Подпишись и читай
самые интересные
статьи первым!

Дифференциальные уравнения 2 порядка с постоянными коэффициентами. Неоднородные дифференциальные уравнения второго порядка

Рассмотрим линейное однородное дифференциальное уравнение с постоянными коэффициентами:
(1) .
Его решение можно получить следуя общему методу понижения порядка .

Однако проще сразу получить фундаментальную систему n линейно независимых решений и на ее основе составить общее решение. При этом вся процедура решения сводится к следующим шагам.

Ищем решение уравнения (1) в виде . Получаем характеристическое уравнение :
(2) .
Оно имеет n корней. Решаем уравнение (2) и находим его корни . Тогда характеристическое уравнение (2) можно представить в следующем виде:
(3) .
Каждому корню соответствует одно из линейно независимых решений фундаментальной системы решений уравнения (1). Тогда общее решение исходного уравнения (1) имеет вид:
(4) .

Действительные корни

Рассмотрим действительные корни . Пусть корень однократный. То есть множитель входит в характеристическое уравнение (3) только один раз. Тогда этому корню соответствует решение
.

Пусть - кратный корень кратности p . То есть
. В этом случае множитель входит в p раз:
.
Этим кратным (равным) корням соответствуют p линейно независимых решений исходного уравнения (1):
; ; ; ...; .

Комплексные корни

Рассмотрим комплексные корни . Выразим комплексный корень через действительную и мнимую части:
.
Поскольку коэффициенты исходного действительные, то кроме корня имеется комплексно сопряженный корень
.

Пусть комплексный корень однократный. Тогда паре корней соответствуют два линейно-независимых решения :
; .

Пусть - кратный комплексный корень кратности p . Тогда комплексно сопряженное значение также является корнем характеристического уравнения кратности p и множитель входит в p раз:
.
Этим 2 p корням соответствуют 2 p линейно независимых решений:
; ; ; ... ;
; ; ; ... .

После того как фундаментальная система линейно независимых решений найдена, по получаем общее решение .

Примеры решений задач

Пример 1

Решить уравнение:
.

Решение


.
Преобразуем его:
;
;
.

Рассмотрим корни этого уравнения. Мы получили четыре комплексных корня кратности 2:
; .
Им соответствуют четыре линейно-независимых решения исходного уравнения:
; ; ; .

Также мы имеем три действительных корня кратности 3:
.
Им соответствуют три линейно-независимых решения:
; ; .

Общее решение исходного уравнения имеет вид:
.

Ответ

Пример 2

Решить уравнение

Решение

Ищем решение в виде . Составляем характеристическое уравнение:
.
Решаем квадратное уравнение .
.

Мы получили два комплексных корня:
.
Им соответствуют два линейно-независимых решения:
.
Общее решение уравнения:
.

Данная статья раскрывает вопрос о решении линейных неоднородных дифференциальных уравнений второго порядка с постоянными коэффициентами. Будет рассмотрена теория вместе с примерами приведенных задач. Для расшифровки непонятных терминов необходимо обращаться к теме об основных определениях и понятиях теории дифференциальных уравнений.

Рассмотрим линейное дифференциальное уравнение (ЛНДУ) второго порядка с постоянными коэффициентами вида y "" + p · y " + q · y = f (x) , где произвольными числами являются p и q , а имеющаяся функция f (х) непрерывная на интервале интегрирования x .

Перейдем к формулировке теоремы общего решения ЛНДУ.

Yandex.RTB R-A-339285-1

Теорема общего решения ЛДНУ

Теорема 1

Общим решением, находящимся на интервале х, неоднородного дифференциального уравнения вида y (n) + f n - 1 (x) · y (n - 1) + . . . + f 0 (x) · y = f (x) с непрерывными коэффициентами интегрирования на x интервале f 0 (x) , f 1 (x) , . . . , f n - 1 (x) и непрерывной функцией f (x) равняется сумме общего решения y 0 , которое соответствует ЛОДУ и каким-нибудь частным решением y ~ , где исходным неоднородным уравнением является y = y 0 + y ~ .

Отсюда видно, что решение такого уравнения второго порядка имеет вид y = y 0 + y ~ . Алгоритм нахождения y 0 рассмотрен в статье о линейных однородных дифференциальных уравнениях второго порядка с постоянными коэффициентами. После чего следует переходить к определению y ~ .

Выбор частного решения ЛНДУ зависит от вида имеющейся функции f (x) , располагающейся в правой части уравнения. Для этого необходимо рассмотреть отдельно решения линейных неоднородных дифференциальных уравнений второго порядка при постоянных коэффициентах.

Когда f (x) считается за многочлен n -ой степени f (x) = P n (x) , отсюда следует, что частное решение ЛНДУ находим по формуле вида y ~ = Q n (x) · x γ , где Q n (x) является многочленом степени n , r – это количество нулевых корней характеристического уравнения. Значение y ~ является частным решением y ~ "" + p · y ~ " + q · y ~ = f (x) , тогда имеющиеся коэффициенты, которые определены многочленом
Q n (x) , отыскиваем при помощи метода неопределенных коэффициентов из равенства y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 1

Вычислить по теореме Коши y "" - 2 y " = x 2 + 1 , y (0) = 2 , y " (0) = 1 4 .

Решение

Иначе говоря, необходимо перейти к частному решению линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами y "" - 2 y " = x 2 + 1 , которое будет удовлетворять заданным условиям y (0) = 2 , y " (0) = 1 4 .

Общим решением линейного неоднородного уравнения является сумма общего решения, которое соответствует уравнению y 0 или частному решению неоднородного уравнения y ~ , то есть y = y 0 + y ~ .

Для начала найдем общее решение для ЛНДУ, а после чего – частное.

Перейдем к нахождению y 0 . Запись характеристического уравнения поможет найти корни. Получаем, что

k 2 - 2 k = 0 k (k - 2) = 0 k 1 = 0 , k 2 = 2

Получили, что корни различные и действительные. Поэтому запишем

y 0 = C 1 e 0 x + C 2 e 2 x = C 1 + C 2 e 2 x .

Найдем y ~ . Видно, что правая часть заданного уравнения является многочленом второй степени, тогда один из корней равняется нулю. Отсюда получим, что частным решением для y ~ будет

y ~ = Q 2 (x) · x γ = (A x 2 + B x + C) · x = A x 3 + B x 2 + C x , где значения А, В, С принимают неопределенные коэффициенты.

Найдем их из равенства вида y ~ "" - 2 y ~ " = x 2 + 1 .

Тогда получим, что:

y ~ "" - 2 y ~ " = x 2 + 1 (A x 3 + B x 2 + C x) "" - 2 (A x 3 + B x 2 + C x) " = x 2 + 1 3 A x 2 + 2 B x + C " - 6 A x 2 - 4 B x - 2 C = x 2 + 1 6 A x + 2 B - 6 A x 2 - 4 B x - 2 C = x 2 + 1 - 6 A x 2 + x (6 A - 4 B) + 2 B - 2 C = x 2 + 1

Приравняв коэффициенты с одинаковыми показателями степеней x , получим систему линейных выражений - 6 A = 1 6 A - 4 B = 0 2 B - 2 C = 1 . При решении любым из способов найдем коэффициенты и запишем: A = - 1 6 , B = - 1 4 , C = - 3 4 и y ~ = A x 3 + B x 2 + C x = - 1 6 x 3 - 1 4 x 2 - 3 4 x .

Эта запись называется общим решением исходного линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами.

Для нахождения частного решения, которое удовлетворяет условиям y (0) = 2 , y " (0) = 1 4 , требуется определить значения C 1 и C 2 , исходя из равенства вида y = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x .

Получаем, что:

y (0) = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x x = 0 = C 1 + C 2 y " (0) = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x " x = 0 = = 2 C 2 e 2 x - 1 2 x 2 + 1 2 x + 3 4 x = 0 = 2 C 2 - 3 4

Работаем с полученной системой уравнений вида C 1 + C 2 = 2 2 C 2 - 3 4 = 1 4 , где C 1 = 3 2 , C 2 = 1 2 .

Применив теорему Коши, имеем, что

y = C 1 + C 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x = = 3 2 + 1 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x

Ответ: 3 2 + 1 2 e 2 x - 1 6 x 3 + 1 4 x 2 + 3 4 x .

Когда функция f (x) представляется в виде произведения многочлена со степенью n и экспоненты f (x) = P n (x) · e a x , тогда отсюда получаем, что частным решением ЛНДУ второго порядка будет уравнение вида y ~ = e a x · Q n (x) · x γ , где Q n (x) является многочленом n -ой степени, а r – количеством корней характеристического уравнения, равняющиеся α .

Коэффициенты, принадлежащие Q n (x) находятся по равенству y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 2

Найти общее решение дифференциального уравнения вида y "" - 2 y " = (x 2 + 1) · e x .

Решение

Уравнение общего вида y = y 0 + y ~ . Указанное уравнение соответствует ЛОДУ y "" - 2 y " = 0 . По предыдущему примеру видно, что его корни равняются k 1 = 0 и k 2 = 2 и y 0 = C 1 + C 2 e 2 x по характеристическому уравнению.

Видно, что правой частью уравнения является x 2 + 1 · e x . Отсюда ЛНДУ находится через y ~ = e a x · Q n (x) · x γ , где Q n (x) , являющимся многочленом второй степени, где α = 1 и r = 0 , потому как у характеристического уравнения отсутствует корень, равный 1 . Отсюда получаем, что

y ~ = e a x · Q n (x) · x γ = e x · A x 2 + B x + C · x 0 = e x · A x 2 + B x + C .

А, В, С являются неизвестными коэффициентами, которые можно найти по равенству y ~ "" - 2 y ~ " = (x 2 + 1) · e x .

Получили, что

y ~ " = e x · A x 2 + B x + C " = e x · A x 2 + B x + C + e x · 2 A x + B = = e x · A x 2 + x 2 A + B + B + C y ~ " " = e x · A x 2 + x 2 A + B + B + C " = = e x · A x 2 + x 2 A + B + B + C + e x · 2 A x + 2 A + B = = e x · A x 2 + x 4 A + B + 2 A + 2 B + C

y ~ "" - 2 y ~ " = (x 2 + 1) · e x ⇔ e x · A x 2 + x 4 A + B + 2 A + 2 B + C - - 2 e x · A x 2 + x 2 A + B + B + C = x 2 + 1 · e x ⇔ e x · - A x 2 - B x + 2 A - C = (x 2 + 1) · e x ⇔ - A x 2 - B x + 2 A - C = x 2 + 1 ⇔ - A x 2 - B x + 2 A - C = 1 · x 2 + 0 · x + 1

Показатели при одинаковых коэффициентах приравниваем и получаем систему линейных уравнений. Отсюда и находим А, В, С:

A = 1 - B = 0 2 A - C = 1 ⇔ A = - 1 B = 0 C = - 3

Ответ: видно, что y ~ = e x · (A x 2 + B x + C) = e x · - x 2 + 0 · x - 3 = - e x · x 2 + 3 является частным решением ЛНДУ, а y = y 0 + y = C 1 e 2 x - e x · x 2 + 3 - общим решением для неоднородного дифуравнения второго порядка.

Когда функция записывается как f (x) = A 1 cos (β x) + B 1 sin β x , а А 1 и В 1 являются числами, тогда частным решением ЛНДУ считается уравнение вида y ~ = A cos β x + B sin β x · x γ , где А и В считаются неопределенными коэффициентами, а r числом комплексно сопряженных корней, относящихся к характеристическому уравнению, равняющимся ± i β . В этом случае поиск коэффициентов проводится по равенству y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 3

Найти общее решение дифференциального уравнения вида y "" + 4 y = cos (2 x) + 3 sin (2 x) .

Решение

Перед написанием характеристического уравнения находим y 0 . Тогда

k 2 + 4 = 0 k 2 = - 4 k 1 = 2 i , k 2 = - 2 i

Имеем пару комплексно сопряженных корней. Преобразуем и получим:

y 0 = e 0 · (C 1 cos (2 x) + C 2 sin (2 x)) = C 1 cos 2 x + C 2 sin (2 x)

Корни из характеристического уравнения считаются сопряженной парой ± 2 i , тогда f (x) = cos (2 x) + 3 sin (2 x) . Отсюда видно, что поиск y ~ будет производиться из y ~ = (A cos (β x) + B sin (β x) · x γ = (A cos (2 x) + B sin (2 x)) · x . Неизвестные коэффициенты А и В будем искать из равенства вида y ~ "" + 4 y ~ = cos (2 x) + 3 sin (2 x) .

Преобразуем:

y ~ " = ((A cos (2 x) + B sin (2 x) · x) " = = (- 2 A sin (2 x) + 2 B cos (2 x)) · x + A cos (2 x) + B sin (2 x) y ~ "" = ((- 2 A sin (2 x) + 2 B cos (2 x)) · x + A cos (2 x) + B sin (2 x)) " = = (- 4 A cos (2 x) - 4 B sin (2 x)) · x - 2 A sin (2 x) + 2 B cos (2 x) - - 2 A sin (2 x) + 2 B cos (2 x) = = (- 4 A cos (2 x) - 4 B sin (2 x)) · x - 4 A sin (2 x) + 4 B cos (2 x)

Тогда видно, что

y ~ "" + 4 y ~ = cos (2 x) + 3 sin (2 x) ⇔ (- 4 A cos (2 x) - 4 B sin (2 x)) · x - 4 A sin (2 x) + 4 B cos (2 x) + + 4 (A cos (2 x) + B sin (2 x)) · x = cos (2 x) + 3 sin (2 x) ⇔ - 4 A sin (2 x) + 4 B cos (2 x) = cos (2 x) + 3 sin (2 x)

Необходимо приравнять коэффициенты синусов и косинусов. Получаем систему вида:

4 A = 3 4 B = 1 ⇔ A = - 3 4 B = 1 4

Следует, что y ~ = (A cos (2 x) + B sin (2 x) · x = - 3 4 cos (2 x) + 1 4 sin (2 x) · x .

Ответ: общим решением исходного ЛНДУ второго порядка с постоянными коэффициентами считается

y = y 0 + y ~ = = C 1 cos (2 x) + C 2 sin (2 x) + - 3 4 cos (2 x) + 1 4 sin (2 x) · x

Когда f (x) = e a x · P n (x) sin (β x) + Q k (x) cos (β x) , тогда y ~ = e a x · (L m (x) sin (β x) + N m (x) cos (β x) · x γ . Имеем, что r – это число комплексно сопряженных пар корней, относящихся к характеристическому уравнению, равняются α ± i β , где P n (x) , Q k (x) , L m (x) и N m (x) являются многочленами степени n , k , т, m , где m = m a x (n , k) . Нахождение коэффициентов L m (x) и N m (x) производится, исходя из равенства y ~ "" + p · y ~ " + q · y ~ = f (x) .

Пример 4

Найти общее решение y "" + 3 y " + 2 y = - e 3 x · ((38 x + 45) sin (5 x) + (8 x - 5) cos (5 x)) .

Решение

По условию видно, что

α = 3 , β = 5 , P n (x) = - 38 x - 45 , Q k (x) = - 8 x + 5 , n = 1 , k = 1

Тогда m = m a x (n , k) = 1 . Производим нахождение y 0 , предварительно записав характеристическое уравнение вида:

k 2 - 3 k + 2 = 0 D = 3 2 - 4 · 1 · 2 = 1 k 1 = 3 - 1 2 = 1 , k 2 = 3 + 1 2 = 2

Получили, что корни являются действительными и различными. Отсюда y 0 = C 1 e x + C 2 e 2 x . Далее необходимо искать общее решение, исходя из неоднородного уравнения y ~ вида

y ~ = e α x · (L m (x) sin (β x) + N m (x) cos (β x) · x γ = = e 3 x · ((A x + B) cos (5 x) + (C x + D) sin (5 x)) · x 0 = = e 3 x · ((A x + B) cos (5 x) + (C x + D) sin (5 x))

Известно, что А, В, С являются коэффициентами, r = 0 , потому как отсутствует пара сопряженных корней, относящихся к характеристическому уравнению с α ± i β = 3 ± 5 · i . Данные коэффициенты находим из полученного равенства:

y ~ "" - 3 y ~ " + 2 y ~ = - e 3 x ((38 x + 45) sin (5 x) + (8 x - 5) cos (5 x)) ⇔ (e 3 x ((A x + B) cos (5 x) + (C x + D) sin (5 x))) "" - - 3 (e 3 x ((A x + B) cos (5 x) + (C x + D) sin (5 x))) = - e 3 x ((38 x + 45) sin (5 x) + (8 x - 5) cos (5 x))

Нахождение производной и подобных слагаемых дает

E 3 x · ((15 A + 23 C) · x · sin (5 x) + + (10 A + 15 B - 3 C + 23 D) · sin (5 x) + + (23 A - 15 C) · x · cos (5 x) + (- 3 A + 23 B - 10 C - 15 D) · cos (5 x)) = = - e 3 x · (38 · x · sin (5 x) + 45 · sin (5 x) + + 8 · x · cos (5 x) - 5 · cos (5 x))

После приравнивания коэффициентов получаем систему вида

15 A + 23 C = 38 10 A + 15 B - 3 C + 23 D = 45 23 A - 15 C = 8 - 3 A + 23 B - 10 C - 15 D = - 5 ⇔ A = 1 B = 1 C = 1 D = 1

Из всего следует, что

y ~ = e 3 x · ((A x + B) cos (5 x) + (C x + D) sin (5 x)) = = e 3 x · ((x + 1) cos (5 x) + (x + 1) sin (5 x))

Ответ: теперь получено общее решение заданного линейного уравнения:

y = y 0 + y ~ = = C 1 e x + C 2 e 2 x + e 3 x · ((x + 1) cos (5 x) + (x + 1) sin (5 x))

Алгоритм решения ЛДНУ

Определение 1

Любой другой вид функции f (x) для решения предусматривает соблюдение алгоритма решения:

  • нахождение общего решения соответствующего линейного однородного уравнения, где y 0 = C 1 ⋅ y 1 + C 2 ⋅ y 2 , где y 1 и y 2 являются линейно независимыми частными решениями ЛОДУ, С 1 и С 2 считаются произвольными постоянными;
  • принятие в качестве общего решения ЛНДУ y = C 1 (x) ⋅ y 1 + C 2 (x) ⋅ y 2 ;
  • определение производных функции через систему вида C 1 " (x) + y 1 (x) + C 2 " (x) · y 2 (x) = 0 C 1 " (x) + y 1 " (x) + C 2 " (x) · y 2 " (x) = f (x) , а нахождение функций C 1 (x) и C 2 (x) посредствам интегрирования.

Пример 5

Найти общее решение для y "" + 36 y = 24 sin (6 x) - 12 cos (6 x) + 36 e 6 x .

Решение

Переходим к написанию характеристического уравнения, предварительно записав y 0 , y "" + 36 y = 0 . Запишем и решим:

k 2 + 36 = 0 k 1 = 6 i , k 2 = - 6 i ⇒ y 0 = C 1 cos (6 x) + C 2 sin (6 x) ⇒ y 1 (x) = cos (6 x) , y 2 (x) = sin (6 x)

Имеем, что запись общего решения заданного уравнения получит вид y = C 1 (x) · cos (6 x) + C 2 (x) · sin (6 x) . Необходимо перейти к определению производных функций C 1 (x) и C 2 (x) по системе с уравнениями:

C 1 " (x) · cos (6 x) + C 2 " (x) · sin (6 x) = 0 C 1 " (x) · (cos (6 x)) " + C 2 " (x) · (sin (6 x)) " = 0 ⇔ C 1 " (x) · cos (6 x) + C 2 " (x) · sin (6 x) = 0 C 1 " (x) (- 6 sin (6 x) + C 2 " (x) (6 cos (6 x)) = = 24 sin (6 x) - 12 cos (6 x) + 36 e 6 x

Необходимо произвести решение относительно C 1 " (x) и C 2 " (x) при помощи любого способа. Тогда запишем:

C 1 " (x) = - 4 sin 2 (6 x) + 2 sin (6 x) cos (6 x) - 6 e 6 x sin (6 x) C 2 " (x) = 4 sin (6 x) cos (6 x) - 2 cos 2 (6 x) + 6 e 6 x cos (6 x)

Каждое из уравнений следует проинтегрировать. Тогда запишем получившиеся уравнения:

C 1 (x) = 1 3 sin (6 x) cos (6 x) - 2 x - 1 6 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) - 1 2 e 6 x sin (6 x) + C 3 C 2 (x) = - 1 6 sin (6 x) cos (6 x) - x - 1 3 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) + 1 2 e 6 x sin (6 x) + C 4

Отсюда следует, что общее решение будет иметь вид:

y = 1 3 sin (6 x) cos (6 x) - 2 x - 1 6 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) - 1 2 e 6 x sin (6 x) + C 3 · cos (6 x) + + - 1 6 sin (6 x) cos (6 x) - x - 1 3 cos 2 (6 x) + + 1 2 e 6 x cos (6 x) + 1 2 e 6 x sin (6 x) + C 4 · sin (6 x) = = - 2 x · cos (6 x) - x · sin (6 x) - 1 6 cos (6 x) + + 1 2 e 6 x + C 3 · cos (6 x) + C 4 · sin (6 x)

Ответ: y = y 0 + y ~ = - 2 x · cos (6 x) - x · sin (6 x) - 1 6 cos (6 x) + + 1 2 e 6 x + C 3 · cos (6 x) + C 4 · sin (6 x)

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение

где и – непрерывные функция в интервале называется неоднородным линейным дифференциальным уравнение второго порядка, функции и – его коэффицинентами. Если в этом интервале, то уравнение принимает вид:

и называется однородным линейным дифференциальным уравнением второго порядка. Если уравнение (**) имеет те же коэффициенты и , как уравнение (*), то оно называется однородным уравнением, соответствующим неоднородному уравнению (*).

Однородные дифференциальные линейные уравнения второго порядка

Пусть в линейном уравнении

И - постоянные действительные числа.

Частное решение уравнения будем искать в виде функции , где – действительное или комплексное число, подлежащее определению. Дифференцируя по , получаем:

Подставляя в исходное дифуравнение, получаем:

Отсюда, учитывая, что , имеем:

Это уравнение называется характеристическим уравнением однородного линейного дифуравнения. Характеристическое уравнение и дает возможность найти . Это уравнение второй степени, поэтому имеет два корня. Обозначим их через и . Возможны три случая:

1) Корни действительные и разные . В этом случае общее решение уравнения:

Пример 1

2) Корни действительные и равные . В этом случае общее решение уравнения:

Пример 2

Оказались на этой странице, пытаясь решить задачу на экзамене или зачете? Если так и не смогли сдать экзамен - в следующий раз договоритесь заранее на сайте об Онлайн помощи по высшей математике .

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

3) Корни комплексные . В этом случае общее решение уравнения:

Пример 3

Характеристическое уравнение имеет вид:

Решение характеристического уравнения:

Общее решение исходного дифуравнения:

Неоднородные дифференциальные линейные уравнения второго порядка

Рассмотрим теперь решение некоторых типов линейного неоднородного уравнения второго порядка с постоянными коэффициентами

где и – постоянные действительные числа, – известная непрерывная функция в интервале . Для нахождения общего решения такого дифференциального уравнения необходимо знать общее решение соответствующего однородного дифференциального уравнения и частное решение . Рассмотрим некоторые случаи:

Частное решение дифференциального уравнения ищем также в форме квадратного трехчлена:

Если 0 – однократный корень характеристического уравнения, то

Если 0 – двухкратный корень характеристического уравнения, то

Аналогично обстоит дело, если – многочлен произвольной степени

Пример 4

Решим соответствующее однородное уравнение.

Характеристическое уравнение:

Общее решение однородного уравнения:

Найдем частное решение неоднородного дифуравнения:

Подставляя найденные производные в исходное дифуравнение, получаем:

Искомое частное решение:

Общее решение исходного дифуравнения:

Частное решение ищем в виде , где – неопределенный коэффициент.

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициент.

Если – корень характеристического уравнения, то частное решение исходного дифференциального уравнения ищем в виде , когда – однократный корень, и , когда – двукратный корень.

Пример 5

Характеристическое уравнение:

Общее решение соответствующего однородного дифференциального уравнения:

Найдем частное решение соответствующего неоднородного дифференциального уравнения:

Общее решение дифуравнения:

В этом случае частное решение ищем в форме тригонометрического двучлена:

где и – неопределенные коэффициенты

Подставляя и в исходное дифференциальное уравнение, получим тождество, откуда находим коэффициенты.

Эти уравнения определяют коэффициенты и кроме случая, когда (или когда – корни характеристического уравнения). В последнем случае частное решение дифференциального уравнения ищем в виде:

Пример 6

Характеристическое уравнение:

Общее решение соответствующего однородного дифуравнения:

Найдем частное решение неоднородного дифуравнения

Подставляя в исходное дифуравнение, получаем:

Общее решение исходного дифуравнения:

Сходимость числового ряда
Дано определение сходимости ряда и подробно рассматриваются задачи на исследование сходимости числовых рядов - признаки сравнения, признак сходимости Даламбера, признак сходимости Коши и интегральный признак сходимости Коши⁡.

Абсолютная и условная сходимость ряда
На странице рассмотрены знакочередующиеся ряды, их условная и абсолютная сходимость, признак сходимости Лейбница для знакочередующихся рядов - содержится краткая теория по теме и пример решения задачи.

В этом параграфе будет рассмотрен частный случай линейных уравнений второго порядка, когда коэффициенты уравнения постоянны, т. е. являются числами. Такие уравнения называются уравнениями с постоянными коэффициентами. Этот вид уравнений находит особенно широкое применение.

1. Линейные однородные дифференциальные уравнения

второго порядка с постоянными коэффициентами

Рассмотрим уравнение

в котором коэффициенты постоянны. Полагая, что деля все члены уравнения на и обозначая

запишем данное уравнение в виде

Как известно, для нахождения общего решения линейного однородного уравнения второго порядка достаточно знать его фундаментальную систему частных решений. Покажем, как находится фундаментальная система частных решений для однородного линейного дифференциального уравнения с постоянными коэффициентами. Будем искать частное решение этого уравнения в виде

Дифференцируя эту функцию два раза и подставляя выражения для в уравнение (59), получим

Так как , то, сокращая на получим уравнение

Из этого уравнения определяются те значения k, при которых функция будет решением уравнения (59).

Алгебраическое уравнение (61) для определения коэффициента к называется характеристическим уравнением данного дифференциального уравнения (59).

Характеристическое уравнение является уравнением второй степени и имеет, следовательно, два корня. Эти корни могут быть либо действительными различными, либо действительными и равными, либо комплексными сопряженными.

Рассмотрим, какой вид имеет фундаментальная система частных решений в каждом из этих случаев.

1. Корни характеристического уравнения действительные и различные: . В этом случае по формуле (60) находим два частных решения:

Эти два частных решения образуют фундаментальную систему решений на всей числовой оси, так как определитель Вронского нигде не обращается в нуль:

Следовательно, общее решение уравнения согласно формуле (48) имеет вид

2. Корни характеристического уравнения равные: . В этом случае оба корня будут действительными. По формуле (60) получаем только одно частное решение

Покажем, что второе частное решение образующее вместе с первым фундаментальную систему, имеет вид

Прежде всего проверим, что функция является решением уравнения (59). Действительно,

Но , так как есть корень характеристического уравнения (61). Кроме того, по теореме Виета Поэтому . Следовательно, , т. е. функция действительно является решением уравнения (59).

Покажем теперь, что найденные частные решения образуют фундаментальную систему решений. Действительно,

Таким образом, в этом случае общее решение однородного линейного уравнения имеет вид

3. Корни характеристического уравнения комплексные. Как известно, комплексные корни квадратного уравнения с действительными коэффициентами являются сопряженными комплексными числами, т. е. имеют вид: . В этом случае частные решения уравнения (59), согласно формуле (60), будут иметь вид:

Применяя формулы Эйлера (см. гл. XI, § 5 п. 3), выражения для можно записать в виде:

Эти решения являются комплексными. Чтобы получить действительные решения, рассмотрим новые функции

Они являются линейными комбинациями решений и, следовательно, сами являются решениями уравнения (59) (см. § 3, п. 2, теорему 1).

Легко показать, что определитель Вронского для этих решений отличен от нуля и, следовательно, решения образуют фундаментальную систему решений.

Таким образом, общее решение однородного линейного дифференциального уравнения в случае комплексных корней характеристического уравнения имеет вид

Приведем в заключение таблицу формул общего решения уравнения (59) в зависимости от вида корней характеристического уравнения.

Дифференциальные уравнения второго порядка и высших порядков.
Линейные ДУ второго порядка с постоянными коэффициентами.
Примеры решений.

Переходим к рассмотрению дифференциальных уравнений второго порядка и дифференциальных уравнений высших порядков. Если Вы смутно представляете, что такое дифференциальное уравнение (или вообще не понимаете, что это такое), то рекомендую начать с урока Дифференциальные уравнения первого порядка. Примеры решений . Многие принципы решения и базовые понятия диффуров первого порядка автоматически распространяются и на дифференциальные уравнения высших порядков, поэтому очень важно сначала разобраться с уравнениями первого порядка .

У многих читателей может быть предубеждение, что ДУ 2-го, 3-го и др. порядков – что-то очень трудное и недоступное для освоения. Это не так. Научиться решать диффуры высшего порядка вряд ли сложнее, чем «обычные» ДУ 1-го порядка . А местами – даже проще, поскольку в решениях активно используется материал школьной программы.

Наиболее популярны дифференциальные уравнения второго порядка . В дифференциальное уравнение второго порядка обязательно входит вторая производная и не входят

Следует отметить, что некоторые из малышей (и даже все сразу) могут отсутствовать в уравнении, важно, чтобы дома был отец . Самое примитивное дифференциальное уравнение второго порядка выглядит так:

Дифференциальные уравнения третьего порядка в практических заданиях встречаются значительно реже, по моим субъективным наблюдениям в Государственную Думу они бы набрали примерно 3-4% голосов.

В дифференциальное уравнение третьего порядка обязательно входит третья производная и не входят производные более высоких порядков:

Самое простое дифференциальное уравнение третьего порядка выглядит так: – папаша дома, все дети на прогулке.

Аналогичным образом можно определить дифференциальные уравнения 4-го, 5-го и более высоких порядков. В практических задачах такие ДУ проскакивают крайне редко, тем не менее, я постараюсь привести соответствующие примеры.

Дифференциальные уравнения высших порядков, которые предлагаются в практических задачах, можно разделить на две основные группы.

1) Первая группа – так называемые уравнения, допускающие понижение порядка . Налетайте!

2) Вторая группа – линейные уравнения высших порядков с постоянными коэффициентами . Которые мы начнем рассматривать прямо сейчас.

Линейные дифференциальные уравнения второго порядка
с постоянными коэффициентами

В теории и практике различают два типа таких уравнений – однородное уравнение и неоднородное уравнение .

Однородное ДУ второго порядка с постоянными коэффициентами имеет следующий вид:
, где и – константы (числа), а в правой части – строго ноль.

Как видите, особых сложностей с однородными уравнениями нет, главное, правильно решить квадратное уравнение .

Иногда встречаются нестандартные однородные уравнения, например уравнение в виде , где при второй производной есть некоторая константа , отличная от единицы (и, естественно, отличная от нуля). Алгоритм решения ничуть не меняется, следует невозмутимо составить характеристическое уравнение и найти его корни. Если характеристическое уравнение будет иметь два различных действительных корня, например: , то общее решение запишется по обычной схеме: .

В ряде случаев из-за опечатки в условии могут получиться «нехорошие» корни, что-нибудь вроде . Что делать, ответ придется записать так:

С «плохими» сопряженными комплексными корнями наподобие тоже никаких проблем, общее решение:

То есть, общее решение в любом случае существует . Потому что любое квадратное уравнение имеет два корня.

В заключительном параграфе, как я и обещал, коротко рассмотрим:

Линейные однородные уравнения высших порядков

Всё очень и очень похоже.

Линейное однородное уравнение третьего порядка имеет следующий вид:
, где – константы.
Для данного уравнения тоже нужно составить характеристическое уравнение и найти его корни. Характеристическое уравнение, как многие догадались, выглядит так:
, и оно в любом случае имеет ровно три корня.

Пусть, например, все корни действительны и различны: , тогда общее решение запишется следующим образом:

Если один корень действительный , а два других – сопряженные комплексные , то общее решение записываем так:

Особый случай, когда все три корня кратны (одинаковы). Рассмотрим простейшие однородное ДУ 3-го порядка с одиноким папашей: . Характеристическое уравнение имеет три совпавших нулевых корня . Общее решение записываем так:

Если характеристическое уравнение имеет, например, три кратных корня , то общее решение, соответственно, такое:

Пример 9

Решить однородное дифференциальное уравнение третьего порядка

Решение: Составим и решим характеристическое уравнение:

, – получен один действительный корень и два сопряженных комплексных корня.

Ответ: общее решение

Аналогично можно рассмотреть линейное однородное уравнение четвертого порядка с постоянными коэффициентами: , где – константы.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме