Подпишись и читай
самые интересные
статьи первым!

Атомно водородная бомба. Отличие водородной бомбы от атомной: список различий, история создания

Содержание статьи

ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах.

Термоядерные реакции.

В недрах Солнца содержится гигантское количество водорода , находящегося в состоянии сверхвысокого сжатия при температуре ок. 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. 100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле.

Изотопы водорода.

Атом водорода – простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды (H 2 O) показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода – дейтерий (2 H). Ядро дейтерия состоит из протона и нейтрона – нейтральной частицы, по массе близкой к протону.

Существует третий изотоп водорода – тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли , где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов.

Разработка водородной бомбы.

Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы (HB). Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ё 8 Мт в тротиловом эквиваленте.

Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную (примерно 15 Мт) авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия.

Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу.

Механизм действия водородной бомбы.

Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития – соединения дейтерия с литием (используется изотоп лития с массовым числом 6). Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе.

Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные.

Деление, синтез, деление (супербомба).

На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 (основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах). Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб.

Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности.

Последствия взрыва.

Ударная волна и тепловой эффект.

Прямое (первичное) воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий – это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха – туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги.

Согласно расчетам, при взрыве в атмосфере 20-мегатонной бомбы люди останутся живы в 50% случаев, если они 1) укрываются в подземном железобетонном убежище на расстоянии примерно 8 км от эпицентра взрыва (ЭВ), 2) находятся в обычных городских постройках на расстоянии ок. 15 км от ЭВ, 3) оказались на открытом месте на расстоянии ок. 20 км от ЭВ. В условиях плохой видимости и на расстоянии не менее 25 км, если атмосфера чистая, для людей, находящихся на открытой местности, вероятность уцелеть быстро возрастает с удалением от эпицентра; на расстоянии 32 км ее расчетная величина составляет более 90%. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.

Огненный шар.

В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное (хотя и вторичное) последствие взрыва – это радиоактивное заражение окружающей среды.

Радиоактивные осадки.

Как они образуются.

При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными – в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.

Длительное заражение местности радиоактивными осадками.

В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. 100 км от эпицентра взрыва. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, т.е. не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека.

Олег Александрович Лаврентьев, герой нашего рассказа, родился в 1926 году в Пскове. До войны парень успел окончить семь классов. Видимо, где-то под конец этого процесса в его руки попала книжка, рассказывающая о физике атомного ядра и последних открытиях в этой области.

30-е годы XX века были временем открытия новых горизонтов. В 1930 году было предсказано существование нейтрино , в 1932 году открыт нейтрон . В последующие годы были построены первые ускорители элементарных частиц. Возник вопрос о возможности существования трансурановых элементов. В 1938 году Отто Ган впервые получил барий, облучая уран нейтронами, а Лиза Мейтнер смогла объяснить, что произошло. Через несколько месяцев она же предсказала цепную реакцию. До постановки вопроса об атомной бомбе оставался один шаг.

Нет ничего удивительного в том, что хорошее описание этих открытий запало в душу подростка. Несколько нетипичнее то, что этот заряд сохранился в ней во всех последующих передрягах. А потом была война. Олег Лаврентьев успел поучаствовать в ее завершающей стадии, в Прибалтике. Затем перипетии службы забросили его на Сахалин. В части была относительно неплохая библиотека, а на свое денежное довольствие Лаврентьев, тогда уже сержант, выписал журнал «Успехи физических наук» , чем, видимо, произвел немалое впечатление на сослуживцев. Командование поддержало энтузиазм своего подчиненного. В 1948 году он читал лекции по ядерной физике офицерам части, а в следующем году получил аттестат зрелости, пройдя за год трехлетний курс в местной вечерней школе рабочей молодежи. Неизвестно, чему и как там на самом деле учили, но сомневаться в качестве образования младшего сержанта Лаврентьева не приходится - результат был нужен ему самому.

Как вспоминал он сам через много лет, мысль о возможности термоядерной реакции и ее использовании для получения энергии впервые посетила его в 1948 году, как раз при подготовке лекции для офицеров. В январе 1950 года Президент Трумэн, выступая перед Конгрессом, призвал к скорейшему созданию водородной бомбы. Это было ответом на первое советское ядерное испытание в августе предыдущего года. Ну а для младшего сержанта Лаврентьева это было толчком к немедленным действиям: ведь он-то знал, как ему на тот момент думалось, как сделать эту бомбу и опередить потенциального противника.

Первое письмо с описанием идеи, адресованное Сталину, осталось без ответа, и какие-либо его следы впоследствии найдены не были. Скорее всего, оно просто потерялось. Следующее письмо было отправлено надежнее: в ЦК ВКП(б) через Поронайский горком.

В этот раз реакция была заинтересованной. Из Москвы через Сахалинский обком пришла команда выделить настойчивому солдату охраняемую комнату и все необходимое для подробного описания предложений.

Спецработа

На этом месте уместно прервать рассказ о датах и событиях и обратиться к содержанию сделанных высшей советской инстанции предложений.

1. Основные идеи.

2. Опытная установка по преобразованию энергии литиево-водородных реакций в электрическую.

3. Опытная установка по преобразованию энергии урановых и трансурановых реакций в электрическую.

4. Литиево-водородная бомба (конструкция).

Далее О. Лаврентьев пишет, что подготовить части 2 и 3 в подробном виде не успел и вынужден ограничиться кратким конспектом, часть 1 тоже сыровата («написана весьма поверхностно»). По сути, в предложениях рассматриваются два устройства: бомба и реактор, при этом последняя, четвертая, часть - там, где предлагается бомба, - крайне лаконична, это всего несколько фраз, смысл которых сводится к тому, что все уже разобрано в первой части.

В таком виде, «на 12 листах», предложения Ларионова в Москве попали на рецензию к А.Д.Сахарову , тогда еще кандидату физматнаук, а главное, одному из тех людей, которые в СССР тех лет занимались вопросами термоядерной энергии, в основном подготовкой бомбы.

Сахаров выделил в предложении два основных момента: осуществление термоядерной реакции лития с водородом (их изотопов) и конструкция реактора. В написанном, вполне благожелательном, отзыве о первом пункте говорилось кратко - это не подходит.

Непростая бомба

Чтобы ввести читателя в контекст, необходимо сделать краткий экскурс в реальное положение дел. В современной (а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились) водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития – твердое белое вещество, бурно реагирующее с водой с образованием гидроксида лития и водорода. Последнее свойство дает возможность широко применять гидрид там, где нужно временно связать водород. Хорошим примером является воздухоплавание, но им список, конечно, не исчерпывается.

Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Вместо «обычного» водорода в его составе участвует дейтерий, а вместо «обычного» лития - его более легкий изотоп с тремя нейтронами. Получившийся дейтерид лития, 6 LiD, содержит почти все необходимое для большой иллюминации. Чтобы инициировать процесс, достаточно всего-навсего взорвать расположенный поблизости (например, вокруг или, наоборот, внутри) ядерный заряд. Образовавшиеся при взрыве нейтроны поглощаются литием-6, который в результате распадается с образованием гелия и трития. Повышение давления и температуры в результате ядерного взрыва приводит к тому, что вновь появившийся тритий и дейтерий, бывший на месте событий изначально, оказываются в условиях, необходимых для начала термоядерной реакции. Ну вот и все, готово.

А
Б
В
Г
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…" alt="А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…" src="/sites/default/files/images_custom/2017/07/bombh_explosion-ru.svg.png">

А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

/ © Википедия

Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они - газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились . Проблема только в том, что ее невозможно доставить «адресату» - размеры сооружения исключают такую возможность напрочь. Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему.

Изложенное здесь совсем не сложно для нас, живущих сегодня. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально.

Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же - это дейтерид легкого изотопа лития. Принципиальное отличие в том, что вместо реакции дейтерия с тритием автор предполагает реакцию лития с дейтерием и/или водородом. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6 Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было.

Допустим, что Олегу Лаврентьеву еще раз повезло бы: он угадал нужную реакцию. Увы, даже это не сделало бы его автором открытия. Описанная выше конструкция бомбы разрабатывалась к тому времени уже более полутора лет. Разумеется, поскольку все работы были окружены сплошной секретностью, знать о них он не мог. Кроме того, конструкция бомбы - это не только схема размещения взрывчатки, это еще очень много расчетов и конструктивных тонкостей. Выполнить их автор предложения не мог.

Надо сказать, что полная неосведомленность о физических принципах будущей бомбы была характерна тогда и для людей куда более компетентных. Много лет спустя Лаврентьев вспоминал эпизод, бывший с ним чуть позднее, уже в студенческие времена. Проректор МГУ, читавший студентам физику, зачем-то взялся рассказать и о водородной бомбе, представлявшей собой, по его мнению, систему полива вражеской территории жидким водородом. А что? Заморозить врагов - милое дело. У слушавшего его студента Лаврентьева, который про бомбу знал немножко больше, невольно вырвалась нелицеприятная оценка услышанного, но ответить на язвительную реплику услышавшей ее соседки было нечем. Не рассказывать же ей все известные ему подробности.

Рассказанное, видимо, объясняет, почему о проекте «бомбы Лаврентьева» забыли практически сразу после его написания. Автор продемонстрировал недюжинные способности, но этим все и кончилось. Иная судьба оказалась у проекта термоядерного реактора.

Конструкция будущего реактора в 1950 году виделась его автору довольно простой. В рабочую камеру помешается два концентрических (один в другом) электрода. Внутренний выполняется в виде сетки, ее геометрия просчитывается таким образом, чтобы, насколько это возможно, минимизировать контакт с плазмой. На электроды подается постоянное напряжение порядка 0,5–1 мегавольт, причем внутренний электрод (сетка) является отрицательным полюсом, а внешний - положительным. Сама реакция идет в середине установки и вылетающие наружу, через сетку, положительно заряженные ионы (преимущественно, продукты реакции), двигаясь дальше, преодолевают сопротивление электрического поля, которое в итоге разворачивает большую их часть обратно. Энергия, затраченная ими на преодоление поля, - это и есть наш выигрыш, который относительно несложно «снять» с установки.

В качестве основного процесса опять предлагается реакция лития с водородом, которая опять не подходит по тем же причинам, но примечательно не это. Олег Лаврентьев оказался первым человеком, придумавшим изолировать плазму при помощи какого-нибудь поля. Даже то, что в его предложении эта роль, вообще говоря, второстепенна - главная функция электрического поля в том, чтобы получить энергию вылетающих из зоны реакции частиц, - ничуть не меняет значения этого факта.

Как впоследствии неоднократно заявлял Андрей Дмитриевич Сахаров, именно письмо сержанта с Сахалина впервые навело его на мысль использовать поле для удержания плазмы в термоядерном реакторе. Правда, Сахаров и его коллеги предпочли использовать другое поле - магнитное. Пока же он написал в рецензии, что предложенная конструкция скорее всего нереальна, ввиду невозможности сделать сетчатый электрод, который выдержал бы работу в таких условиях. А автора все равно надо поощрить за научную смелость.

Вскоре после отсылки предложений Олег Лаврентьев демобилизуется из армии, отправляется в Москву и становится студентом первого курса физфака МГУ. Имеющиеся источники говорят (с его слов), что сделал это он полностью самостоятельно, без протекции каких-либо инстанций.

«Инстанции», тем не менее, следили за его судьбой. В сентябре Лаврентьев встречается с И.Д.Сербиным , чиновником ЦК ВКП(б) и получателем его писем с Сахалина. По его поручению он описывает свое видение проблемы еще раз, обстоятельнее.

В самом начале следующего, 1951 года первокурсник Лаврентьев был вызван к министру измерительного приборостроения СССР Махневу , где познакомился с самим министром и своим рецензентом А.Д.Сахаровым. Надо заметить, что возглавляемое Махневым ведомство имело к измерительным приборам довольно отвлеченное отношение, его действительным назначением было обеспечение ядерной программы СССР. Сам Махнев был секретарем Специального комитета, председателем которого был всемогущий в ту пору Л.П.Берия . С ним наш студент познакомился через несколько дней. Сахаров снова присутствовал при встрече, но о его роли в ней практически ничего сказать нельзя.

По воспоминаниям О.А.Лаврентьева, он готовился рассказывать сановному начальнику о бомбе и реакторе, но Берию это как будто не интересовало. Разговор велся о самом госте, его достижениях, планах и родственниках. «Это были смотрины, - резюмировал Олег Александрович. - Ему хотелось, как я понял, посмотреть на меня и, возможно, на Сахарова, что мы за люди. По-видимому, мнение оказалось благоприятным».

Следствием «смотрин» стали необычные для советского первокурсника поблажки. Олегу Лаврентьеву была установлена персональная стипендия, выделена для жилья отдельная комната (правда, маленькая - 14 кв. м.), два персональных преподавателя по физике и математике. Он был освобожден от платы за обучение. Наконец, была организована доставка необходимой литературы.

Вскоре состоялось знакомство с техническими руководителями советской атомной программы Б.Л.Ванниковым , Н.И.Павловым и И.В.Курчатовым . Вчерашний сержант, за годы службы не видевший ни одного генерала даже издалека, теперь на равных беседовал сразу с двумя: Ванниковым и Павловым. Правда, вопросы задавал в основном Курчатов.

Очень похоже, что предложениям Лаврентьева после его знакомства с Берией послушно придавалось даже слишком большое значение. В Архиве Президента РФ лежит адресованное Берии и подписанное вышеупомянутыми тремя собеседниками предложение о создании «небольшой теоретической группы» для обсчета идей О. Лаврентьева. Была ли такая группа создана и если да, то с каким результатом, сейчас неизвестно.

Вход в Курчатовский инстутут. Современная фотография. / © Викимедиа

В мае наш герой получил пропуск в ЛИПАН - Лабораторию измерительных приборов Академии наук, ныне Институт им. Курчатова. Странное тогдашнее название тоже было данью всеобщей секретности. Олег был назначен практикантом в отдел электроаппаратуры с задачей ознакомиться с идущей уже работой над МТР (магнитным термоядерным реактором). Как и в университете, к особому гостю был прикреплен персональный гид, «специалист по газовым разрядам тов. Андрианов» - так гласит докладная записка на имя Берии.

Сотрудничество с ЛИПАНом уже тогда вышло достаточно напряженным. Там проектировали установку с удержанием плазмы магнитным полем, впоследствии ставшую токамаком, а Лаврентьев хотел работать над доработанной версией электромагнитной ловушки, восходившей к его сахалинским мыслям. В конце 1951 года в ЛИПАНе состоялось детальное обсуждение его проекта. Оппоненты не нашли в нем ошибок и в целом признали работу верной, но реализовывать отказались, решив «сосредоточить силы на главном направлении». В 1952 году Лаврентьев готовит новый проект с уточненными параметрами плазмы.

Надо отметить, что Лаврентьев в тот момент думал, что его предложение по реактору тоже запоздало, и коллеги из ЛИПАНа разрабатывают целиком собственную идею, пришедшую им в головы независимо и раньше. О том, что сами коллеги придерживаются иного мнения, он узнал существенно позднее.

Ваш благодетель умер

26 июня 1953 года был арестован и вскоре расстрелян Берия. Сейчас можно только догадываться, имел ли он какие-то конкретные планы в отношении Олега Лаврентьева, но на его судьбе утрата столь влиятельного покровителя сказалась весьма ощутимо.

В университете мне не только перестали давать повышенную стипендию, но и «вывернули» плату за обучение за прошедший год, фактически оставив без средств к существованию, - рассказывал много лет спустя Олег Александрович. - Я пробился на прием к новому декану и в полной растерянности услышал: «Ваш благодетель умер. Чего же вы хотите?» Одновременно в ЛИПАНе был снят допуск, и я лишился постоянного пропуска в лабораторию, где по существующей ранее договоренности должен был проходить преддипломную практику, а впоследствии и работать. Если стипендию потом все-таки восстановили, то допуск в институт я так и не получил.

После университета Лаврентьева так и не взяли на работу в ЛИПАН, единственное в СССР место, где тогда занимались термоядерным синтезом. Сейчас невозможно, да и бессмысленно, пытаться понять, виновата ли в этом репутация «человека Берии», какие-то личные сложности или что-то еще.

Наш герой отправился в Харьков, где в ХФТИ как раз создавался отдел плазменных исследований. Там он и сосредоточился над своей любимой темой - электромагнитными ловушками плазмы. В 1958 году была пущена установка С1, наконец-то показавшая жизнеспособность идеи. Следующее десятилетие ознаменовалось строительством еще нескольких установок, после чего идеи Лаврентьева стали восприниматься в научном мире всерьез.

Харьковский физико-технический институт, современное фото

В семидесятых предполагалось построить и запустить большую установку «Юпитер», которая должны была стать наконец полноценным конкурентом токамаков и стеллараторов, построенным на других принципах. К сожалению, пока новинка проектировалась, обстановка вокруг изменилась. В целях экономии средств установка была уменьшена вдвое. Потребовалась переделка проекта и расчетов. К моменту ее завершения технику пришлось уменьшать еще на треть - и, конечно, все снова пересчитывать. Запущенный наконец образец был вполне работоспособен, но до полноценных масштабов было, конечно, далеко.

Олег Александрович Лаврентьев до конца своих дней (его не стало в 2011 году) продолжал активную исследовательскую работу, много публиковался и, в общем, вполне состоялся как ученый. Но главная идея его жизни пока так и осталась непроверенной.

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв.

Если вы думаете, что атомная боеголовка является самым страшным оружием человечества, значит еще не знаете об водородной бомбе. Мы решили исправить эту оплошность и рассказать о том, что же это такое. Мы уже рассказывали о и .

Немного о терминологии и принципах работы в картинках

Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления. Сначала в атомной бомбе происходит детонация. В оболочке располагаются изотопы урана и плутония. Они распадаются на частички, захватывая нейтроны. Далее разрушается один атом и инициируется деление остальных. Делается это при помощи цепного процесса. В конце начинается сама ядерная реакция. Части бомбы становятся одним целым. Заряд начинает превышать критическую массу. При помощи такой структуры освобождается энергия и происходит взрыв.

Кстати, ядерную бомбу еще называют атомной. А водородная получила название термоядерной. Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии.

Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер. Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость. Тут протон со звуком замещается в ядре водорода на два элемента - дейтерий и тритий:

  • Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород;
  • Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза.

Испытания термоядерной бомбы

, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной.

Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой.

Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва.

Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете.

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте.

Современные опасности использования водородной бомбы

Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа.

По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду.

Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Радиоактивные осадки, которые неумолимо выпадут на цель сброса, увеличиваются на 1000%. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь.

Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца. Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете. Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз. И выглядит ядерная зима более чем реально. Ведь в истории человечества, а конкретнее, в 1816 году, был известен подобный случай после мощнейшего извержения вулкана. На планете тогда был год без лета.

Скептики, которые не верят в подобное стечение обстоятельств, могут переубедить себя расчетами ученых:

  1. Когда на Земле произойдет похолодание на градус, этого не заметит никто. А вот на количестве осадков это отразится.
  2. Осенью произойдет похолодание на 4 градуса. Ввиду отсутствия дождей, возможны неурожаи. Ураганы будут начинаться даже там, где их никогда не было.
  3. Когда температура упадет еще на несколько градусов, на планете будет первый год без лета.
  4. Далее последует малый ледниковый период. Температура падает на 40 градусов. Даже за незначительное время это станет разрушительным для планеты. На Земле будут наблюдаться неурожаи и вымирание людей, проживающих в северных зонах.
  5. После наступит ледниковый период. Отражение солнечных лучей произойдет, не достигая поверхности земли. За счет этого, температура воздуха достигнет критической отметки. На планете перестанут расти культуры, деревья, замерзнет вода. Это приведет к вымиранию большей части населения.
  6. Те, кто выживут, не переживут последнего периода - необратимого похолодания. Этот вариант совсем печальный. Он станет настоящим концом человечества. Земля превратится в новую планету, непригодную для обитания человеческого существа.

Теперь о еще одной опасности. Стоило России и США выйти из стадии холодной войны, как появилась новая угроза. Если вы слышали о том, кто такой Ким Чен Ир, значит понимаете, что на достигнутом он не остановится. Этот любитель ракет, тиран и правитель Северной Кореи в одном флаконе, может с легкостью спровоцировать ядерный конфликт. О водородной бомбе он говорит постоянно и отмечает, что в его части страны уже есть боеголовки. К счастью, в живую их пока никто не видел. Россия, Америка, а также ближайшие соседи - Южная Корея и Япония, очень обеспокоены даже такими гипотетическими заявлениями. Поэтому надеемся, что наработки и технологии у Северной Кореи еще долго будут на недостаточном уровне, чтобы разрушить весь мир.

Для справки. На дне мирового океана лежат десятки бомб, которые были утеряны при транспортировке. А в Чернобыле, который не так далеко от нас, до сих пор хранятся огромные запасы урана.

Стоит задуматься, можно ли допустить подобные последствия ради испытаний водородной бомбы. И, если между странами, обладающими этим оружием, произойдет глобальный конфликт, на планете не останется ни самих государств, ни людей, ни вообще ничего, Земля превратится в чистый лист. И если рассматривать, чем отличается ядерная бомба от термоядерной, главным пунктом можно назвать количество разрушений, а также последующий эффект.

Теперь небольшой вывод. Мы разобрались, что ядерная и атомная бомба - это одно и тоже. А еще, она является основой для термоядерной боеголовки. Но использовать ни то, ни другое не рекомендуется даже для испытаний. Звук от взрыва и то, как выглядят последствия, не является самым страшным. Это грозит ядерной зимой, смертью сотен тысяч жителей в один момент и многочисленными последствиями для человечества. Хотя между такими зарядами, как атомная и ядерная бомба различия есть, действие обеих разрушительно для всего живого.

ВОДОРОДНАЯ БОМБА
оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах.
Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. 100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле.
Изотопы водорода. Атом водорода - простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды (H2O) показали, что в ней в ничтожном количестве присутствует "тяжелая" вода, содержащая "тяжелый изотоп" водорода - дейтерий (2H). Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов.
Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы (HB). Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную (примерно 15 Мт) авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу.
Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием (используется изотоп лития с массовым числом 6). Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные.
Деление, синтез, деление (супербомба). На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 (основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах). Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных "осколка". В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности.
Последствия взрыва. Ударная волна и тепловой эффект. Прямое (первичное) воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Согласно расчетам, при взрыве в атмосфере 20-мегатонной бомбы люди останутся живы в 50% случаев, если они 1) укрываются в подземном железобетонном убежище на расстоянии примерно 8 км от эпицентра взрыва (ЭВ), 2) находятся в обычных городских постройках на расстоянии ок. 15 км от ЭВ, 3) оказались на открытом месте на расстоянии ок. 20 км от ЭВ. В условиях плохой видимости и на расстоянии не менее 25 км, если атмосфера чистая, для людей, находящихся на открытой местности, вероятность уцелеть быстро возрастает с удалением от эпицентра; на расстоянии 32 км ее расчетная величина составляет более 90%. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.
Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное (хотя и вторичное) последствие взрыва - это радиоактивное заражение окружающей среды.
Радиоактивные осадки. Как они образуются.
При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.
Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. 100 км от эпицентра взрыва. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, т.е. не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека.
См. также
ЯДЕРНЫЙ СИНТЕЗ ;
ЯДЕРНОЕ ОРУЖИЕ ;
ВОЙНА ЯДЕРНАЯ .
ЛИТЕРАТУРА
Действие ядерного оружия. М., 1960 Ядерный взрыв в космосе, на земле и под землей. М., 1970

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ВОДОРОДНАЯ БОМБА" в других словарях:

    Устаревшее название ядерной бомбы большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза легких ядер (см. Термоядерные реакции). Впервые водородная бомба была испытана в СССР (1953) … Большой Энциклопедический словарь

    Термоядерное оружие тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза легких элементов в более тяжёлые (например, синтеза двух ядер атомов дейтерия (тяжелого водорода) в одно… … Википедия

    Ядерная бомба большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза лёгких ядер (см. Термоядерные реакции). Первый термоядерный заряд (мощностью 3 Мт) взорван 1 ноября 1952 в США.… … Энциклопедический словарь

    водородная бомба - vandenilinė bomba statusas T sritis chemija apibrėžtis Termobranduolinė bomba, kurios užtaisas – deuteris ir tritis. atitikmenys: angl. H bomb; hydrogen bomb rus. водородная бомба ryšiai: sinonimas – H bomba … Chemijos terminų aiškinamasis žodynas

    водородная бомба - vandenilinė bomba statusas T sritis fizika atitikmenys: angl. hydrogen bomb vok. Wasserstoffbombe, f rus. водородная бомба, f pranc. bombe à hydrogène, f … Fizikos terminų žodynas

    водородная бомба - vandenilinė bomba statusas T sritis ekologija ir aplinkotyra apibrėžtis Bomba, kurios branduolinis užtaisas – vandenilio izotopai: deuteris ir tritis. atitikmenys: angl. H bomb; hydrogen bomb vok. Wasserstoffbombe, f rus. водородная бомба, f … Ekologijos terminų aiškinamasis žodynas

    Бомба взрывного действия большой разрушительной силы. Действие В. б. основано на термоядерной реакции. См. Ядерное оружие … Большая советская энциклопедия

Водородная бомба (Hydrogen Bomb, HB, ВБ) — оружие массового поражения, обладающее невероятной разрушительной силой (ее мощность оценивается мегатоннами в тротиловом эквиваленте). Принцип действия бомбы и схема строения базируется на использовании энергии термоядерного синтеза ядер водорода. Процессы, протекающие во время взрыва, аналогичны тем, что протекают на звёздах (в том числе и на Солнце). Первое испытание пригодной для транспортировки на большие расстояния ВБ (проекта А.Д.Сахарова) было проведено в Советском Союзе на полигоне под Семипалатинском.

Термоядерная реакция

Солнце содержит в себе огромные запасы водорода, находящегося под постоянным действием сверхвысокого давления и температуры (порядка 15 млн градусов Кельвина). При такой запредельной плотности и температуре плазмы ядра атомов водорода хаотически сталкиваются друг с другом. Результатом столкновений становится слияние ядер, и как следствие, образование ядер более тяжёлого элемента — гелия. Реакции такого типа именуют термоядерным синтезом, для них характерно выделение колоссального количества энергии.

Законы физики объясняют энерговыделение при термоядерной реакции следующим образом: часть массы лёгких ядер, участвующих в образовании более тяжёлых элементов, остаётся незадействованной и превращается в чистую энергию в колоссальных количествах. Именно поэтому наше небесное светило теряет приблизительно 4 млн т. вещества в секунду, выделяя при этом в космическое пространство непрерывный поток энергии.

Изотопы водорода

Самым простым из всех существующих атомов является атом водорода. В его состав входит всего один протон, образующий ядро, и единственный электрон, вращающийся вокруг него. В результате научных исследований воды (H2O), было установлено, что в ней в малых количествах присутствует так называемая «тяжёлая» вода. Она содержит «тяжёлые» изотопы водорода (2H или дейтерий), ядра которых, помимо одного протона, содержат так же один нейтрон (частицу, близкую по массе к протону, но лишённую заряда).

Науке известен также тритий — третий изотоп водорода, ядро которого содержит 1 протон и сразу 2 нейтрона. Для трития характерна нестабильность и постоянный самопроизвольный распад с выделением энергии (радиации), в результате чего образуется изотоп гелия. Следы трития находят в верхних слоях атмосферы Земли: именно там, под действием космических лучей молекулы газов, образующие воздух, претерпевают подобные изменения. Получение трития возможно также и в ядерном реакторе путём облучения изотопа литий-6 мощным потоком нейтронов.

Разработка и первые испытания водородной бомбы

В результате тщательного теоретического анализа, специалисты из СССР и США пришли к выводу, что смесь дейтерия и трития позволяет легче всего запускать реакцию термоядерного синтеза. Вооружившись этими знаниями, учёные из США в 50-х годах прошлого века принялись за создание водородной бомбы. И уже весной 1951 года, на полигоне Эниветок (атолл в Тихом океане) было проведено тестовое испытание, однако тогда удалось добиться лишь частичного термоядерного синтеза.

Прошло ещё чуть более года, и в ноябре 1952 года было проведено второе испытание водородной бомбы мощностью порядка 10 Мт в тротиловом эквиваленте. Однако тот взрыв трудно назвать взрывом термоядерной бомбы в современном понимании: по сути, устройство представляло собой крупную ёмкость (размером с трёхэтажный дом), наполненную жидким дейтерием.

В России тоже взялись за усовершенствование атомного оружия, и первая водородная бомба проекта А.Д. Сахарова была испытана на Семипалатинском полигоне 12 августа 1953 года. РДС-6 (данный тип оружия массового поражения прозвали «слойкой» Сахарова, так как его схема подразумевала последовательное размещение слоёв дейтерия, окружающих заряд-инициатор) имела мощность 10 Мт. Однако в отличие от американского «трёхэтажного дома», советская бомба была компактной, и её можно было оперативно доставить к месту выброски на территории противника на стратегическом бомбардировщике.

Приняв вызов, США в марте 1954 произвели взрыв более мощной авиабомбы (15 Мт) на испытательном полигоне на атолле Бикини (Тихий океан). Испытание стало причиной выброса в атмосферу большого количества радиоактивных веществ, часть из которых выпало с осадками за сотни километров от эпицентра взрыва. Японское судно «Счастливый дракон» и приборы, установленные на острове Рогелап, зафиксировали резкое повышение радиации.

Так как в результате процессов, происходящих при детонации водородной бомбы, образуется стабильный, безопасный гелий, ожидалось, что радиоактивные выбросы не должны превышать уровень загрязнения от атомного детонатора термоядерного синтеза. Но расчёты и замеры реальных радиоактивных осадков сильно разнились, причём как по количеству, так и по составу. Поэтому в руководстве США было принято решение временно приостановить проектирование данного вооружения до полного изучения его влияния на окружающую среду и человека.

Видео: испытания в СССР

Царь-бомба — термоядерная бомба СССР

Жирную точку в цепи набора тоннажа водородных бомб поставил СССР, когда 30 октября 1961 года на Новой Земле было проведено испытание 50-мегатонной (крупнейшей в истории) «Царь-бомбы » — результата многолетнего труда исследовательской группы А.Д. Сахарова. Взрыв прогремел на высоте 4 километра, а ударную волную трижды зафиксировали приборы по всему земному шару. Несмотря на то, что испытание не выявило никаких сбоев, бомба на вооружение так и не поступила. Зато сам факт обладания Советами таким вооружением произвёл неизгладимое впечатление на весь мир, а в США прекратили набирать тоннаж ядерного арсенала. В России, в свою очередь, решили отказаться от ввода на боевое дежурство боеголовок с водородными зарядами.

Водородная бомба — сложнейшее техническое устройство, взрыв которого требует последовательного протекания ряда процессов.

Сначала происходит детонация заряда-инициатора, находящегося внутри оболочки ВБ (миниатюрная атомная бомба), результатом которой становится мощный выброс нейтронов и создание высокой температуры, требуемой для начала термоядерного синтеза в основном заряде. Начинается массированная нейтронная бомбардировка вкладыша из дейтерида лития (получают соединением дейтерия с изотопом лития-6).

Под действием нейтронов происходит расщепление лития-6 на тритий и гелий. Атомный запал в этом случае становится источником материалов, необходимых для протекания термоядерного синтеза в самой сдетонировавшей бомбе.

Смесь трития и дейтерия запускает термоядерную реакцию, вследствие чего происходит стремительное повышение температуры внутри бомбы, и в процесс вовлекается всё больше и больше водорода.
Принцип действия водородной бомбы подразумевает сверхбыстрое протекание данных процессов (устройство заряда и схема расположения основных элементов способствует этому), которые для наблюдателя выглядят мгновенными.

Супербомба: деление, синтез, деление

Последовательность процессов, описанных выше, заканчивается после начала реагирования дейтерия с тритием. Далее было решено использовать деление ядер, а не синтез более тяжёлых. После слияния ядер трития и дейтерия выделяется свободный гелий и быстрые нейтроны, энергии которых достаточно для инициации начала деления ядер урана-238. Быстрым нейтронам под силу расщепить атомы из урановой оболочки супербомбы. Расщепление тонны урана генерирует энергию порядка 18 Мт. При этом энергия расходуется не только на создание взрывной волны и выделения колоссального количества тепла. Каждый атом урана распадается на два радиоактивных «осколка». Образуется целый «букет» из различных химических элементов (до 36) и около двухсот радиоактивных изотопов. Именно по этой причине и образуются многочисленные радиоактивные осадки, регистрируемые за сотни километров от эпицентра взрыва.

После падения «железного занавеса», стало известно, что в СССР планировали разработку «Царь бомбы», мощностью в 100 Мт. Из-за того, что тогда не было самолёта, способного нести столь массивный заряд, от идеи отказались в пользу 50 Мт бомбы.

Последствия взрыва водородной бомбы

Ударная волна

Взрыв водородной бомбы влечёт масштабные разрушения и последствия, а первичное (явное, прямое) воздействие имеет тройственный характер. Самое очевидное из всех прямых воздействий — ударная волна сверхвысокой интенсивности. Её разрушительная способность уменьшается при удалении от эпицентра взрыва, а так же зависит от мощности самой бомбы и высоты, на которой произошла детонация заряда.

Тепловой эффект

Эффект от теплового воздействия взрыва зависит от тех же факторов, что и мощность ударной волны. Но к ним добавляется ещё один — степень прозрачности воздушных масс. Туман или даже незначительная облачность резко уменьшает радиус поражения, на котором тепловая вспышка может стать причиной серьёзных ожогов и потери зрения. Взрыв водородной бомбы (более 20 Мт) генерирует невероятное количество тепловой энергии, достаточной, чтобы расплавить бетон на расстоянии 5 км, выпарить воду практически всю воду из небольшого озера на расстоянии в 10 км, уничтожить живую силу противника, технику и постройки на том же расстоянии. В центре образуется воронка диаметром 1-2 км и глубиной до 50 м, покрытая толстым слоем стекловидной массы (несколько метров пород, имеющих большое содержание песка, почти мгновенно плавятся, превращаясь в стекло).

Согласно расчётам, полученным в ходе реальных испытаний, люди получают 50% вероятность остаться в живых, если они:

  • Находятся в железобетонном убежище (подземном) в 8 км от эпицентра взрыва (ЭВ);
  • Находятся в жилых домах на расстоянии 15 км от ЭВ;
  • Окажутся на открытой территории на расстоянии более 20 км от ЭВ при плохой видимости (для «чистой» атмосферы минимальное расстояние в этом случае составит 25 км).

С удалением от ЭВ резко возрастает и вероятность остаться в живых у людей, оказавшихся на открытой местности. Так, на удалении в 32 км она составит 90-95%. Радиус в 40-45 км является предельным для первичного воздействия от взрыва.

Огненный шар

Ещё одним явным воздействием от взрыва водородной бомбы являются самоподдерживающиеся огненные бури (ураганы), образующиеся вследствие вовлекания в огненный шар колоссальных масс горючего материала. Но, несмотря на это, самым опасным по степени воздействия последствием взрыва окажется радиационное загрязнение окружающей среды на десятки километров вокруг.

Радиоактивные осадки

Возникший после взрыва огненный шар быстро наполняется радиоактивными частицами в огромных количествах (продукты распада тяжёлых ядер). Размер частиц настолько мал, что они, попадая в верхние слои атмосферы, способны пребывать там очень долго. Всё, до чего дотянулся огненный шар на поверхности земли, моментально превращается в пепел и пыль, а затем втягивается в огненный столб. Вихри пламени перемешивают эти частички с заряженными частицами, образуя опасную смесь радиоактивной пыли, процесс оседания гранул которой растягивается на долгое время.

Крупная пыль оседает довольно быстро, а вот мелкая разносится воздушными потоками на огромные расстояния, постепенно выпадая из новообразованного облака. В непосредственной близости от ЭВ оседают крупные и наиболее заряженные частицы, в сотнях километров от него всё ещё можно встретить различимые глазом частицы пепла. Именно они образуют смертельно опасный покров, толщиной в несколько сантиметров. Каждый кто окажется рядом с ним, рискует получить серьёзную дозу облучения.

Более мелкие и неразличимые частицы могут «парить» в атмосфере долгие годы, многократно огибая Землю. К тому моменту, когда выпадут на поверхность, они изрядно теряют радиоактивность. Наиболее опасен стронций-90, имеющий период полураспада 28 лет и генерирующий стабильное излучение на протяжении всего этого времени. Его появление определяется приборами по всему миру. «Приземляясь» на траву и листву, он становится вовлечённым в пищевые цепи. По этой причине у людей, находящихся за тысячи километров от мест испытаний при обследовании обнаруживается стронций-90, накапливаемый в костях. Даже если его содержание крайне невелико, перспектива оказаться «полигоном для хранения радиоактивных отходов» не сулит человеку ничего хорошего, приводя к развитию костных злокачественных новообразований. В регионах России (а также других стран), близких к местам пробных запусков водородных бомб, до сих пор наблюдается повышенный радиоактивный фон, что ещё раз доказывает способность этого вида вооружения оставлять значительные последствия.

Видео о водородной бомбе

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме