Подпишись и читай
самые интересные
статьи первым!

Обеспечение безопасности при эксплуатации электроустановок и защита от неблагоприятного действия электричества атмосферное электричество и меры зашиты от прямого воздействия и вторичного проявления. Защита объекта от воздействия атмосферного статического

Возникновение заряда статического электричества

В производственных условиях широко используются и получаются вещества, обладающие диэлектрическими свойствами, что способствует возникновению зарядов статического электричества (СЭ). Электрические разряды в таких системах часто являются причиной взрывов и пожаров. Кроме того, статическое электричество является причиной снижения точности показаний электрических приборов и надёжности работы средств автоматики. Определённое негативное воздействие статическое электричество оказывает на человека, приводя, например, к рефлекторным телодвижениям при кратковременном (доли секунды) протекании электрического тока во время электрических разрядов. Это обстоятельство может вызвать травмирование персонала, например, при падении с высоты или попадании в опасную зону машин и механизмов.

По современным представлениям статическое электричество возникает в результате сложных процессов, связанных с перераспределением электронов и ионов при соприкосновении двух поверхностей неоднородных жидких или твёрдых веществ. При этом на поверхности соприкосновения образуется двойной электрический слой, состоящий из расположенных определённым образом электрических зарядов противоположных знаков.

Двойной электрический слой образуется в месте контакта поверхностей. При разделении материалов происходит механический разрыв зарядов двойного слоя, создаётся разность потенциалов (U, В) и заряды начинают перемещаться в точку начала разделения поверхностей веществ А (рис. 8). При достаточно большой величине U в зазоре разрыва поверхностей возникает газовый разряд. При перемещении зарядов по разделяемым поверхностям и газовому промежутку возникает соответственно ток омического сопротивления (I о, А) и ток газового разряда (ионизации) (I и, А). Если время разделения поверхностей будет меньше времени перемещения зарядов в точку А, то поверхности после разделения будут иметь остаточные электрические заряды, что и создаёт разность потенциалов, а вместе с нею и электростатическое поле. Такое явление называется электризацией. Электризация твёрдых тел на производстве возможна, например, при движении ремённых передач, транспортёрных лент, запылённых газов в трубопроводах, пневмотранспорте сыпучих материалов, дроблении, перемешивании и в др. ситуациях. Электризации подвержены также жидкости с низкой электропроводностью, например, нефтепродукты, движущиеся по трубопроводам или перемешивающиеся в ёмкостях, аппаратах.

Рис. 8.

I о - ток, обусловленный омической проводимостью разделяемых поверхностей; I и - ток ионизации в зазоре между разделяемыми поверхностями; А - точка начала разделения поверхностей

Явление возникновения электрических зарядов при взаимном трении двух диэлектриков, полупроводников или металлов с различными физико-химическими свойствами называется трибоэлектризацией (от греч. tribos - трение).

В производственных условиях электризация зависит от многих факторов и, прежде всего, от физико-химических свойств перерабатываемых (перемещаемых) материалов и характера технологического процесса.

Так, например, степень электризации зависит от величины удельного электрического сопротивления материала (с, Ом·м). При с 1·10 6 Ом·м электризация практически не происходит. Вещества, имеющие с 1·10 8 Ом·м электризуются хорошо (полистирол, стекло, жидкие углеводороды, синтетические волокна, прорезиненные ткани и др.).

На степень электризации влияет также относительная влажность воздуха и его температура, скорость движения жидкости и материала, степень дробления твёрдого материала и жидкости и др. факторы.

Статическое электричество

СтЭ (статическое электричество) – совокупность явлений, связанных с образованием, сохранением и релаксацией электрических зарядов на поверхности и в объеме диэлектрических и полупроводниковых материалов и изделий.

Заряды СтЭ образуются при деформации (изгибе, растяжении, резании,….) и дроблении твердых тел, при разбрызгивании и истечении жидкостей, при перемещении (трении) твердых тел, слоев сыпучих и жидких тел, при испарении, кристаллизации, при облучении, при химических реакциях.

Заряды СтЭ образуются при перераспределении заряженных (электронов) частиц в телах. Обычно атомы химических элементов и тела являются электрически нейтральными.

Заряды СтЭ возникают при передаче телу избыточной энергии (любым способом). Избыточная энергия вызывает нагрев тел. Остывая, они передают энергию окружающей среде: колебаниями атомов, электромагнитным излучением, эмиссией электронов, ионов и ионрадикалов.

Самая большая доля при передаче энергии при эмиссии электронов (до 90 % при теплопереносе в металлах). Обычно сопровождается излучением квантов электромагнитных излучений.

В строительстве в ходе выполнения дробления, деформации, трения сыпучих и твердых тел энергия преобразуется в избыточную тепловую. Эта работа сопровождается экзоэмиссией электронов с поверхности тел. Это явление – «эффект Крамера». При трении возникают встречные потоки электронов. Разность интенсивности встречных потоков вызывает электризацию тел.

Если тела выполнены из одного материала, то электризация не происходит, т.к. встречная потоки электронов полностью компенсируются.

Конечный результат электризации – образование двойного электрического слоя.

Электризации способствуют:

Увеличение силового взаимодействия

Увеличение скорости перемещения твердых, сыпучих и жидких тел

Увеличение различия в электросопротивлении

Двойной электрический слой – неустойчивое явление. Происходит постоянная релаксация зарядов:

Растекание зарядов по поверхности тела

Распределение в объеме

Стекание зарядов в воздух

Искровые разряды (наиболее эффективная форма релаксации)

Сохранение зарядов СтЭ зависит от объемного удельного электрического сопротивления материалов (r, Ом м):

при r>10 5 – материал является диэлектриком или полупроводником, способен долго хранить заряды (капрон r=10 12 Ом м).

Искровые разряды могут стать источником зажигания паро-, газо-, и пылевоздушных смесей.

Электрический заряд – q = Cj (Кл), где С – электрическая емкость тела относительно земли, j - потенциал тела (В) относительно земли. Ток электризации I=jn ср, где n ср - среднее число разрядов в секунду.

Энергия разряда: W = 0.5 C j 2 = 0.5 q j (Дж)

Минимальная энергия зажигания (W з) – наименьшее значение энергии электрического разряда, при которой происходит зажигание горючей смеси.

Электростатическая искробезопасность (ЭСИБ) считается обеспеченной, если в результате принятых мер, энергия разряда не превышает 0.25 W з.

Величина W з (мДж) для: бензина – 0.15, метана – 028, оксид углерода - 8, хлопковый пух – 10, древесная мука и алюминиевая пыль – 20.

В соответствии с ПУЭ (гл. 7) установлены взрывоопасные зоны классов: B-Ia, B-Iб, B-Iв, B-Iг, B-II, B-IIa. Это такие зоны помещения, оборудования и электроустановок, в которых могут образоваться взрывоопасные смеси газов, паров ЛВЖ, горючих пылей и волокон с воздухом (при нормальной работе или при аварии). Электризация может привести к разрядам, пожарам и взрывам.


Защита от статического электричества

Классическая схема мер защиты

1. Исключить опасность - исключить образование статического электричества или снизить его до безопасного уровня:

Изготовление контактирующих частей из материалов с близкими величинами электросопротивления;

Уменьшение силового воздействия;

Уменьшение скоростей (например, тормозные устройства для падающих сыпучих);

Нефтепродукты, бензолы легко электризуются. Поэтому ограничивается скорость истечения: 10 м/сек при r 5 Ом м, 5 м/сек при r 9 Ом м; нефтепродукты не допускается наливать свободно падающей струей, сливную трубу располагать у дна, не допускать интенсивного перемешивания;

2. Удаление от опасности: автоматизация и механизация производственных процессов, т.е. без участия человека

3. Ограждение опасности - мероприятие, направленные на быструю безразрядную релаксацию зарядов:

Заземление металлического и электропроводного оборудования, присоединение к заземлителю не менее чем в двух точках. Сопротивление не более 10 Ом;

– создание единой электрической цепи, обеспечение электропроводности во фланцах, покрытие пластиковых вставок электропроводящими материалами;

Добавление токопроводящих примесей;

Лакокрасочные токопроводящие покрытия;

Добавление в электризующиеся жидкости антистатических добавок (слабых электролитов)

Корпуса автоцистерн при перекачке топлива присоединяют к стационарному заземлителю, при движении – цепь;

Увеличение относительной влажности до 65…70 %. Эффективно, если материалы гидрофильны, т.е. способны образовать на поверхности тончайшую водяную пленку. Она экранирует эмиссию электронов и способствует релаксации;

Ионизация воздуха в зоне образования зарядов: Индукционные нейтрализаторы – создание электростатического поля высокой напряженности. С острия электродов-ионизаторов стекают потоки электронов, Радиоизотопные нейтрализаторы: a-излучение (положительно заряженные ядра атомов гелия, толщина слоя ионизации 40 мм) и b-излучение (электроны, слой ионизации - 400 мм);

4. Ограждение человека

Антистатическая одежда и обувь;

Токопроводящие полы и площадки;

Заземленные токопроводящая обивка стульев и электропроводные браслеты;

5. Организационные мероприятия: обучение, инструктаж, …


Атмосферное электричество. Молниезащита

Образуется в облаках – из мелких водяных частиц.

Солнечная энергия – 460 кДж на 1 см 2 в год поверхности Земли. 93 кДж/(см 2 год) на испарение воды из океанов. Водяной пар поднимается и конденсируется в водяную пыль с выделением теплоты (2260 кДж/л). Избыток энергии частично расходуется на эмиссию электронов с поверхности водяных капель. В основном эмитируют протоны и капельки воды из кристаллов льда. Протоны эмитируют из более крупных капель к более мелким.

Чистая вода – хороший диэлектрик. Заряды сохраняются долго. Тяжелые отрицательно заряженные капельки образуют нижний слой облаков. Мелкие легкие – верхний. Электростатическое притяжение разноименно заряженных частиц поддерживает сохранность облаков.

Эмиссия протонов возникает и при кристаллизации водяных частиц. Соударение кристаллов льда, снежинок, градин, ветер – приводит к избытку энергии и эмиссии протонов. Атмосферное электричество имеет ту же природу, что и статическое (например, грозы на крайнем севере во время сильных снегопадов или бурь, в облаках возникает сияние и вспышки, свечение, шаровые молнии). Иногда заряжаются провода.

По экспериментальным данным, нижняя часть облаков чаще всего имеет отрицательный заряд, верхняя – положительный, а бывают облака одного заряда.

Заряд облака образуют мельчайшие одноименно заряженные частицы воды. Электрический потенциал грозового облака составляет десятки миллионов вольт, может достигать и 1 млрд. вольт.

Основная форма релаксации – электрический разряд между облаками и между облаком и землей. Диаметр канала около 1 см, ток в канале десятки килоампер, температура 25000 о С, время разряда – доли секунды.

Первичное воздействие атмосферного электричества – прямой удар молнии – мощный поражающий фактор - механические разрушения зданий, сооружений, деревьев, пожары, взрывы, поражения людей,…. Причина – практически мгновенное превращение воды и веществ в зоне молниевого канала в пар и газ высокой температуры и высокого давления.

Вторичные воздействия атмосферного электричества:

- Электростатическая индукция – наведение заряда противоположного знака на предметах, изолированных от земли, от электростатического заряда облака, в поле которого находятся эти предметы. Индуцируется заряд противоположного знака на крышах, оборудовании, провода ЛЭП, … Заряды сохраняются и после разряда облака. Они могут релаксировать в виде искрового разряда на ближайшие заземленные предметы, и вызвать электротравматизм, взрыв или пожар.

- Электромагнитная индукция – в канале молнии протекает мощный, быстро меняющийся во времени ток, который создает вокруг себя изменяющееся электромагнитное поле. Это поле индуцирует в металлических контурах ЭДС и протекание тока, может вызвать искровой разряд … электротравматизм, взрыв или пожар.

- Занос высоких потенциалов – прямой удар молнии в металлоконструкции (рельсовые пути, водопроводы, газопроводы, провода ЛЭП, и т.д.), расположенные на уровне или над уровнем земли, но входящие в здание. Занесение высоких потенциалов в здание приводит к образованию разрядов на заземленное оборудование … электротравматизм, взрыв или пожар.


Защита от атмосферного электричества осуществляется в соответствии с «Инструкцией по устройству молниезащиты зданий, сооружений и промышленных коммуникаций. СО 153-34.21.122-2003 » .

Все объекты могут подразделяться на обычные и специальные.

Обычные объекты - жилые и административные строения, а также здания и сооружения, высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.

Специальные объекты :

объекты, представляющие опасность для непосредственного окружения;

объекты, представляющие опасность для социальной и физической окружающей среды (объекты, которые при поражении молнией могут вызвать вредные биологические, химические и радиоактивные выбросы);

прочие объекты, для которых может предусматриваться специальная молниезащита, например, строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты.

В табл. 2.1 даны примеры разделения объектов на четыре класса.

Примеры классификации объектов

Таблица 2.1

Тип объекта

Последствия удара молнии

Жилой дом

Отказ электроустановок, пожар и повреждение имущества. Обычно небольшое повреждение предметов, расположенных в месте удара молнии или задетых ее каналом

Первоначально - пожар и занос опасного напряжения, затем - потеря электропитания с риском гибели животных из-за отказа электронной системы управления вентиляцией, подачи корма и т. д.

Театр; школа; универмаг; спортивное сооружение

Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий

Банк; страховая компания; коммерческий офис

Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных

Больница; детский сад; дом для престарелых

Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных. Необходимость помощи тяжелобольным и неподвижным людям

Промышленные предприятия

Дополнительные последствия, зависящие от условий производства - от незначительных повреждений до больших ущербов из-за потерь продукции

Музеи и археологические памятники

Невосполнимая потеря культурных ценностей

Специальный с ограниченной опасностью

Средства связи; электростанции; пожароопасные производства

Недопустимое нарушение коммунального обслуживания (телекоммуникаций). Косвенная опасность пожара для соседних объектов

Специальный, представляющий опасность для непосредственного окружения

Нефтеперерабатывающие предприятия; заправочные станции; производства петард и фейерверков

Пожары и взрывы внутри объекта и в непосредственной близости

Специальный, опасный для экологии

Химический завод; атомная электростанция; биохимические фабрики и лаборатории

Пожар и нарушение работы оборудования с вредными последствиями для окружающей среды


При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ). Например, для обычных объектов может быть предложено четыре уровня надежности защиты, указанные в табл. 2.2.

Уровни защиты от ПУМ для обычных объектов

Таблица 2.2

Уровень защиты

Надежность защиты от ПУМ

Для специальных объектов минимально допустимый уровень надежности защиты от ПУМ устанавливается в пределах 0,9-0,999 в зависимости от степени его общественной значимости и тяжести ожидаемых последствий от ПУМ по согласованию с органами государственного контроля.

Соответствие параметров тока молнии и уровней защиты

Таблица 2.3

Параметр молнии

Уровень защиты

Пиковое значение тока I , кА

Полный заряд Q полн, Кл

Заряд в импульсе Q имп, Кл

Удельная энергия W /R , кДж/Ом

Средняя крутизна di /dt 30/90% , кА/мкс

2.3.3. Плотность ударов молнии в землю

Плотность ударов молнии в землю, выраженная через число поражений 1 км 2 земной поверхности за год, определяется по данным метеорологических наблюдений в месте размещения объекта.

Если же плотность ударов молнии в землю N g неизвестна, ее можно рассчитать по следующей формуле, 1/(км 2 × год):

N g = 6,7 × Т d /100, (2.1)

где Т d - средняя продолжительность гроз в часах, определенная по региональным картам интенсивности грозовой деятельности.


3. ЗАЩИТА ОТ ПРЯМЫХ УДАРОВ МОЛНИИ

3.1. Комплекс средств молниезащиты

Комплекс средств молниезащиты зданий или сооружений включает в себя устройства защиты от прямых ударов молнии (внешняя молниезащитная система - МЗС) и устройства защиты от вторичных воздействий молнии (внутренняя МЗС).

Внешняя МЗС может быть изолирована от сооружения (отдельно стоящие молниеотводы - стержневые или тросовые, а также соседние сооружения, выполняющие функции естественных молниеотводов) или может быть установлена на защищаемом сооружении и даже быть его частью.

Внутренние устройства молниезащиты предназначены для ограничения электромагнитных воздействий тока молнии и предотвращения искрений внутри защищаемого объекта.

Токи молнии, попадающие в молниеприемники, отводятся в заземлитель через систему токоотводов (спусков) и растекаются в земле.

3.2. Внешняя молниезащитная система

Внешняя МЗС в общем случае состоит из молниеприемников, токоотводов и заземлителей.

Материал и минимальные сечения элементов внешней МЗС

Таблица 3.1

Уровень защиты

Материал

Сечение, мм 2

молниеприемника

токоотвода

заземлителя

Алюминий

Не применяется

3.2.1. Молниеприемники

Молниеприемники могут состоять из произвольной комбинации следующих элементов: стержней, натянутых проводов (тросов), сетчатых проводников (сеток).

3.2.1.2. Естественные молниеприемники

Следующие конструктивные элементы зданий и сооружений могут рассматриваться как естественные молниеприемники:

а) металлические кровли защищаемых объектов при условии, что:

электрическая непрерывность между разными частями обеспечена на долгий срок;

толщина металла кровли составляет не менее величины t , приведенной в табл. 3.2, если необходимо предохранить кровлю от повреждения или прожога;

толщина металла кровли составляет не менее 0,5 мм, если ее необязательно защищать от повреждений и нет опасности воспламенения находящихся под кровлей горючих материалов;

кровля не имеет изоляционного покрытия. При этом небольшой слой антикоррозионной краски или слой 0,5 мм асфальтового покрытия, или слой 1 мм пластикового покрытия не считается изоляцией;

б) металлические конструкции крыши (фермы, соединенная между собой стальная арматура);

в) металлические элементы типа водосточных труб, украшений, ограждений по краю крыши и т. п., если их сечение не меньше значений, предписанных для обычных молниеприемников;

г) технологические металлические трубы и резервуары, если они выполнены из металла толщиной не менее 2,5 мм и проплавление или прожог этого металла не приведет к опасным или недопустимым последствиям;

д) металлические трубы и резервуары, если они выполнены из металла толщиной не менее значения t , приведенного в табл. 3.2, и если повышение температуры с внутренней стороны объекта в точке удара молнии не представляет опасности.

Толщина кровли, трубы или корпуса резервуара, выполняющих функции естественного молниеприемника

Таблица 3.2

3.2.2. Токоотводы

3.2.2.1. Общие соображения

В целях снижения вероятности возникновения опасного искрения токоотводы должны располагаться таким образом, чтобы между точкой поражения и землей:

а) ток растекался по нескольким параллельным путям;

б) длина этих путей была ограничена до минимума.

3.2.2.2. Расположение токоотводов в устройствах молниезащиты, изолированных от защищаемого объекта

Если молниеприемник состоит из отдельно стоящих горизонтальных проводов (тросов) или из одного провода (троса), на каждый конец троса требуется минимум по одному токоотводу.

Если молниеприемник представляет собой сетчатую конструкцию, подвешенную над защищаемым объектом, на каждую ее опору требуется не менее одного токоотвода.

3.2.2.3. Расположение токоотводов при неизолированных устройствах молниезащиты

Токоотводы располагаются по периметру защищаемого объекта таким образом, чтобы среднее расстояние между ними было не меньше значений, приведенных в табл. 3.3.

Средние расстояния между токоотводами в зависимости от уровня защищенности

Таблица 3.3

Уровень защиты

Среднее расстояние, м

3.2.2.5. Естественные элементы токоотводов

Следующие конструктивные элементы зданий могут считаться естественными токоотводами:

а) металлические конструкции при условии, что:

электрическая непрерывность между разными элементами является долговечной и соответствует требованиям п. 3.2.4.2;

они имеют не меньшие размеры, чем требуются для специально предусмотренных токоотводов. Металлические конструкции могут иметь изоляционное покрытие;

б) металлический каркас здания или сооружения;

в) соединенная между собой стальная арматура здания или сооружения;

г) части фасада, профилированные элементы и опорные металлические конструкции фасада при условии, что их размеры соответствуют указаниям, относящимся к токоотводам, а их толщина составляет не менее 0,5 мм.

Металлическая арматура железобетонных строений считается обеспечивающей электрическую непрерывность, если она удовлетворяет следующим условиям:

примерно 50 % соединений вертикальных и горизонтальных стержней выполнены сваркой или имеют жесткую связь (болтовое крепление, вязка проволокой);

электрическая непрерывность обеспечена между стальной арматурой различных заранее заготовленных бетонных блоков и арматурой бетонных блоков, подготовленных на месте.

3.2.3. Заземлители

3.2.3.1. Общие соображения

Во всех случаях, за исключением использования отдельно стоящего молниеотвода, заземлитель молниезащиты следует совместить с заземлителями электроустановок и средств связи. Если эти заземлители должны быть разделены по каким-либо технологическим соображениям, их следует объединить в общую систему с помощью системы уравнивания потенциалов.

3.2.3.2. Специально прокладываемые заземляющие электроды

Целесообразно использовать следующие типы заземлителей: один или несколько контуров, вертикальные (или наклонные) электроды, радиально расходящиеся электроды или заземляющий контур, уложенный на дне котлована, заземляющие сетки.

Заземлитель в виде наружного контура предпочтительно прокладывать на глубине не менее 0,5 м от поверхности земли и на расстоянии не менее 1 м от стен. Заземляющие электроды должны располагаться на глубине не менее 0,5 м за пределами защищаемого объекта и быть как можно более равномерно распределенными; при этом надо стремиться свести к минимуму их взаимное экранирование.

3.2.3.3. Естественные заземляющие электроды

В качестве заземляющих электродов может использоваться соединенная между собой арматура железобетона или иные подземные металлические конструкции, отвечающие требованиям п. 3.2.2.5. Если арматура железобетона используется как заземляющие электроды, повышенные требования предъявляются к местам ее соединений, чтобы исключить механическое разрушение бетона. Если используется преднапряженный бетон, следует учесть возможные последствия протекания тока молнии, который может вызвать недопустимые механические нагрузки.

3.3.2. Типовые зоны защиты стержневых и тросовых молниеотводов

3.3.2.1. Зоны защиты одиночного стержневого молниеотвода

Стандартной зоной защиты одиночного стержневого молниеотвода высотой h является круговой конус высотой h 0 h, вершина которого совпадает с вертикальной осью молниеотвода (рис. 3.1). Габариты зоны определяются двумя параметрами: высотой конуса h 0 и радиусом конуса на уровне земли r 0 .

Приведенные ниже расчетные формулы (табл. 3.4) пригодны для молниеотводов высотой до 150 м. При более высоких молниеотводах следует пользоваться специальной методикой расчета.

Рис. 3.1. Зона защиты одиночного стержневого молниеотвода

Для зоны защиты требуемой надежности (рис. 3.1) радиус горизонтального сечения r x на высоте h x определяется по формуле:

Расчет зоны защиты одиночного стержневого молниеотвода

Таблица 3.4

Надежность защиты Р з

Высота молниеотвода h , м

Высота конуса h 0 , м

Радиус конуса r 0 , м

От 100 до 150

h

От 30 до 100

h

От 100 до 150

h

От 30 до 100

h

h

От 100 до 150

h

h

3.3.2.2. Зоны защиты одиночного тросового молниеотвода

Стандартные зоны защиты одиночного тросового молниеотвода высотой h ограничены симметричными двускатными поверхностями, образующими в вертикальном сечении равнобедренный треугольник с вершиной на высоте h 0 h и основанием на уровне земли 2r 0 (рис. 3.2).

Приведенные ниже расчетные формулы (табл. 3.5) пригодны для молниеотводов высотой до 150 м. При большей высоте следует пользоваться специальным программным обеспечением. Здесь и далее под h понимается минимальная высота троса над уровнем земли (с учетом провеса).

Рис. 3.2. Зона защиты одиночного тросового молниеотвода:

L - расстояние между точками подвеса тросов

Полуширина r х зоны защиты требуемой надежности (рис. 3.2) на высоте h x от поверхности земли определяется выражением:

3.3.2.3. Зоны защиты двойного стержневого молниеотвода

Молниеотвод считается двойным, когда расстояние между стержневыми молниеприемниками L не превышает предельной величины L max . В противном случае оба молниеотвода рассматриваются как одиночные.

Конфигурация вертикальных и горизонтальных сечений стандартных зон защиты двойного стержневого молниеотвода (высотой h и расстоянием L между молниеотводами) представлена на рис. 3.3. Построение внешних областей зон двойного молниеотвода (полуконусов с габаритами h 0 , r 0) производится по формулам табл. 3.4 для одиночных стержневых молниеотводов. Размеры внутренних областей определяются параметрами h 0 и h c , первый из которых задает максимальную высоту зоны непосредственно у молниеотводов, а второй - минимальную высоту зоны посередине между молниеотводами. При расстоянии между молниеотводами L £ L c граница зоны не имеет провеса (h c = h 0). Для расстояний L c £ L ³ L max высота h c определяется по выражению

Входящие в него предельные расстояния L max и L c вычисляются по эмпирическим формулам табл. 3.6, пригодным для молниеотводов высотой до 150 м. При большей высоте молниеотводов следует пользоваться специальным программным обеспечением.

Размеры горизонтальных сечений зоны вычисляются по следующим формулам, общим для всех уровней надежности защиты:

максимальная полуширина зоны r х в горизонтальном сечении на высоте h x :

Расчет зоны защиты одиночного тросового молниеотвода

Таблица 3.5

Надежность защиты р з

Высота молниеотвода h , м

Высота конуса h 0 , м

Радиус конуса r 0 , м

От 30 до 100

h

От 100 до 150

h

От 30 до 100

h

h

От 100 до 150

h

h

L max , м

L 0 , м

От 30 до 100

h

От 100 до 150

От 30 до 100

h

h

От 100 до 150

От 30 до 100

h

h

От 100 до 150

4. ЗАЩИТА ОТ ВТОРИЧНЫХ ВОЗДЕЙСТВИЙ МОЛНИИ

4.2. Зоны защиты от воздействия молнии

Пространство, в котором расположены электрические и электронные системы, должно быть разделено на зоны различной степени защиты. Зоны характеризуются существенным изменением электромагнитных параметров на границах. В общем случае, чем выше номер зоны, тем меньше значения параметров электромагнитных полей, токов и напряжений в пространстве зоны.

Зона 0 - зона, где каждый объект подвержен прямому удару молнии, и поэтому через него может протекать полный ток молнии. В этой области электромагнитное поле имеет максимальное значение.

Зона 0 Е - зона, где объекты не подвержены прямому удару молнии, но электромагнитное поле не ослаблено и также имеет максимальное значение.

Зона 1 - зона, где объекты не подвержены прямому удару молнии, и ток во всех проводящих элементах внутри зоны меньше, чем в зоне 0 Е; в этой зоне электромагнитное поле может быть ослаблено экранированием.

Две пространственно разделенные зоны 1 с помощью экранированного соединения могут образовать общую зону (рис. 4.2).

Рис. 4.1. Зоны защиты от воздействия молнии:

1 - ЗОНА 0 (внешнее окружение); 2 - ЗОНА 1 (внутренняя электромагнитная обстановка);

3 - ЗОНА 2; 4 - ЗОНА 2 (обстановка внутри шкафа); 5 - ЗОНА 3

Рис. 4.2. Объединение двух зон

4.3. Экранирование

Экранирование является основным способом уменьшения электромагнитных помех.

Металлическая конструкция строительного сооружения используется или может быть использована в качестве экрана. Подобная экранная структура образуется, например, стальной арматурой крыши, стен, полов здания, а также металлическими деталями крыши, фасадов, стальными каркасами, решетками. Эта экранирующая структура образует электромагнитный экран с отверстиями (за счет окон, дверей, вентиляционных отверстий, шага сетки в арматуре, щелей в металлическом фасаде, отверстий для линий электроснабжения и т. п.). Для уменьшения влияния электромагнитных полей все металлические элементы объекта электрически объединяются и соединяются с системой молниезащиты (рис. 4.3).

Рис. 4.3. Объединение металлических элементов объекта для уменьшения влияния электромагнитных полей:

1 - сварка на пересечениях проводов; 2 - массивная непрерывная дверная рама; 3 - сварка на каждом стержне

  • Глава 1 управление безопасностью жизнедеятельности. Правовые и организационные основы
  • Предмет и содержание курса «Безопасность жизнедеятельности»
  • 1.2. Научный метод курса бжд и связь с другими науками
  • 1.3. Технический прогресс и новые проблемы безопасности жизнедеятельности. Проблемы технотронной цивилизации
  • 1.4. Роль безопасности труда в повышении производительности труда и влияние его на экономические показатели производства
  • 1.5. Экономические последствия и материальные затраты на охрану окружающей среды
  • 1.6. Правовые и нормативно-технические основы безопасности жизнедеятельности
  • 1.7. Организационные основы управления безопасностью жизнедеятельности
  • Государственный и общественный надзор по охране труда
  • 1.9. Планирование и финансирование мероприятий по безопасности жизнедеятельности
  • 1.10. Международное сотрудничество в области безопасности жизнедеятельности
  • Глава 2 основы физиологии труда и комфортные условия жизнедеятельности
  • 2.1. Факторы, определяющие условия обитания человека
  • Классификация основных форм человеческой деятельности
  • 2.3. Категорирование условий труда и работ
  • Показатели условий труда по трудовой нагрузке
  • Показатели условий труда по опасности
  • Показатели условий труда по вредности
  • 2.4. Обеспечение комфортных условий труда: микроклимат помещения
  • 2.5. Освещение производственных помещений. Искусственное и естественное освещение
  • Глава 3 производственный травматизм и профзаболевания
  • Производственный травматизм и профзаболевания: причины и способы снижения
  • 3.2. Учет и расследование несчастных случаев на производстве
  • 3.3. Размер вреда, подлежащего возмещению потерпевшему в результате трудового увечья
  • Глава 4 воздействие негативных факторов на человека и техносферу
  • 4.1. Вредные вещества и методы защиты
  • 4.2. Ионизирующие излучения
  • 4.3. Электромагнитные поля
  • 4.4. Электрический ток
  • 4.5. Защита от статического и атмосферного электричества
  • 4.6. Производственный шум
  • 4.7. Производственные вибрации
  • Глава 5 пожаровзрывобезопасность на производстве
  • Пожарная безопасность производств: физика и химия горения, классификация процессов горения, теории горения, показатели горючести веществ
  • Категорирование помещений и зданий по взрывопожарной и пожарной опасности
  • Категорирование пожаровзрывоопасности производственных помещений
  • 5.3. Классификация взрыво- и пожароопасных зон
  • Классификация пожароопасных зон
  • Классификация взрывоопасных зон
  • 5.4. Категории наружных установок по пожарной опасности
  • Категории наружных установок по пожарной опасности
  • 5.5. Выбор взрыво- и пожарозащищенного электрооборудования
  • Категории взрывоопасных смесей газов и паров с воздухом (гост 12.1.011-78 (1991))
  • Группы взрывоопасных смесей газов и паров с воздухом по температуре самовоспламенения
  • Уровни взрывозащиты электрооборудования
  • Выбор температурных классов электрооборудования
  • 5.6. Категорирование блоков по взрывоопасности
  • Категорирование технологических блоков
  • 5.7. Принцип выбора средств тушения пожаров. Автоматические средства тушения пожаров
  • 5.8. Способы оповещения о пожаре: извещатели и сигнализация
  • Глава 6 безопасность технологических процессов
  • 6.1. Безопасность технологических процессов: этапы создания технологических процессов, потенциальные опасности, требования и направления безопасности
  • 6.2. Технологический регламент и его содержание
  • 6.3. Роль автоматизации для обеспечения безопасности
  • 6.4. План локализации (ликвидации) аварийных ситуаций
  • Раздел 1. «Технология и аппаратурное оформление блока»;
  • 6.6. Сосуды, работающие под давлением
  • Группы сосудов, работающих под давлением
  • 6.7. Инженерно-технические средства защиты. Защитные устройства
  • 6.8. Индивидуальные средства защиты
  • Глава 7 организация экологического контроля, надзора и управления в российской федерации
  • Экологичность технологических процессов
  • Создание безотходных технологических процессов
  • 7.3. Экологический паспорт предприятия
  • 7.4. Экологическая экспертиза и контроль экологичности и безопасности предприятия
  • Глава 8 чрезвычайные ситуации
  • 8.1. Классификация чрезвычайных ситуаций
  • 8.2. Природные чрезвычайные ситуации
  • Инфекционные заболевания людей
  • 8.3. Чрезвычайные ситуации техногенного характера
  • 8.4. Чрезвычайные ситуации химического характера
  • 8.5. Чрезвычайные ситуации военного времени. Современные средства поражения
  • 8.6. Ядерное оружие: общая характеристика, поражающее действие
  • 8.7.Химическое оружие: общая характеристика, поражающее действие
  • Бактериологическое оружие: общая характеристика, поражающее действие
  • 8.9. Перспективные виды оружия массового поражения
  • Организация защиты населения и территории в чрезвычайных ситуациях. План мероприятий для предупреждения и ликвидации чрезвычайных ситуаций
  • Обеспечение устойчивости объектов при чрезвычайных ситуациях
  • Психологическая подготовка населения к чрезвычайным и экстремальным ситуациям
  • Организация оказания медицинской помощи при чрезвычайных ситуациях
  • Основные типы приборов для контроля требования безопасности жизнедеятельности
  • Законодательные и нормативно-правовые документы
  • 2.1. Общие вопросы охраны природы
  • 2.2. Трудовое законодательство
  • 2.3. Общепринятые государственные стандарты
  • 2.4. Санитарные и строительные нормы и правила
  • Рекомендуемая литература
  • 4.5. Защита от статического и атмосферного электричества

    Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества.

    Явление статической электризации наблюдается в следующих случаях:

      в потоке и при разбрызгивании жидкости;

      в струе газа или пара;

      при соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

    Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

    Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

    Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

    Допустимые уровни напряженности электростатических полей установлены ГОСТ 12.1.045-88 «Электрические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» и Санитарно-гигиеническими нормами допустимой напряженности электростатического поля (№ 1757-77).

    Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

    Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации «Правил устройства электроустановок» к классам В-I, В-Iа, В-Iб, В-Iг, В-II, В-IIа. В помещениях и зонах, которые не относятся к указанным классам, защита должна осуществляться лишь на тех участках, где статическое электричество отрицательно влияет на технологический процесс и качество продукции.

    Меры защиты от статического электричества:

      предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

      уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

      снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

      отвод статического электричества, накапливающегося на людях;

      устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

      обеспечение работающих токопроводящей обувью, антистатическими халатами.

    Мероприятия по защите от прямых ударов молнии

    Молния – сильный искровой разряд между двумя облаками или между облаком и землей.

    Виды ударов молнии:

      прямые удары молнии на объект;

      за счет распределения потенциалов (может поражаться соседний объект);

      за счет индуктивного эффекта (может поражаться третий объект, например, через почву).

    Вероятность поражения объекта молнией:

    где А, В – длина и ширина здания, h– высота здания,n– коэффициент, учитывающий сколько раз может ударять молния в зависимости от климатического пояса.

    Нижнекамск находится в IIIклиматическом поясе. 40 - 60 раз может ударить молния летом,n= 6.

    Защита от прямых ударов молний зданий и сооружений с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищающем объекте стержневыми или тросовыми молниеотводами. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1/8 может быть использована также молниеприемная сетка из стальной проволоки диаметром не менее 6 мм, прокладываемой в кровле здания. На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками.

    Наружное установки, содержащие горячие сжиженные газы и легковоспламеняющиеся жидкости, должны быть защищены от прямых ударов молнии следующим образом:

      корпуса установок из железобетона, металлические корпуса установок при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими молниеотводами;

      металлические корпуса установок и отдельно стоящих резервуаров при толщине крыши 4 мм и более, а также отдельные резервуары объемом менее 200 м 3 независимо от толщины металла крыши, а также металлические кожуха теплоизолированных установок достаточно присоединить к заземлителю;

      для резервуарных парков, содержащих сжиженные газы общим объемом более 8000 м 3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горячие и лекговоспламеняющиеся жидкости, при общем объеме группы резервуаров более 100 тыс. м 3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами;

      для наружных установок в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты этих установок или опор отдельно стоящих молниеотводов либо выполнить искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

    Для защиты зданий и сооружений от вторичных проявлений молний должны быть предусмотрены следующие мероприятия:

      металлические корпуса всего оборудования должны быть присоединены к защищаемому устройству электроустановок, либо к железобетонному фундаменту здания;

      внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстоянии менее 10 см через каждые 30 м должны быть выполнены перемычки;

      во фланцевых соединениях трубопроводов внутри здания должна быть обеспечена нормальная затяжка – не менее 4 болтов на каждый фланец.

    Для защиты наружных установок от вторичных проявлений молнии металлические корпуса аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

    Искусственные заземлители следует располагать под асфальтовым покрытием либо в редкопосещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т. п.) При этом для отдельно стоящих молниеотводов искусственный заземлитель должен быть не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м.

    Проверка состояния устройств молниезащиты должна проводиться 1 раз в год перед началом грозового сезона.

    При определенных условиях в дождевом облаке могут накапливаться электрические заряды. Этому способствуют аэродинамические и термические процессы (восходящие воздушные потоки, конденсация паров на высоте от 1 до 6 км, образование капель, их дробление). В результате этих процессов капли получают суммарный отрицательный заряд и наполняют нижнюю часть облака, а более инерционные положительные ионы воздуха – верхнюю часть. При этом, внутри облака образуется электрическое поле между распределенными разнополярными зарядами.

    Таким образом, молния – это электрический разряд в атмосфере между заряженным облаком и землей или между разноименно заряженными частями облака. Разряд имеет преимущественно вид линейной молнии. Направленный вниз заряд между облаком и землей делится на лидерный (начальный) и главный (обратный). Обычно он начинается с прорастания от облака к земле слабо светящегося канала-ступенчатого лидера. При касании головки лидера земли возникает главный разряд. Он связан с нейтрализаций отрицательных зарядов лидера положительными зарядами земли и напоминает короткое замыкание. Главный разряд сопровождается интенсивным свечением, уменьшающимся при приближении к облаку, а также звуком (громом). Этот разряд и воспринимается людьми как молния. Основной источник их поражения – линейная молния.

    Грозовой разряд оказывает на человека тепловое воздействие, а также механическое и электромагнитное.

    От прямых ударов молнии объекты защищают молниеотводами различных типов и конструкций. Молниеотвод любого типа состоит из молниеприемника, предназначенного для непосредственного приема удара молнии, токоотвода, обеспечивающего отвод тока молнии к заземлению, и заземлителя, отводящего ток молнии в землю. Для крепления молниеприемников и токоотводов предназначены несущие конструкции (опоры).

    Принцип действия молниеотводов основан на использовании свойства избирательности поражений молнией более высоких и хорошо заземленных предметов. Поэтому необходимо, чтобы молниеотвод возвышался над защищаемым объектом и имел достаточно хороший контакт с землей. Молниеотвод создает условия для ориентации лидерного разряда в направлении вершины молниеотвода (за счет создания наибольшей напряженности электрического поля на пути между развивающимся лидерным каналом и вершиной молниеотвода). Таким образом, молниеотвод как бы “отбирает” на себя грозовые разряды, возникающие в определенной зоне вокруг него, и, тем самым, экранирует расположенные поблизости от него более низкие объекты.

    Пространство вокруг молниеотвода, защищенное от прямых ударов молнии, называется зоной защиты молниеотвода. Защищаемый объект должен полностью входить в зону защиты.



    В зависимости от категории здания по устройству молниезащиты и ожидаемого числа поражений молнией в год требуется, чтобы объект полностью располагался в зоне защиты типа А или Б. Зона защиты типа А обладает степенью надежности (на ее границе) не ниже 99,5%, а зона защиты типа Б – не ниже 95%. Это очень высокая степень надежности. Прорыв молнии в зону защиты типа А возможен только в пяти случаях из тысячи ударов, а в зону защиты типа Б – в пяти случаях из ста.

    Обычно применяют стержневые, тросовые и сетчатые типы молниеотводов. Для молниезащиты одного или группы строений применяют молниеотводы одного типа, но в ряде случаев целесообразно использовать комбинированные типы молниеотводов (например, тросово-стержневой молниеотвод).

    Важным элементом молниеотвода является его заземляющее устройство, т.е. специальная металлическая конструкция, расположенная в земле. Оно служит для безопасного отвода тока молнии в землю.

    Конструктивно молниеотводы и их заземляющие устройства должны выполняться следующим образом.

    1. Опоры стержневых молниеотводов могут изготавливаться из стали любой марки, железобетона или дерева. Они должны быть рассчитаны на механическую прочность как свободно стоящие конструкции, а опоры тросовых молниеотводов – с учетом натяжения троса и действия на него ветровой и гололедной нагрузке.

    2. Стержневые молниеприемники должны быть изготовлены сечением не менее 100 мм² и длиной не менее 200 мм из стали любой марки. Тросовые молниеприемники должны быть выполнены из стальных многопроволочных канатов сечением не менее 35 мм². Соединения молниеприемников с токоотводами и токоотводов с заземлителями должны выполняться, как правило, сваркой. Эти соединения и токоотводы изготовливаются из круглой стали диаметром не менее 6 мм. Токоотводы, прокладываемые по наружным стенам здания, следует располагать не ближе 3 м от входов или в местах, недоступных для прикосновения людей.



    3. В качестве естественных заземлителей молниезащиты допускается использование любых конструкций железобетонных фундаментов зданий и сооружений при условии обеспечения непрерывной электрической связи по их арматуре и присоединения ее к закладным деталям. Допускается также использование для молниезащиты всех заземлителей электроустановок, рекомендуемых ПУЭ

    4. Должны быть предусмотрены искусственные заземлители. Их следует располагать под асфальтовым покрытием либо в редко посещаемых местах (на газонах, в удалении от грунтовых проезжих и пешеходных дорог) на расстоянии 5 м и более.

    30. Статическое электричество: сущность, опасность, методы защиты

    При статической электризации во время технологических процессов, сопровождающихся трением, размельчением твердых частиц, пересыпанием сыпучих тел, переливанием жидкостей - диэлектриков, на изолированных от земли металлических частях производственного оборудования возникает электрическое напряжение относительно земли порядка десятков киловольт.

    Так, при движении резиновой ленты транспортера в сельс­кохозяйственных агрегатах с электроприводом через клиноременную передачу в устройствах ременной передачи на лен­те (ремне) и на роликах (шкивах) возникают электростати­ческие заряды противоположных знаков большой величины, а потенциалы их достигают 45 кВ. Основную роль при этом играют влажность, давление воздуха и состояние поверхнос­тей лент (ремней) и роликов (шкивов), а также скорость отно­сительного движения (пробуксовки). Аналогично происходит электризация при сматывании тканей, бумаги, пленки и др.

    При относительной влажности воздуха 85% и более электростатических зарядов обычно не возникает.

    Возникающие в производственных условиях электроста­тические заряды могут служить импульсом, способным при наличии горючих смесей вызвать пожар и взрыв. В ряде случаев статическая электризация тела человека и затем пос­ледующие разряды с тела человека на землю или заземлен­ное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека на землю могут вызвать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого дви­жения человека, в результате которого он может получить ту или иную механическую травму (ушибы, ранение). "

    Устранение опасности возникновения электростатических зарядов достигается следующими мерами: заземлением про­изводственного оборудования и емкостей для хранения лег­ковоспламеняющихся и горючих жидкостей; увеличением электропроводности поверхностей электризующихся тел пу­тем повышения влажности воздуха или применением анти­статических примесей к основному продукту (жидкости, ре­зиновые изделия и др.); ионизацией воздуха с целью увели­чения его электропроводности.

    31. Индивидуальные средства защиты от поражения электрическим током.

    Электрозащитные средства должны находиться в поме­щениях электроустановок в качестве инвентарного имуще­ства. Они распределяются по местам хранения и это поло­жение должно быть зафиксировано в списках, утвержден­ных главным энергетиком предприятия. Ответственность за своевременное обеспечение персонала и комплектование электроустановок электрозащитными средствами несут на­чальник цеха, службы участка, а в целом по предприятию - главный инженер. Электротехнический персонал получает электрозащитные средства в индивидуальное пользование и отвечает за их правильную эксплуатацию и своевремен­ную отбраковку. Все электрозащитные средства должны быть пронумерованы, храниться в специальных помещениях, шка­фах, ящиках.

    При эксплуатации средства защиты должны подвергать­ся периодическим и внеочередным испытаниям (после ре­монта) согласно ПТЭ и ПТБ.

    Электрозащитные средства служат для защиты людей, работающих с электроустановками, от поражения электри­ческим током, от воздействия электрической дуги и электро­магнитного поля.

    Основные электрозащитные средства защиты, изоляция которых длительно выдерживает рабочее напряжение элект­роустановок, позволяют прикасаться к токоведущим частям, находящимся под напряжением.

    Дополнительные электрозащитные средства защиты сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

    К электрозащитным средствам относятся:

    изолирующие штанги (оперативные, для наложения за­земления, измерительные), изолирующие (для операций с предохранителями) и электроизмерительные клещи, указатели напряжения, указатели напряжения для фазировки и т. д.;

    изолирующие устройства и приспособления для ремонт­ных работ под напряжением выше 1000 В и слесарно-монтажный инструмент с изолирующими рукоятками для рабо­ты в электроустановках напряжением до 1000 В;

    диэлектрические перчатки, боты, галоши, ковры, изолиру­ющие накладки и подставки;

    индивидуальные экранизирующие комплекты;

    переносные заземления;

    оградительные устройства и диэлектрические колпаки;

    плакаты и знаки безопасности.

    Кроме перечисленных электрозащитных средств при работах в электроустановках следует, при необходимости, применять такие средства индивидуальной защиты, как очки, каски, противогазы, рукавицы, предохранительные монтерские по­яса и страховочные канаты.

    Классификация защитных средств в зависимости от напряжения электроустановки приведена в таблице.

    Статическое электричество образуется в результате трения (соприкосновения или разделения) двух диэлектриков друг о друга или диэлектриков о металлы. На диэлектриках электрические заряды удерживаются продолжительное время, вследствие чего они получили название статического электричества (ГОСТ 12.1.018-93 ССБТ. Пожаровзрывобезопасность статического электричества).

    Явление статической электризации наблюдается в следующих случаях:

    В потоке и при разбрызгивании жидкости;

    В струе газа или пара;

    При соприкосновении и последующем удалении двух твердых разнородных тел (контактная электризация).

    Электризация тела человека происходит при работе с наэлектризованными изделиями и материалами. Количество накопившегося на людях электричества может быть вполне достаточным для искрового разряда при контакте с заземленным предметом. Считается, что энергия разряда с тела человека достаточна для зажигания практически всех газо-, паровоздушных и некоторых пылевоздушных горючих смесей.

    Действие статического электричества смертельной опасности для человека не представляет. Искровой разряд статического электричества человек ощущает как укол или судорогу. При внезапном уколе может возникнуть испуг и вследствие рефлекторных движений человек может непроизвольно сделать движения, приводящие к падению с высоты, попаданию в опасную зону машин и др.

    Длительное воздействие статического электричества неблагоприятно отражается на здоровье работающего, отрицательно сказывается на его психофизическом состоянии.

    Допустимые уровни напряженности электростатических полей установлены СанПиН 2.2.4.1191-03 Электромагнитные поля в производственных условиях и ГОСТ 12.1.002.84 ССБТ. Электрические поля промышленной частоты.

    Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах. Предельно допустимый уровень напряженности электростатических полей устанавливается равным 60 кВ/м в течение 1 часа.

    Защите от статического электричества подлежат все промышленные, опытно-промышленные и лабораторные установки, в которых применяются или получаются вещества, способные при перемещении или переработке подвергаться электризации, с образованием опасных потенциалов (вещества и материалы с удельным объемным сопротивлением выше 10 Ом∙м), а также взрыво- и пожароопасные производства, отнесенные по классификации ФЗ от 22.07.2008 № 123-ФЗ (в редакции от 13.07.2015) «Технический регламент о требованиях пожарной безопасности». Классификация пожароопасных и взрывоопасных зон применяется для выбора электротехнического и другого оборудования по степени их защиты, обеспечивающей их пожаровзрывобезопасную эксплуатацию в указанной зоне.

    Меры защиты от статического электричества:

    Предотвращение накопления зарядов на электропроводящих частях оборудования, что достигается заземлением оборудования и коммуникаций;

    Уменьшение удельных обычных и поверхностных электрических сопротивлений (увлажнение воздуха от 65% до 67%, если это допустимо по условиям технологического процесса; химическая обработка поверхности электропроводными покрытиями; нанесение на поверхность антистатических веществ; добавление антистатических присадок в горючие диэлектрические жидкости);

    Снижение интенсивности зарядов статического электричества (достигается подбором скорости движения веществ, исключением разбрызгивания, дробления и распыления веществ, отводом электростатического заряда, подбором поверхностей трения);

    Отвод статического электричества, накапливающегося на людях;

    Устройство электропроводящих полов или заземленных зон, помостов и рабочих площадок, заземление ручек дверей, поручней лестниц, рукояток приборов, машин и аппаратов;

    Обеспечение работающих токопроводящей обувью, антистатическими халатами.

    Мероприятия по защите от прямых ударов молнии

    Молния – сильный искровой разряд между двумя облаками или между облаком и землей. Удар молнии в землю - электрический разряд атмосферного происхождения между грозовым облаком и землей, состоящий из одного или нескольких импульсов тока.

    Защищаемый объект - здание или сооружение, их часть или пространство, для которых выполнена молниезащита, отвечающая требованиям настоящего норматива.

    Устройство молниезащиты - система, позволяющая защитить здание или сооружение от воздействий молнии. Она включает в себя внешние и внутренние устройства. В частных случаях молниезащита может содержать только внешние или только внутренние устройства.

    Устройства защиты от прямых ударов молнии (молниеотводы) - комплекс, состоящий из молниеприемников, токоотводов и заземлителей. Устройства защиты от вторичных воздействий молнии - устройства, ограничивающие воздействия электрического и магнитного полей молнии.

    Молниеприемник - часть молниеотвода, предназначенная для перехвата молний.

    Токоотвод (спуск) - часть молниеотвода, предназначенная для отвода тока молнии от молниеприемника к заземлителю.

    Заземляющее устройство - совокупность заземлителя и заземляющих проводников.

    Заземлитель - проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через проводящую среду.

    Виды ударов молнии:

    Прямые удары молнии на объект;

    За счет распределения потенциалов (может поражаться соседний объект);

    За счет индуктивного эффекта (может поражаться третий объект, например, через почву). Вероятность поражения объекта молнией:

    где А, В – длина и ширина здания, h – высота здания, n – коэффициент, учитывающий сколько раз может ударять молния в зависимости от климатического пояса.

    Нижнекамск находится в III климатическом поясе, где 40 - 60 раз может ударить молния летом, n = 6.

    Защита от прямых ударов молний зданий и сооружений с неметаллической кровлей должна быть выполнена отдельно стоящими или установленными на защищающем объекте стержневыми или тросовыми молниеотводами. При установке молниеотводов на объекте от каждого стержневого молниеприемника или каждой стойки тросового молниеприемника должно быть обеспечено не менее двух токоотводов. При уклоне кровли не более 1/8 может быть использована также молниеприемная сетка из стальной проволоки диаметром не менее 6 мм, прокладываемой в кровле здания. На зданиях и сооружениях с металлической кровлей в качестве молниеприемника должна использоваться сама кровля. При этом все выступающие неметаллические элементы должны быть оборудованы молниеприемниками.

    Наружное установки, содержащие горячие сжиженные газы и легковоспламеняющиеся жидкости, должны быть защищены от прямых ударов молнии следующим образом:

    Корпуса установок из железобетона, металлические корпуса установок при толщине металла крыши менее 4 мм должны быть оборудованы молниеотводами, установленными на защищаемом объекте или отдельно стоящими молниеотводами;

    Металлические корпуса установок и отдельно стоящих резервуаров при толщине крыши 4 мм и более, а также отдельные резервуары объемом менее 200 м 3 независимо от толщины металла крыши, а также металлические кожуха теплоизолированных установок достаточно присоединить к заземлителю;

    Для резервуарных парков, содержащих сжиженные газы общим объемом более 8000 м 3 , а также для резервуарных парков с корпусами из металла и железобетона, содержащих горячие и лекговоспламеняющиеся жидкости, при общем объеме группы резервуаров более 100 тыс. м 3 защиту от прямых ударов молнии следует, как правило, выполнять отдельно стоящими молниеотводами;

    Для наружных установок в качестве заземлителей защиты от прямых ударов молнии следует использовать железобетонные фундаменты этих установок или опор отдельно стоящих молниеотводов либо выполнить искусственные заземлители, состоящие из одного вертикального или горизонтального электрода длиной не менее 5 м.

    Для защиты зданий и сооружений от вторичных проявлений молний должны быть предусмотрены следующие мероприятия:

    Металлические корпуса всего оборудования должны быть присоединены к защищаемому устройству электроустановок, либо к железобетонному фундаменту здания;

    Внутри здания между трубопроводами и другими протяженными металлическими конструкциями в местах их взаимного сближения на расстоянии менее 10 см через каждые 30 м должны быть выполнены перемычки;

    Во фланцевых соединениях трубопроводов внутри здания должна быть обеспечена нормальная затяжка – не менее 4 болтов на каждый фланец.

    Для защиты наружных установок от вторичных проявлений молнии металлические корпуса аппаратов должны быть присоединены к заземляющему устройству электрооборудования или к заземлителю защиты от прямых ударов молнии.

    Искусственные заземлители следует располагать под асфальтовым покрытием либо в редкопосещаемых местах (на газонах, в удалении на 5 м и более от грунтовых проезжих и пешеходных дорог и т. п.) При этом для отдельно стоящих молниеотводов искусственный заземлитель должен быть не менее 3 м, объединенных горизонтальным электродом, при расстоянии между вертикальными электродами не менее 5 м.

    Проверка состояния устройств молниезащиты должна проводиться 1 раз в год перед началом грозового сезона.

    Классификация зданий и сооружений по устройству молниезащиты

    Классификация объектов определяется по опасности ударов молнии для самого объекта и его окружения.

    Непосредственное опасное воздействие молнии - это пожары, механические повреждения, травмы людей и животных, а также повреждения электрического и электронного оборудования. Последствиями удара молнии могут быть взрывы и выделение опасных продуктов - радиоактивных и ядовитых химических веществ, а также бактерий и вирусов.

    Удары молнии могут быть особо опасны для информационных систем, систем управления, контроля и электроснабжения. Для электронных устройств, установленных в объектах разного назначения, требуется специальная защита.

    Рассматриваемые объекты могут подразделяться на обычные и специальные.

    Обычные объекты - жилые и административные строения, а также здания и сооружения, высотой не более 60 м, предназначенные для торговли, промышленного производства, сельского хозяйства.

    Специальные объекты:

    1. объекты, представляющие опасность для непосредственного окружения;
    2. объекты, представляющие опасность для социальной и физической окружающей среды (объекты, которые при поражении молнией могут вызвать вредные биологические, химические и радиоактивные выбросы);

    3. прочие объекты, для которых может предусматриваться специальная молниезащита, например, строения высотой более 60 м, игровые площадки, временные сооружения, строящиеся объекты. В табл. 5 даны примеры разделения объектов на четыре класса.

    Таблица 5

    Примеры классификации объектов

    Объект Тип объекта Последствия удара молнии
    Обычный Жилой дом Отказ электроустановок, пожар и повреждение имущества. Обычно небольшое повреждение предметов, расположенных в месте удара молнии или задетых ее каналом
    Ферма Первоначально - пожар и занос опасного напряжения, затем - потеря электропитания с риском гибели животных из-за отказа электронной системы управления вентиляцией, подачи корма и т. д.
    Театр; школа; универмаг; спортивное сооружение Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий
    Банк; страховая компания; коммерческий офис Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных
    Больница; детский сад; дом для престарелых Отказ электроснабжения (например, освещения), способный вызвать панику. Отказ системы пожарной сигнализации, вызывающий задержку противопожарных мероприятий. Потери средств связи, сбои компьютеров с потерей данных. Необходимость помощи тяжелобольным и неподвижным людям
    Промышленные предприятия Дополнительные последствия, зависящие от условий производства - от незначительных повреждений до больших ущербов из-за потерь продукции
    Музеи и археологические памятники Невосполнимая потеря культурных ценностей
    Специальный с ограниченной опасностью Средства связи; электростанции; пожароопасные производства Недопустимое нарушение коммунального обслуживания (телекоммуникаций). Косвенная опасность пожара для соседних объектов
    Специальный, представляющий опасность для непосредственного окружения Нефтеперерабатывающие предприятия; заправочные станции; производства петард и фейерверков Пожары и взрывы внутри объекта и в непосредственной близости
    Специальный, опасный для экологии Химический завод; атомная электростанция; биохимические фабрики и лаборатории Пожар и нарушение работы оборудования с вредными последствиями для окружающей среды

    При строительстве и реконструкции для каждого класса объектов требуется определить необходимые уровни надежности защиты от прямых ударов молнии (ПУМ). Например, для обычных объектов может быть предложено четыре уровня надежности защиты, указанные в табл. 6.



    Включайся в дискуссию
    Читайте также
    Определение места отбывания наказания осужденного
    Осужденному это надо знать
    Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме