Подпишись и читай
самые интересные
статьи первым!

Расчет простых трубопроводов гидравлика. Гидравлический расчет трубопроводов различные способы расчета потерь

Трубопровод называют простым, если он не имеет ответвлений. Простые трубопроводы соединяют в последовательные, параллельные или разветвленные линии. Сложные трубопроводы содержат как последовательные, так и параллельные соединения или разветвления.

Жидкость движется по трубопроводу, если ее энергия в начале трубопровода больше, чем в конце. Этот перепад уровней энергии может быть создан либо работой насоса, либо разностью уровней жидкости в начальном и конечном сечениях трубопровода, либо давлением газа (в пневматических системах).

Под гидравлическим расчетом понимают определение параметров движения жидкости при заданной схеме трубопровода с известными конструкционными элементами, либо определение размеров трубопровода, обеспечивающих необходимые параметры движения жидкости.

Простой трубопровод постоянного сечения:

Рассмотрим простой трубопровод длиной l , постоянного диаметра d , который содержит ряд местных сопротивлений. Скорость потока в начальном и концевом сечениях одинакова.

Уравнение Бернулли для сечений 1 и 2 имеет вид:

.

Вводя обозначения:

× - потребный (располагаемый) напор;

× - статический напор;

× - потери напора,

, (1.52)

что потребный напор складывается из статического напора (геометрической высоты, на которую поднимается жидкость в процессе движения и пьезометрической высоты в конце трубопровода) и суммы всех потерь напора в трубопроводе.

Потери напора определяют как сумму всех потерь в местных сопротивлениях и потерь, связанных с трением при движении жидкости

, (1.53)

где - средняя скорость движения среды по трубопроводу; Q - объемный расход жидкости; S - площадь поперечного сечения трубопровода.

При анализе систем используют графики зависимости потребного напора от расхода [H потр =f (Q )], которые называют кривыми потребного напора , либо графики зависимости суммарной потери напора от расхода [Sh=f (Q )], которые называют характеристиками трубопровода . Характеристика трубопровода - это кривая потребного напора, смещенная в начало координат.

Сифонный трубопровод:

Сифонный трубопровод (сифон) представляет собой короткий трубопровод, движение в котором происходит самотеком по всей его длине, включая участки, расположенные выше уровня жидкости питающего резервуара.

Движение жидкости в сифоне происходит под действием атмосферного давления при наличии вакуума в самой верхней точке трубопровода. Поэтому для поднятия жидкости на некоторую высоту или для переливания ее в приемный резервуар необходимо создать в сифоне разряжение (вакуум). С этой целью сифон предварительно заполняют переливаемой жидкостью или откачивают из него воздух при помощи вакуум-насосов .


Гидравлический расчет сифонов заключается в определении расхода жидкости и предельной величины возвышения трубопровода над уровнем жидкости в расходном баке, при котором этот расход обеспечивается.

Расход жидкости, переливаемой сифоном, равен:

где S - площадь поперечного сечения трубопровода; H - разность уровней жидкости в резервуарах; l - коэффициент потерь на трение; l и d - длина и диаметр сифонного трубопровода, соответственно.

Допустимая высота наивысшей точки сифона определяется из уравнения Бернулли , которое записывают для точек, находящихся на свободной поверхности питающего резервуара и в наивысшем удаленном сечении сифона

При скорости перемещения свободной поверхности жидкости в питающем резервуаре близкой к нулю и коэффициенте кинетической энергии равном единице, получим

.

Соединения простых трубопроводов

Последовательное соединение нескольких простых трубопроводов различного диаметра дает простой трубопровод переменного сечения.

Рис. 1.5. Последовательное соединение трубопроводов

а - схема трубопровода; б - характеристика трубопровода

При подаче жидкости по такому трубопроводу расход во всех последовательно соединенных трубах один и тот же. Полная потеря напора между начальным и конечным сечениями равна сумме потерь напора во всех последовательно соединенных трубах. Для трубопровода, изображенного на рис. 1.5, получим следующие уравнения:

Эти уравнения определяют правило построения характеристик последовательного соединения труб. При известных характеристиках трубопроводов 1, 2 и 3, для получения характеристики их последовательного соединения (участка между сечениями Н и К ) следует сложить потери напора при одинаковых расходах, т.е. сложить ординаты всех трех кривых при одних и тех же значениях, выбранных на оси абсцисс.

В начальном и конечном сечениях рассматриваемого трубопровода скорости движения жидкости различны. Поэтому выражение потребного напора для всего трубопровода должно содержать разности скоростных напоров в крайних сечениях.

.

Параллельное соединение нескольких простых трубопроводов показано на рис. 1.6.

Рис. 1.6. Параллельное соединение трубопроводов

а - схема трубопровода; б - характеристика трубопровода

Обозначим полные напоры в точках Н и К соответственно через H Н и H К, расход в основной магистрали (до разветвления и после слияния) - Q , а в параллельных трубопроводах через Q 1 , Q 2 , и Q 3 ; суммарные потери напора в этих трубопроводах через Sh 1 , Sh 2 и Sh 3 .

Расход в основной магистрали связан с расходами в параллельных трубопроводах следующим очевидным уравнением

Потери напора в каждом из трубопроводов представляют собой разность напоров в точках Н и К

Из этого следует, что потери напора в параллельных трубопроводах равны между собой

.

Используя уравнение, связывающее расходы в магистральном и параллельных трубопроводах, равенство потерь напора в них, а также соотношения для расчета простых трубопроводов, получим число уравнений, достаточное для определения сопротивлений параллельных вервей и расходов в них.

Из вышесказанного следуют правило построения характеристики параллельного соединения нескольких трубопроводов: суммарная характеристика получается в результате сложения абсцисс характеристик отдельных трубопроводов (Q i ) при одинаковых ординатах (Sh ).

Изложенные соотношения для параллельных трубопроводов справедливы и в том случае, когда трубопроводы не сходятся в одной точке, а подают жидкость в различные места, но с одинаковыми давлениями и равными уровнями. Если последнее условие не соблюдается, то рассматриваемые трубопроводы нельзя читать параллельными, а следует отнести к разряду разветвленных.

Разветвленное соединение - это совокупность нескольких простых трубопроводов, имеющих одно общее сечение - место разветвления (или смыкания) труб. Рассмотрим основной трубопровод, который в точке М разделяется на несколько трубопроводов, имеющих различные размеры, местные сопротивления, уровни и давления в концевых точках. Найдем связь между давлением в точке М и расходами в ответвлениях, считая направления течения в них заданными.

Рис. 1.7. Разветвленный трубопровод

а - схема трубопровода; б - кривые потребного напора

Запишем, пренебрегая динамическими напорами, уравнения Бернулли для каждого из ответвлений, начинающихся в точке М

Так же как и для параллельных трубопроводов,

Таким образом, получаем систему четырех уравнений достаточную для определения неизвестных величин: Q 1 , Q 2 , Q 3 и H м.

Построение кривой потребного напора для разветвленного трубопровода выполняют сложением кривых потребных напоров для ветвей по правилу сложения характеристик параллельных трубопроводов - сложением абсцисс (Q ) при одинаковых ординатах (H м). Из графика (рис. 1.7, б) видно, что условием подачи жидкости во все ветви является превышение напора в точке разветвления над наибольшим статическим напором в ответвлениях.

Сложный трубопровод состоит из простых трубопроводов с последовательным и параллельным их соединением или с разветвлениями.

При расчетах сложных трубопроводов их разбивают на простые участки, участки с разветвлениями и параллельными трубопроводами и, идя от конечных точек сложного трубопровода к начальной его точке, т.е. против течения, последовательно производят расчеты по приведенным выше уравнениям.

Для сложных кольцевых трубопроводов (системы смежных замкнутых контуров с отборами жидкости в узловых точках или непрерывной раздачей ее на отдельных участках) используют два основных условия:

Баланс расходов, т.е. равенство притока и оттока жидкости для каждой узловой точки;

Баланс напоров, т.е. равенство нулю алгебраической суммы потерь напора для каждого контура при подсчете по направлению движения часовой стрелки. Потери напора считают положительными, если направление подсчета совпадает с направлением движения жидкости, и отрицательными, если направление подсчета противоположно направлению движения жидкости.

Трубопроводы с насосной подачей жидкости

В машиностроении основным является способ принудительной подачи жидкости насосом. Рассмотрим совместную работу насоса с трубопроводом и принцип расчета таких систем.

Рис. 1.8. Трубопровод с насосной подачей

Трубопровод с насосной подачей может быть разомкнутым, когда жидкость перекачивается из одной емкости в другую или замкнутым, в котором циркулирует одно и то же количество жидкости.

На рис. 1.8, а представлен разомкнутый трубопровод, по которому жидкость перекачивается насосом из нижнего резервуара с давлением p 0 в другой резервуар с давлением p 3 . Высоту расположения оси насоса относительно нижнего уровня z 1 называют геометрической высотой всасывания, а трубопровод, по которому жидкость поступает к насосу, всасывающим трубопроводом (линией всасывания). Высоту расположения верхнего уровня жидкости z 2 , называют геометрической высотой нагнетания, а трубопровод, по которому жидкость движется от насоса, напорным (линией нагнетания).

Составим уравнение Бернулли для потока жидкости во всасывающем трубопроводе, т.е. для сечений 0 и 1

.

Данное уравнение является основным для расчета всасывающих трубопроводов. Оно показывает, что процесс всасывания, т.е. подъем жидкости на высоту z 1 , сообщение ей кинетической энергии и преодоление всех гидравлических сопротивлений происходит за счет использования (с помощью насоса) давления p 0 . Так как это давление обычно бывает весьма ограниченным, то расходовать его надо так, чтобы перед входом в насос остался некоторый запас давления p 1 , необходимый для его нормальной бескавитационной работы.

Уравнение Бернулли для движения жидкости по напорному трубопроводу, т.е. для сечений 2 и 3

.

Левая часть уравнения представляет собой энергию жидкости на выходе из насоса, отнесенную к единице веса.

Энергия потока перед входом в насос может быть вычислена из уравнения всасывающего трубопровода

.

Приращение энергии каждой единицей веса жидкости в насосе называют напором, создаваемым насосом H нас. Он равен

где - разность уровней жидкости в расходном и приемном баках.

Сравнения полученной формулы с зависимостью для определения потребного напора позволяет сформулировать правило: при установившемся течении жидкости в трубопроводе насос развивает напор, равный потребному

На этом правиле основывается метод расчета трубопроводов, питаемых насосом, заключающийся в определении точки пересечения характеристики насоса и кривой потребного напора трубопровода. Эта точка получила название рабочей точки .

Для замкнутого трубопровода (рис. 1.8, б ) геометрическая высота подъема жидкости равна нулю (Dz= 0), следовательно, при равенстве скоростей на входе и выходе из насоса (V 1 =V 2)

,

т.е. между потребным напором и напором, создаваемым насосом, справедливо то же равенство.

Замкнутый трубопровод обязательно должен иметь расширительный, или компенсационный бачок, соединенный с одним из сечений трубопровода, чаще всего со стороны всасывания насоса, где давление имеет минимальное значение. Он служит для компенсации утечек и предотвращения колебания давления в системе, связанных с изменением температуры.

При наличии расширительного бачка, присоединенного в соответствии с рис. 1.8, б , давление на входе в насос определится из выражения:

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – D N ;
  • давление номинальное – P N ;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Условный диаметр (проход) трубопровода (D N) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80 .

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re<2300), при котором носитель-жидкость движется тонкими слоями, практически не смешивающимися друг с другом;
  • переходный режим (2300
  • турбулентный поток (Re>4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.

Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.

Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.

Подбор оптимального диаметра трубопровода

Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.

Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:

При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).

Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:

Расчет падения напора и гидравлического сопротивления

Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.

Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.

Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.

Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.

Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:

В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:

Потери давления по причине трения для воды рассчитывают по формуле Хазена - Вильямса:

Расчет потерь давления

Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.

Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:

Примеры задач гидравлического расчета трубопровода с решениями

Задача 1

В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м 3 /час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.

Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.

Исходные данные:

Расход Q = 80 м 3 /час = 80·1/3600 = 0,022 м 3 /с;

эффективный диаметр d = 24 мм;

длина трубы l = 32 м;

коэффициент трения λ = 0,028;

давление в аппарате Р = 2,2 бар = 2,2·10 5 Па;

общий напор Н = 20 м.

Решение задачи:

Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:

w=(4·Q) / (π·d 2) = ((4·0,022) / (3,14· 2)) = 48,66 м/с

Потери напора жидкости в трубопроводе на трение определяются по уравнению:

H Т = (λ·l) / (d·) = (0,028·32) / (0,024· 2) / (2·9,81) = 0,31 м

Общие потери напора носителя рассчитываются по уравнению и составляют:

h п = H - [(p 2 -p 1)/(ρ·g)] - H г = 20 - [(2,2-1)·10 5)/(1000·9,81)] - 0 = 7,76 м

Потери напора на местные сопротивления определяется как разность:

7,76 - 0,31=7,45 м

Ответ: потери напора воды на местные сопротивления составляют 7,45 м.

Задача 2

По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.

Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10 -5 .

Исходные данные:

Скорость потока жидкости W = 2,0 м/с;

диаметр трубы d = 100 мм;

общий напор Н = 8 м;

относительная шероховатость 4·10 -5 .

Решение задачи:

Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.

Значение скоростного напора определяется по соотношению:

w 2 /(2·g) = 2,0 2 /(2·9,81) = 0,204 м

Потери напора воды на местные сопротивления составят:

∑ζ МС · = (4,1+1)·0,204 = 1,04 м

Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):

h п = H - (p 2 -p 1)/(ρ·g) - = 8 - ((1-1)·10 5)/(1000·9,81) - 0 = 8 м

Полученное значение потери напора носителя на трение составят:

8-1,04 = 6,96 м

Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10 -3 Па·с, плотность воды – 1000 кг/м 3):

Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10 -3) = 200000

Согласно рассчитанному значению Re, причем 2320

λ = 0,316/Re 0,25 = 0,316/200000 0,25 = 0,015

Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:

l = (H об ·d) / (λ·) = (6,96·0,1) / (0,016·0,204) = 213,235 м

Ответ: требуемая длина трубопровода составит 213,235 м.

Задача 3

В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м 3 /час. Длина прямого трубопровода l = 26 м, материал - сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.

Исходные данные:

Расход Q = 18 м 3 /час = 0,005 м 3 /с;

длина трубопровода l=26 м;

для воды ρ = 1000 кг/м 3 , μ = 653,3·10 -6 Па·с (при Т = 40°С);

шероховатость стальной трубыε = 50 мкм;

коэффициент трения λ = 0,026;

Δp=0,01 МПа;

Решение задачи:

Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:

∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d 5 = (8·26·0.005²)/(9,81·3,14²)· λ/d 5 = 5,376·10 -5 ·λ/d 5

Выразим диаметр:

d 5 = (5,376·10 -5 ·λ)/∆H = (5,376·10 -5 ·0,026)/1,2 = 1,16·10 -6

d = 5 √1,16·10 -6 = 0,065 м.

Ответ: оптимальный диаметр трубопровода составляет 0,065 м.

Задача 4

Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q 1 = 18 м 3 /час и Q 2 = 34 м 3 /час. Трубы для обоих трубопроводов должны быть одного диаметра.

Определите эффективный диаметр труб d, подходящих под условия данной задачи.

Исходные данные:

Q 1 = 18 м 3 /час;

Q 2 = 34 м 3 /час.

Решение задачи:

Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:

d = √(4·Q)/(π·W)

Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.

Для первого трубопровода с расходом Q 1 = 18 м 3 /час возможные диаметры составят:

d 1min = √(4·18)/(3600·3,14·1,5) = 0,065 м

d 1max = √(4·18)/(3600·3,14·3.0) = 0,046 м

Для трубопровода с расходом 18 м 3 /час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.

Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q 2 = 34 м 3 /час:

d 2min = √(4·34)/(3600·3,14·1,5) = 0,090 м

d 2max = √(4·34)/(3600·3,14·3) = 0,063 м

Для трубопровода с расходом 34 м 3 /час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.

Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.

Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.

Задача 5

В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м 3 /час. Определите режим течения потока воды в трубе.

Дано:

диаметр трубы d = 0,25 м;

расход Q = 100 м 3 /час;

μ = 653,3·10 -6 Па·с (по таблице при Т = 40°С);

ρ = 992,2 кг/м 3 (по таблице при Т = 40°С).

Решение задачи:

Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:

W = Q·4/(π·d²) = · = 0,57 м/c

Значение числа Рейнольдса определим по формуле:

Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10 -6) = 216422

Критическое значение критерия Re кр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.

Ответ: режим потока воды – турбулентный.

Трубы, соединяющие между собой различные аппараты химических установок. С помощью них происходит передача веществ между отдельными аппаратами. Как правило, несколько отдельных труб с помощью соединений создают единую трубопроводную систему.

Трубопровод - это система труб, объединенных вместе с помощью соединительных элементов, применяемая для транспортировки химических веществ и иных материалов. В химических установках для перемещения веществ, как правило, используются закрытые трубопроводы. Если речь идет о замкнутых и изолированных деталях установки, то они также относится к трубопроводной системе или сети.

В состав замкнутой трубопроводной системы могут входить:

  1. Трубы.
  2. Соединительные элементы труб.
  3. Герметизирующие уплотнения, соединяющие два разъемных участка трубопровода.

Все вышеперечисленные элементы изготавливаются отдельно, после чего соединяются в единую трубопроводную систему. Помимо этого трубопроводы могут быть оснащены обогревом и необходимой изоляцией, изготовленной из различных материалов.

Выборе размера труб и материалов для из изготовления осуществляется на основе технологических и конструктивных требований, предъявляемых в каждом конкретном случае. Но для стандартизации размеров труб была проведена их классификация и унификация. Основным критерием стало допустимое давление при котором возможна эксплуатация трубы.

Условный проход DN

Условный проход DN (номинальный диаметр) - это параметр, который используется в системах трубопровода как характеризующий признак, с помощью которого происходит подгонка деталей трубопровода, таких как трубы, арматура, фитинги и другие.

Номинальный диаметр является безразмерной величиной, однако численно приблизительно равен внутреннему диаметру трубы. Пример обозначения условного прохода: DN 125.

Так же условный проход не обозначается на чертежах и не заменяет собой реальные диаметры труб. Он примерно соответствует диаметру в свету у определенных частей трубопровода (рис. 1.1). Если говорить о числовых значениях условных переходах, то они выбраны таким образом, что пропускная способность трубопровода увеличивается в диапазоне от 60 до 100% при переходе от одного условного прохода к последующему.

Общепринятые номинальные диаметры:

3, 4, 5, 6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000.

Размеры этих условных проходов установлены с расчетом на то, чтобы не возникало проблем с припасовкой деталей друг к другу. Определения номинальный диаметр на основе значения внутреннего диаметра трубопровода, выбирается то значение условного прохода, которое ближе всего находится к диаметру трубы в свету.

Номинальное давление PN

Номинальное давление PN - величина, соответствующая максимальному давлению перекачиваемой среды при 20 °C, при котором возможна длительная эксплуатация трубопровода, имеющего заданные размеры.

Номинальное давление является безразмерной величиной.

Как и номинальный диаметр, номинальное давление было градуировано на основе практики эксплуатации накопленного опыта (табл. 1.1).

Номинальное давление для конкретного трубопровода выбирается на основе реально создаваемого в нем давления, путем выбора ближайшего большего значения. При этом фитинги и арматура в этом трубопроводе также должны соответствовать такой же ступени давления. Толщина стенок трубы рассчитывается исходя из номинального давления и должна обеспечивать работоспособность трубы при значении давления равном номинальному (табл. 1.1).

Допустимое избыточное рабочее давление p e,zul

Номинальное давление используется только для рабочей температуры 20°C. С повышением температуры нагрузочные способности трубы снижаются. Вместе с этим соответственно снижается и допустимое избыточное давление. Значение p e,zul показывает максимальное избыточное давление, которое может быть в трубопроводной системе при повышении значения рабочей температуры (рис. 1.2).


Материалы для трубопроводов

При выборе материалов, которые будут использоваться для изготовления трубопроводов, берутся в расчет такие показатели, как характеристики среды, которая будет транспортироваться по трубопроводу и рабочее давление, предполагаемое в данной системе. Стоит так же учитывать возможность корродирующего воздействия со стороны перекачиваемой среды на материал стенок трубы.

Практически все трубопроводные системы и химические установки производятся из стали. Для общего применения в случае отсутствия высоких механических нагрузок и корродирующего действия для изготовления трубопроводом используется серый чугун или нелегированные конструкционные стали.

В случае более высокого рабочего давления и отсутствия нагрузок с коррозионно активным действием применяется трубопровод из улучшенной стали или с использованием стального литья.

Если корродирующее воздействие среды велико или к чистоте продукта предъявлены высокие требования, то трубопровод изготавливается из нержавеющей стали.

Если трубопровод должен быть устойчив к воздействию морской воды, то для его изготовления используются медно-никелевые сплавы. Также могут применяться алюминиевые сплавы и такие металлы как тантал или цирконий.

Все большее распространение в качестве материала трубопровода получают различные виды пластмасс, что обуславливается их высокой стойкостью к коррозии, малому весу и легкости в обработке. Такой материал подходит для трубопровода со сточными водами.

Фасонные части трубопровода

Трубопроводы, изготовленные из пластичных материалов пригодных для сварки, собираются на месте монтажа. К таким материалам можно отнести сталь, алюминий, термопласты, медь и т.д.. Для соединения прямых участков труб используются специально изготовленные фасонные элементы, например, колена, отводы, затворы и уменьшения диаметров (рис. 1.3). Эти фитинги могут быть частью любого трубопровода.


Соединения труб

Для монтирования отдельных частей трубопровода и фитингов используются специальные соединения. Также используются для присоединения к трубопроводу необходимой арматуры и аппаратов.

Соединения выбираются (рис. 1.4) в зависимости от:

  1. материалов, которые используются для изготовления труб и фасонных элементов. Основной критерий выбора - возможность сварки.
  2. условий работы: низкого или высокого давления, а также низкой или высокой температуры.
  3. производственных требований, которые предъявляются к трубопроводной системе.
  4. наличия разъемных или неразъемных соединений в трубопроводной системе.
Рис. 1.4 Типы соединения труб

Линейное расширение труб и его комплектация

Геометрическая форма предметов может быть изменена как путем силового воздействия на них, так и при изменении их температуры. Данные физические явления приводят к тому, что трубопровод, который монтируется в ненагруженном состоянии и без температурного воздействия, в процессе эксплуатации под давлением или воздействием температур претерпевает некоторые линейные расширения или сжатия, которые негативно сказываются на его эксплуатационных качествах.

В случае, когда нет возможности компенсировать расширение, происходит деформация трубопроводной системы. При этом могут возникнуть повреждения фланцевых уплотнений и тех мест соединения труб между собой.

Тепловое линейное расширение

При компоновке трубопроводов важно учитывать возможное изменение длины в результате повышения температуры или так называемого теплового линейного расширения, обозначаемого ΔL. Данное значение зависит от длины трубы, которая обозначается L o и разности температур Δϑ =ϑ2-ϑ1 (рис. 1.5).


В вышеприведенной формуле а - это коэффициент теплового линейного расширения данного материала. Этот показатель равен величине линейного расширения трубы длиной 1 м при повышении температуры на 1°C.

Элементы компенсации расширения труб

Отводы труб

Благодаря специальным отводам, которые ввариваются в трубопровод, можно компенсировать естественное линейное расширение труб. Для этого используются компенсирующие U-образные, Z-образные и угловые отводы, а также лирные компенсаторы (рис. 1.6).

Рис. 1.6 Компенсирующие трубные отводы

Они воспринимают линейное расширение труб за счет собственной деформации. Однако такой способ возможен только с некоторыми ограничениями. В трубопроводах с высоким давлением для компенсации расширения используются колени под разными углами. Из-за давления, которое действует в таких отводах, возможно усиление коррозии.

Волнистые трубные компенсаторы

Данное устройство состоит из тонкостенной металлической гофрированной трубы, которая называется сильфоном и растягивается в направлении трубопровода (рис. 1.7).

Данные устройства устанавливаются в трубопровод. Предварительный натяг используется в качестве специального компенсатора расширения.


Если говорить про осевые компенсаторы, то они способны компенсировать только те линейные расширения, которые происходят вдоль оси трубы. Чтобы избежать бокового смещения и внутреннего загрязнения используется внутреннее направляющее кольцо. Для того чтобы защитить трубопровод от внешних повреждений, как правило, используется специальная облицовка. Компенсаторы, которые не содержат внутреннее направляющее кольцо, поглощают боковые сдвиги, а также вибрацию, которая может исходить от насосов.

Изоляция труб

В том случае, если по трубопроводу перемещается среда с высокой температурой, необходима его изоляция во избежание потери тепла. В случае перемещения по трубопроводу среды с низкой температурой изоляцию применяют для предотвращения ее нагрева внешней средой. Изоляция в таких случаях осуществляется с помощью специальных изоляционных материалов, которые размещаются вокруг труб.

В качестве таких материалов, как правило, используются:

  1. При низких температурах до 100°C используются жесткие пенопласты, например, полистирол или полиуретан.
  2. При средних температурах около 600°C используются фасонные оболочки или минеральное волокно, например, каменная шерсть или стеклянный войлок.
  3. При высоких температурах в районе 1200°C - керамическое волокно, например, глиноземное.

Трубы, условный проход которых ниже DN 80, а толщина слоя изоляции меньше 50 мм, как правило, изолируются при помощи изоляционных фасонных элементов. Для этого две оболочки кладутся вокруг трубы и скрепляются металлической лентой, а после этого закрываются жестяным кожухом (рис. 1.8).


Трубопроводы, которые имеют условный проход больше DN 80, должны снабжаться теплоизоляцией с нижним каркасом (рис. 1.9). Такой каркас состоит из зажимных колец, распорок, а также металлической облицовки, изготовленной из оцинкованной мягкой стали или нержавеющей листовой стали. Между трубопроводом и металлическим кожухом пространство заполняется изоляционным материалом.


Толщина изоляции рассчитывается путем определения затрат на его изготовление, а также убытков, которые возникают из-за потери тепла, и составляет от 50 до 250 мм.

Теплоизоляция должна наноситься по всей длине трубопроводной системы, включая зоны отводов и колен. Очень важно следить, чтобы не возникали незащищенные места, которые смогут стать причиной тепловых потерь. Фланцевые соединения и арматура должны снабжаться фасонными изоляционными элементами (рис. 1.10). Это обеспечивает беспрепятственный доступ к месту соединения без необходимости снимать изоляционный материал со всей трубопроводной системы в том случае, если произошло нарушение герметичности.


В том случае, если изоляция трубопроводной системы выбрана правильно, решается множество задач, таких как:

  1. Избегание сильного падения температуры в протекающей среде и, как следствие, экономия энергии.
  2. Предотвращение падения температуры в газопроводных системах ниже точки росы. Таким образом, удается исключить образование конденсата, который может привести к значительным коррозионным разрушениям.
  3. Избегание выделения конденсата в паровых трубопроводах.

При расчетах напорных трубопроводов основной задачей является либо определение пропускной способности (расхода), либо потери напора на том или ином участке, равно как и на всей длине, либо диаметра трубопровода на заданных расходе и потерях напора.

В практике трубопроводы делятся на короткие и длинные . К первым относятся все трубопроводы, в которых местные потери напора превышают 5…10% потерь напора по длине. При расчетах таких трубопроводов обязательно учитывают потери напора в местных сопротивлениях. К ним относят, к примеру, маслопроводы объемных передач.

Ко вторым относятся трубопроводы, в которых местные потери меньше 5…10% потерь напора по длине. Их расчет ведется без учета местных потерь. К таким трубопроводам относятся, например, магистральные водоводы, нефтепроводы.

Учитывая гидравлическую схему работы длинных трубопроводов, их можно разделить также на простые и сложные . Простыми называются последовательно соединенные трубопроводы одного или различных сечений, не имеющих никаких ответвлений. К сложным трубопроводам относятся системы труб с одним или несколькими ответвлениями, параллельными ветвями и т.д. К сложным относятся и так называемые кольцевые трубопроводы.

т.е. потери напора в параллельных трубопроводах равны между собой. Их можно выразить в общем виде через соответствующие расходы следующим образом

Σ h 1 = K 1 Q 1 m ; Σ h 2 = K 2 Q 2 m ; Σ h 3 = K 3 Q 3 m

где K и m - определяются в зависимости от режима течения.

Из двух последних уравнений вытекает следующее правило: для построения характеристики параллельного соединения нескольких трубопроводов следует сложить абсциссы (расходы) характеристик этих трубопроводов при одинаковых ординатах (Σ h ). Пример такого построения дан на рис. 6.3, б.

Разветвленное соединение . Разветвленным соединением называется совокупность нескольких простых трубопроводов, имеющих одно общее сечение - место разветвления (или смыкания) труб.

Рис. 6.5. Разветвленный трубопровод

Пусть основной трубопровод имеет разветвление в сечении М-М , от которого отходят, например, три трубы 1 , 2 и 3 разных диаметров, содержащие различные местные сопротивления (рис. 6.5, а). Геометрические высоты z 1 , z 2 и z 3 конечных сечений и давления P 1 , P 2 и P 3 в них будут также различны.

Так же как и для параллельных трубопроводов, общий расход в основном трубопроводе будет равен сумме расходов в каждом трубопроводе:

Q = Q 1 = Q 2 = Q 3

Записав уравнение Бернулли для сечения М-М и конечного сечения, например первого трубопровода, получим (пренебрегая разностью скоростных высот)

Обозначив сумму первых двух членов через H ст и выражая третий член через расход (как это делалось в п.6.1), получаем

H M = H ст 1 + KQ 1 m

Аналогично для двух других трубопроводов можно записать

H M = H ст 2 + KQ 2 m

H M = H ст 3 + KQ 3 m

Таким образом, получаем систему четырех уравнений с четырьмя неизвестными: Q 1 , Q 2 и Q 3 и H M .

Построение кривой потребного напора для разветвленного трубопровода выполняется сложением кривых потребных напоров для ветвей по правилу сложения характеристик параллельных трубопроводов (рис. 6.5, б) - сложением абсцисс (Q ) при одинаковых ординатах (H M ). Кривые потребных напоров для ветвей отмечены цифрами 1 , 2 и 3 , а суммарная кривая потребного напора для всего разветвления обозначена буквами ABCD . Из графика видно, что условием подачи жидкости во все ветви является неравенство H M > H ст1 .



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме