z g = Δφ/с 2 , где Δφ - разность гравитационных потенциалов источника и приёмника. Отсюда следует, что для сферически-симметричных тел z g = GM/Rc 2 , где М и R - масса и радиус излучающего тела, G - гравитационная постоянная. Более точная (релятивистская) формула для невращающихся сферических тел имеет вид:

z g =(1 -2GM/Rc 2) -1/2 - 1.

Гравитационное красное смещение наблюдается в спектрах плотных звёзд (белых карликов); для них z g ≤10 -3 . Гравитационное красное смещение было обнаружено в спектре белого карлика Сириус В в 1925 (У. Адамс, США). Наиболее сильным гравитационным красным смещением должно обладать излучение внутренних областей аккреционных дисков вокруг чёрных дыр.

Важным свойством красного смещения любого типа (доплеровского, космологического, гравитационного) является отсутствие зависимости величины z от длины волны. Этот вывод подтверждается экспериментально: для одного и того же источника излучения спектральные линии в оптическом, радио и рентгеновском диапазонах имеют одинаковое красное смещение.

Лит.: Засов А. В., Постнов К. А. Общая астрофизика. Фрязино, 2006.

Красное смещение спектральных линий в оптическом спектре суперкластера далёких галактик (BAS11) (справа), по сравнению с Солнцем (слева).

Красное смещение - сдвиг спектральных линий химических элементов в красную (длинноволновую) сторону. Это явление может происходить из-за эффекта Доплера, или эффектов общей теории относительности: гравитационное и космологическое красного смещения. Красное смещению может также являться следствием сразу несколько указанных выше причин. Сдвиг спектральных линий в фиолетовую (коротковолновую) сторону называется фиолетовым смещением.

Каждый химический элемент поглощает или излучает электромагнитные волны на строго определённых частотах. Поэтому, каждый химический элемент образует в спектре неповторимую картину из линий, используемую в спектральном анализе. В результате эффекта Доплера и/или эффектов общей теории относительности, частота излучения от удалённых объектов, например, звёзд, может изменяться (понижаться или повышаться), а линии соответственно будут смещаться в красную (длинноволновую) или синюю (коротковолновую) часть спектра, сохраняя, однако, своё неповторимое относительное расположение. Смещение линий в красную сторону (обусловленное удалением объекта) и называется "красным смещением".

Новая интерпретация

В работе "Новая интерпретация красного смещения" ("A New Redshift Interpretation,") Роберт Джентри () предложил интерпретацию галактического красного смещения как комбинацию эффекта Доплера и гравитационного красного смещения.

Новая Интерпретация Красного смещения (НИК) объясняет красное смещение галактики как комбинацию Доплеровского и гравитационного красного смещения. Согласно данной космологии (CBR) это гравитационное красное смещение раскалённого водорода с границы уровня при температуре 5400 по Kельвину. Он считает, что эта граница уровня в действительности состоит из тонкой оболочки над свёртывающимися галактиками.

Ограниченная вселенная

Как и космология Белой дыры , NRI использует понятие ограниченной вселенной. В то время как это противоречивые космпологии, понятно что они могут быть скомбинированы, поскольку в случае с Dark energy была добавлена к начальным условиям космологии Белой Дыры и результат похож на NRI.

NRI has an outward gravitational force, that says is caused by vacuum pressure/energy. This is effectively the same as Dark energy and in NRI, Dark energy can be substituted for vacuum pressure/energy. In any case the formula for this cosmic gravitational red shift is:

  • G = гравитационная постоянная
  • H = постоянная Хаббла
  • r = радиус от центра
  • c = скорость света
  • z +1 = гравитационное красное смещение

Когда добавляется стандартное Доплеровское красное смещение галактики, получаем:

  • z = изменение в наблюдаемом красном смещении
  • Hubble relationship



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме