Подпишись и читай
самые интересные
статьи первым!

Урок-семинар "спектр электромагнитных излучений". Излучение и спектры

Электромагнитный спектр - ряд форм электромагнитного излучения, расположенных по порядку величин их частот или длин волн (рисунок 4).

Рисунок 4 - Спектр электромагнитных излучений

Электромагнитное излучение (электромагнитные волны) -- распространяющееся в пространстве возмущение электрических и магнитных полей.

Диапазоны электромагнитного излучения

  • 1 Радиоволны
  • 2. Инфракрасное излучение (Тепловое)
  • 3. Видимое излучение (Оптическое)
  • 4. Ультрафиолетовое излучение
  • 5. Жёсткое излучение

Основными характеристиками электромагнитного излучения принято считать частоту и длину волны. Длина волны зависит от скорости распространения излучения. Скорость распространения электромагнитного излучения в вакууме равна скорости света, в других средах эта скорость меньше.

Особенностями электромагнитных волн c точки зрения теории колебаний и понятий электродинамики являются наличие трёх взаимноперпендикулярных векторов: волнового вектора, вектора напряжённости электрического поля E и вектора напряжённости магнитного поля H.

Электромагнитные волны -- это поперечные волны (волны сдвига), в которых вектора напряжённостей электрического и магнитного полей колеблются перпендикулярно направлению распространения волны, но они существенно отличаются от волн на воде и от звука тем, что их можно передать от источника к приёмнику в том, числе и через вакуум.

Общим для всех видов излучений является скорость их распространения в вакууме, равная 300 000 000 метров в секунду.

Электромагнитные излучения характеризуются частотой колебаний, показывающих число полных циклов колебаний в секунду, или длиной волны, т.е. расстоянием, на которое распространяется излучение за время одного колебания (за один период колебаний).

Частота колебаний (f), длина волны (л) и скорость распространения излучения (с) связаны между собой соотношением:

Электромагнитное излучение принято делить по частотным диапазонам. Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения постоянна, то частота его колебаний жёстко связана с длиной волны в вакууме.

Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые или микрометровые. Волны с длиной л длиной менее 1 м (частота более 300 МГц) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ).

Инфракрасное излучение -- электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны 0,74 мкм) и микроволновым излучением (1-2 мм).

Инфракрасное излучение занимает самую большую часть оптического спектра. Инфракрасное излучение также называют «тепловым» излучением, так как все тела, твёрдые и жидкие, нагретые до определённой температуры, излучают энергию в инфракрасном спектре. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне.

Видимый свет представляет собой сочетание семи основных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового. Перед красными областями спектра в оптическом диапазоне находятся инфракрасные, а за фиолетовыми - ультрафиолетовые. Но не инфракрасные, не ультрафиолетовые не видимы для человеческого глаза.

Видимое, инфракрасное и ультрафиолетовое излучение составляет так называемую оптическую область спектра в широком смысле этого слова. Самым известным источником оптического излучения является Солнце. Его поверхность (фотосфера) нагрета до температуры 6000 градусов и светит ярко-жёлтым светом. Этот участок спектра электромагнитного излучения непосредственно воспринимается нашими органами чувств.

Излучение оптического диапазона возникает при нагревании тел (инфракрасное излучение называют также тепловым) из-за теплового движения атомов и молекул. Чем сильнее нагрето тело, тем выше частота его излучения. При определённом нагревании тело начинает светиться в видимом диапазоне (каление), сначала красным цветом, потом жёлтым и так далее. И наоборот, излучение оптического спектра оказывает на тела тепловое воздействие.

Кроме теплового излучения источником и приёмником оптического излучения могут служить химические и биологические реакции. Одна из известнейших химических реакций, являющихся приёмником оптического излучения, используется в фотографии.

Жёсткие лучи. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантов лежит в пределах 20 эВ -- 0,1 МэВ, а энергия гамма-квантов -- больше 0,1 МэВ.

Ультрафиолетовое излучение (ультрафиолет, УФ, UV) -- электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 -- 10 нм, 7,9Ч1014 -- 3Ч1016 Гц). Диапазон условно делят на ближний (380--200 нм) и дальний, или вакуумный (200--10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.

Длинноволновое ультрафиолетовое излучение обладает сравнительно небольшой фотобиологической активностью, но способно вызвать пигментацию кожи человека, оказывает положительное влияние на организм. Излучение этого поддиапазона способно вызывать свечение некоторых веществ, поэтому его используют дли люминесцентного анализа химического состава продуктов.

Средневолновое ультрафиолетовое излучение оказывает тонизирующее и терапевтическое действие на живые организмы. Оно способно вызывать эритему и загар, превращать в организме жипотных необходимый для роста и развития витамин D в усвояемую форму, обладает мощным антирахитным действием. Излучение этого поддиапазона вредны для большинства растений.

Коротковолновое ультрафиолетовое излечение отличается бактерицидным действием, поэтому его широко используют для обеззараживания воды и воздуха, дезинфекции и стерилизации различного инвентаря и посуды.

Основной природный источник ультрафиолетового излучения на Земле Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от различных факторов.

Искусственные источники ультрафиолетового излучения многообразны. Сегодня искусственные источники ультрафиолетового излучения широко применяются в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т.д. предоставляются существенно большие возможности, чем при использовании естественного ультрафиолетового излучения излучения .

Физик Рентген открыл еще более коротковолновое излучение. Недолго думая, эти лучи назвали в честь самого Рентгена. Обладая хорошей проницающей способностью, рентгеновское излучение нашло применение в медицине и кристаллографии. Как Вы, наверное, наслышаны, рентгеновские лучи опять-таки вредны живым организмам. И атмосфера Земли из-за их проницательности, упомянутой только что, им не помеха. Нас выручает магнитосфера Земли. Она задерживает многие опасные излучения космоса. Длины волн лучей Рентгена заключены между 0,1 А и 100 А.

Самые короткие волны (меньше 0,1 А) у гамма-лучей. Это самый опасный вид радиоактивности, самое опасное электромагнитное излучение. Энергия фотонов гамма-лучей очень высока, и их излучение происходит при некоторых процессах внутри ядер атомов. Примером такого процесса может быть аннигиляция - взаимоуничтожение частицы и античастицы с превращением их массы в энергию. Регистрируемые, время от времени, таинственные гамма-вспышки на небе пока никак не объяснены астрономами. Ясно, что энергия явления, производящего вспышки, просто грандиозна. По некоторым подсчетам, на секунды, которые длится такая вспышка, она излучает больше энергии, чем вся остальная Вселенная. Гамма-излучение не пропускается к Земле ее магнитосферой .

Материал из Википедии - свободной энциклопедии

К:Википедия:Страницы на КУЛ (тип: не указан)

Длина волны - частота - энергия фотона

В качестве спектральной характеристики электромагнитного излучения используют следующие величины :

  • Частоту колебаний - шкала частот приведена в отдельной статье;
  • Энергию фотона (кванта электромагнитного поля).

Прозрачность вещества для гамма-лучей, в отличие от видимого света, зависит не от химической формы и агрегатного состояния вещества, а в основном от заряда ядер, входящих в состав вещества, и от энергии гамма-квантов. Поэтому поглощающую способность слоя вещества для гамма-квантов в первом приближении можно охарактеризовать его поверхностной плотностью (в г/см²). Длительное время считалось, что создание зеркал и линз для γ-лучей невозможно, однако, согласно последним исследованиям в данной области, преломление γ-лучей возможно. Это открытие, возможно, означает создание нового раздела оптики - γ-оптики .

Резкой нижней границы для гамма-излучения не существует, однако обычно считается, что гамма-кванты излучаются ядром, а рентгеновские кванты - электронной оболочкой атома (это лишь терминологическое различие, не затрагивающее физических свойств излучения).

Рентгеновское излучение

  • от 0,1 нм = 1 Å (12 400 эВ) до 0,01 нм = 0,1 Å (124 000 эВ) - жёсткое рентгеновское излучение . Источники: некоторые ядерные реакции , электронно-лучевые трубки .
  • от 10 нм (124 эВ) до 0,1 нм = 1 Å (12 400 эВ) - мягкое рентгеновское излучение . Источники: электронно-лучевые трубки, тепловое излучение плазмы.

Рентгеновские кванты излучаются в основном при переходах электронов в электронной оболочке тяжёлых атомов на низколежащие орбиты. Вакансии на низколежащих орбитах создаются обычно электронным ударом. Рентгеновское излучение, созданное таким образом, имеет линейчатый спектр с частотами, характерными для данного атома (см. характеристическое излучение); это позволяет, в частности, исследовать состав веществ (рентгено-флюоресцентный анализ). Тепловое , тормозное и синхротронное рентгеновское излучение имеет непрерывный спектр.

В рентгеновских лучах наблюдается дифракция на кристаллических решётках, поскольку длины электромагнитных волн на этих частотах близки к периодам кристаллических решёток. На этом основан метод рентгено-дифракционного анализа .

Ультрафиолетовое излучение

Диапазон: От 400 нм (3,10 эВ) до 10 нм (124 эВ)

Наименование Аббревиатура Длина волны в нанометрах Количество энергии на фотон
Ближний NUV 400 - 300 3,10 - 4,13 эВ
Средний MUV 300 - 200 4,13 - 6,20 эВ
Дальний FUV 200 - 122 6,20 - 10,2 эВ
Экстремальный EUV, XUV 121 - 10 10,2 - 124 эВ
Вакуумный VUV 200 - 10 6,20 - 124 эВ
Ультрафиолет А, длинноволновой диапазон, Чёрный свет UVA 400 - 315 3,10 - 3,94 эВ
Ультрафиолет B (средний диапазон) UVB 315 - 280 3,94 - 4,43 эВ
Ультрафиолет С, коротковолновой, гермицидный диапазон UVC 280 - 100 4,43 - 12,4 эВ

Оптическое излучение

Излучение оптического диапазона (видимый свет и ближнее инфракрасное излучение [ ]) свободно проходит сквозь атмосферу, может быть легко отражено и преломлено в оптических системах. Источники: тепловое излучение (в том числе Солнца), флюоресценция, химические реакции, светодиоды.

  • от 30 ГГц до 300 ГГц - микроволны .
  • от 3 ГГц до 30 ГГц - сантиметровые волны (СВЧ) .
  • от 300 МГц до 3 ГГц - дециметровые волны .
  • от 30 МГц до 300 МГц - метровые волны .
  • от 3 МГц до 30 МГц - короткие волны .
  • от 300 кГц до 3 МГц - средние волны .
  • от 30 кГц до 300 кГц - длинные волны .
  • от 3 кГц до 30 кГц - сверхдлинные (мириаметровые) волны .

См. также

Напишите отзыв о статье "Электромагнитный спектр"

Примечания

Отрывок, характеризующий Электромагнитный спектр

– Однако Михаил Иларионович, я думаю, вышел, – сказал князь Андрей. – Желаю счастия и успеха, господа, – прибавил он и вышел, пожав руки Долгорукову и Бибилину.
Возвращаясь домой, князь Андрей не мог удержаться, чтобы не спросить молчаливо сидевшего подле него Кутузова, о том, что он думает о завтрашнем сражении?
Кутузов строго посмотрел на своего адъютанта и, помолчав, ответил:
– Я думаю, что сражение будет проиграно, и я так сказал графу Толстому и просил его передать это государю. Что же, ты думаешь, он мне ответил? Eh, mon cher general, je me mele de riz et des et cotelettes, melez vous des affaires de la guerre. [И, любезный генерал! Я занят рисом и котлетами, а вы занимайтесь военными делами.] Да… Вот что мне отвечали!

В 10 м часу вечера Вейротер с своими планами переехал на квартиру Кутузова, где и был назначен военный совет. Все начальники колонн были потребованы к главнокомандующему, и, за исключением князя Багратиона, который отказался приехать, все явились к назначенному часу.
Вейротер, бывший полным распорядителем предполагаемого сражения, представлял своею оживленностью и торопливостью резкую противоположность с недовольным и сонным Кутузовым, неохотно игравшим роль председателя и руководителя военного совета. Вейротер, очевидно, чувствовал себя во главе.движения, которое стало уже неудержимо. Он был, как запряженная лошадь, разбежавшаяся с возом под гору. Он ли вез, или его гнало, он не знал; но он несся во всю возможную быстроту, не имея времени уже обсуждать того, к чему поведет это движение. Вейротер в этот вечер был два раза для личного осмотра в цепи неприятеля и два раза у государей, русского и австрийского, для доклада и объяснений, и в своей канцелярии, где он диктовал немецкую диспозицию. Он, измученный, приехал теперь к Кутузову.
Он, видимо, так был занят, что забывал даже быть почтительным с главнокомандующим: он перебивал его, говорил быстро, неясно, не глядя в лицо собеседника, не отвечая на деланные ему вопросы, был испачкан грязью и имел вид жалкий, измученный, растерянный и вместе с тем самонадеянный и гордый.
Кутузов занимал небольшой дворянский замок около Остралиц. В большой гостиной, сделавшейся кабинетом главнокомандующего, собрались: сам Кутузов, Вейротер и члены военного совета. Они пили чай. Ожидали только князя Багратиона, чтобы приступить к военному совету. В 8 м часу приехал ординарец Багратиона с известием, что князь быть не может. Князь Андрей пришел доложить о том главнокомандующему и, пользуясь прежде данным ему Кутузовым позволением присутствовать при совете, остался в комнате.
– Так как князь Багратион не будет, то мы можем начинать, – сказал Вейротер, поспешно вставая с своего места и приближаясь к столу, на котором была разложена огромная карта окрестностей Брюнна.
Кутузов в расстегнутом мундире, из которого, как бы освободившись, выплыла на воротник его жирная шея, сидел в вольтеровском кресле, положив симметрично пухлые старческие руки на подлокотники, и почти спал. На звук голоса Вейротера он с усилием открыл единственный глаз.
– Да, да, пожалуйста, а то поздно, – проговорил он и, кивнув головой, опустил ее и опять закрыл глаза.
Ежели первое время члены совета думали, что Кутузов притворялся спящим, то звуки, которые он издавал носом во время последующего чтения, доказывали, что в эту минуту для главнокомандующего дело шло о гораздо важнейшем, чем о желании выказать свое презрение к диспозиции или к чему бы то ни было: дело шло для него о неудержимом удовлетворении человеческой потребности – .сна. Он действительно спал. Вейротер с движением человека, слишком занятого для того, чтобы терять хоть одну минуту времени, взглянул на Кутузова и, убедившись, что он спит, взял бумагу и громким однообразным тоном начал читать диспозицию будущего сражения под заглавием, которое он тоже прочел:
«Диспозиция к атаке неприятельской позиции позади Кобельница и Сокольница, 20 ноября 1805 года».
Диспозиция была очень сложная и трудная. В оригинальной диспозиции значилось:
Da der Feind mit seinerien linken Fluegel an die mit Wald bedeckten Berge lehnt und sich mit seinerien rechten Fluegel laengs Kobeinitz und Sokolienitz hinter die dort befindIichen Teiche zieht, wir im Gegentheil mit unserem linken Fluegel seinen rechten sehr debordiren, so ist es vortheilhaft letzteren Fluegel des Feindes zu attakiren, besondere wenn wir die Doerfer Sokolienitz und Kobelienitz im Besitze haben, wodurch wir dem Feind zugleich in die Flanke fallen und ihn auf der Flaeche zwischen Schlapanitz und dem Thuerassa Walde verfolgen koennen, indem wir dem Defileen von Schlapanitz und Bellowitz ausweichen, welche die feindliche Front decken. Zu dieserien Endzwecke ist es noethig… Die erste Kolonne Marieschirt… die zweite Kolonne Marieschirt… die dritte Kolonne Marieschirt… [Так как неприятель опирается левым крылом своим на покрытые лесом горы, а правым крылом тянется вдоль Кобельница и Сокольница позади находящихся там прудов, а мы, напротив, превосходим нашим левым крылом его правое, то выгодно нам атаковать сие последнее неприятельское крыло, особливо если мы займем деревни Сокольниц и Кобельниц, будучи поставлены в возможность нападать на фланг неприятеля и преследовать его в равнине между Шлапаницем и лесом Тюрасским, избегая вместе с тем дефилеи между Шлапаницем и Беловицем, которою прикрыт неприятельский фронт. Для этой цели необходимо… Первая колонна марширует… вторая колонна марширует… третья колонна марширует…] и т. д., читал Вейротер. Генералы, казалось, неохотно слушали трудную диспозицию. Белокурый высокий генерал Буксгевден стоял, прислонившись спиною к стене, и, остановив свои глаза на горевшей свече, казалось, не слушал и даже не хотел, чтобы думали, что он слушает. Прямо против Вейротера, устремив на него свои блестящие открытые глаза, в воинственной позе, оперев руки с вытянутыми наружу локтями на колени, сидел румяный Милорадович с приподнятыми усами и плечами. Он упорно молчал, глядя в лицо Вейротера, и спускал с него глаза только в то время, когда австрийский начальник штаба замолкал. В это время Милорадович значительно оглядывался на других генералов. Но по значению этого значительного взгляда нельзя было понять, был ли он согласен или несогласен, доволен или недоволен диспозицией. Ближе всех к Вейротеру сидел граф Ланжерон и с тонкой улыбкой южного французского лица, не покидавшей его во всё время чтения, глядел на свои тонкие пальцы, быстро перевертывавшие за углы золотую табакерку с портретом. В середине одного из длиннейших периодов он остановил вращательное движение табакерки, поднял голову и с неприятною учтивостью на самых концах тонких губ перебил Вейротера и хотел сказать что то; но австрийский генерал, не прерывая чтения, сердито нахмурился и замахал локтями, как бы говоря: потом, потом вы мне скажете свои мысли, теперь извольте смотреть на карту и слушать. Ланжерон поднял глаза кверху с выражением недоумения, оглянулся на Милорадовича, как бы ища объяснения, но, встретив значительный, ничего не значущий взгляд Милорадовича, грустно опустил глаза и опять принялся вертеть табакерку.
– Une lecon de geographie, [Урок из географии,] – проговорил он как бы про себя, но довольно громко, чтобы его слышали.
Пржебышевский с почтительной, но достойной учтивостью пригнул рукой ухо к Вейротеру, имея вид человека, поглощенного вниманием. Маленький ростом Дохтуров сидел прямо против Вейротера с старательным и скромным видом и, нагнувшись над разложенною картой, добросовестно изучал диспозиции и неизвестную ему местность. Он несколько раз просил Вейротера повторять нехорошо расслышанные им слова и трудные наименования деревень. Вейротер исполнял его желание, и Дохтуров записывал.
Когда чтение, продолжавшееся более часу, было кончено, Ланжерон, опять остановив табакерку и не глядя на Вейротера и ни на кого особенно, начал говорить о том, как трудно было исполнить такую диспозицию, где положение неприятеля предполагается известным, тогда как положение это может быть нам неизвестно, так как неприятель находится в движении. Возражения Ланжерона были основательны, но было очевидно, что цель этих возражений состояла преимущественно в желании дать почувствовать генералу Вейротеру, столь самоуверенно, как школьникам ученикам, читавшему свою диспозицию, что он имел дело не с одними дураками, а с людьми, которые могли и его поучить в военном деле. Когда замолк однообразный звук голоса Вейротера, Кутузов открыл глава, как мельник, который просыпается при перерыве усыпительного звука мельничных колес, прислушался к тому, что говорил Ланжерон, и, как будто говоря: «а вы всё еще про эти глупости!» поспешно закрыл глаза и еще ниже опустил голову.
Стараясь как можно язвительнее оскорбить Вейротера в его авторском военном самолюбии, Ланжерон доказывал, что Бонапарте легко может атаковать, вместо того, чтобы быть атакованным, и вследствие того сделать всю эту диспозицию совершенно бесполезною. Вейротер на все возражения отвечал твердой презрительной улыбкой, очевидно вперед приготовленной для всякого возражения, независимо от того, что бы ему ни говорили.

Земля с момента начала своего существования подвергалась воздействию электромагнитного излучения Солнца и Космоса. В процессе этого воздействия происходят сложные, взаимосвязанные явления в магнитосфере и атмосфере Земли, влияющие самым непосредственным образом на живые организмы биосферы и среду обитания.

В процессе эволюции живые организмы адаптировались к естественному фону ЭМП. Однако вследствие научно-технического прогресса электромагнитный фон Земли в настоящее время не только увеличивается, но и претерпевает качественные изменения. Появились электромагнитные излучения таких длин волн, которые имеют искусственное происхождение в результате техногенной деятельности.

К основным источникам ЭМП антропогенного происхождения относятся телевизионные и радиолокационные станции, мощные радиотехнические объекты, промышленное технологическое оборудование, высоковольтные ЛЭП промышленной частоты, термические цеха, плазменные, лазерные и рентгеновские установки, атомные и ядерные реакторы.

Спектральная интенсивность некоторых техногенных источников ЭМП может существенным образом отличаться от эволюционно сложившегося естественного электромагнитного фона, к которому привык человек и другие живые организмы.

Электромагнитное поле представляет собой совокупность двух взаимосвязанных полей: электрического и магнитного .

Характерная особенность электрического поля состоит в том, что оно действует на электрический заряд (заряженную частицу) с силой, которая не зависит от скорости движения заряда.

Характерная особенность магнитного поля (МП) в том, что оно действует на движущиеся электрические заряды с силами, пропорциональными скоростям зарядов и направленными перпендикулярно этим скоростям.

Электромагнитными волнами называются возмущения электромагнитного поля (т. е. переменное электромагнитное поле), распространяющиеся в пространстве.

Скорость распространения электромагнитных волн в вакууме совпадает со скоростью света в вакууме.

Спектр электромагнитных излучений, освоенный человечеством в настоящее время, представляется необычно широким: от нескольких тысяч метров до 10 -12 см.

В настоящее время известно, что радиоволны, свет, инфракрасные и ультрафиолетовые излучения, рентгеновские лучи и g- излучения – все это волны одной электромагнитной природы, отличающиеся длиной волны l. Существуют определенные области электромагнитного спектра, в которых генерация и регистрация волн затруднена. Длинноволновый и коротковолновый концы спектра определены не очень строго. Шкала электромагнитных излучений представлена на рис. 7.1.

№ 1 – 11 – поддиапазоны, установленные международным консультативным комитетом радиосвязи (МККР). По решению этого комитета поддиапазоны 5 – 11 относятся к радиоволнам. По регламенту МККР к СВЧ-диапазону отнесены волны с частотами 3-30 ГГц. Однако исторически сложилось под СВЧ-диапазоном понимать колебания с длиной волны от 1 м до 1 мм. Поддиапазоны № 1 – 4 характеризуют электромагнитные поля промышленных частот.

Под оптическим диапазоном в радиофизике, оптике, квантовой электронике понимается диапазон длин волн приблизительно от субмиллиметрового до дальнего ультрафиолетового. Видимый диапазон составляет небольшую часть оптического. Границы переходов ультрафиолетового излучения, рентгеновского, g-излучений точно не фиксированы, но приблизительно соответствуют указанным на схеме значениям l и n; g-излучение переходит в излучение очень больших энергий, называемое космическими лучами.

Несмотря на единую электромагнитную природу любой из диапазонов электромагнитных колебаний отличается своей техникой генерации и измерений.

Электромагнитный спектр условно делится на диапазоны. В результате их рассмотрения необходимо знать следующее.

  • Название диапазонов электромагнитных волн.
  • Порядок их следования.
  • Границы диапазонов в длинах волн или частотах.
  • Чем обусловлено поглощение или излучение волн того или иного диапазона.
  • Использование каждого типа электромагнитных волн.
  • Источники излучения различных электромагнитных волн (естественные и искусственные).
  • Опасность каждого вида волн.
  • Примеры объектов, имеющих размеры, сравнимые с длиной волны соответствующего диапазона.
  • Понятие об излучении абсолютно черного тела.
  • Солнечное излучение и окна прозрачности атмосферы.

Диапазоны электромагнитных волн

Микроволновый диапазон

Микроволновое излучение используется для подогрева еды в микроволновых печах, мобильной связи, радарах (радиолокаторах), до 300 ГГц легко проходит атмосферу, поэтому пригодно для спутниковой связи. В этом диапазоне работают радиометры для дистанционного зондирования и определения температуры разных слоев атмосферы, а также радио телескопы. Этот диапазон является одним из ключевых для спектроскопии ЭПР и вращательных спектров молекул. Длительное воздействие на глаза вызывает катаракту. Мобильные телефоны отрицательно влияют на головной мозг.

Характерной особенностью микроволновых волн является то, что их длина волны сравнима с размерами аппаратуры. Поэтому в этом диапазоне приборы конструируются на основе распределенных элементов. Для передачи энергии используются волноводы и полосковые линии, а в качестве резонансных элементов – объемные резонаторы или резонансные линии. Рукотворными источниками МВ волн являются клистроны, магнетроны, лампы бегущей волны (ЛБВ), диоды Ганна, лавинно-пролетные диоды (ЛПД). Кроме того существуют мазеры, аналоги лазеров в длинноволновых диапазонах.

Микроволновые волны излучаются звездами.

В микроволновом диапазоне находится так называемое космическое фоновое микроволновое излучение (реликтовое излучение), которое по своим спектральным характеристикам полностью соответствует излучению абсолютно черного тела с температурой 2,72К. Максимум его интенсивности приходится на частоту 160 ГГц (1,9мм) (см. рис. ниже). Наличие этого излучения и его параметры являются одним из аргументов в пользу теории Большого Взрыва, которая в настоящее время является основой современной космологии. Последний, согласно, в частности, этим измерениям и наблюдениям, произошел 13,6 миллиардов лет назад.

Выше 300 ГГц (короче 1 мм) электромагнитные волны очень сильно поглощаются атмосферой Земли. Атмосфера начинает быть прозрачной в ИК и видимом диапазонах.

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380-440 680-790 2,82-3,26
Синий 440-485 620-680 2,56-2,82
Голубой 485-500 600-620 2,48-2,56
Зелёный 500-565 530-600 2,19-2,48
Жёлтый 565-590 510-530 2,10-2,19
Оранжевый 590-625 480-510 1,98-2,10
Красный 625-740 400-480 1,68-1,98

Среди лазеров и источников с их применением, излучающих в видимом диапазоне, можно назвать следующие: первый запущенный лазер, - рубиновый, с длиной волны 694,3 нм, диодные лазеры, к примеру на основе GaInP и AlGaInP для красного диапазона, и на основе GaN для синего диапазона, титан-сапфировый лазер, He-Ne лазер, лазеры на ионах аргона и криптона, лазер на парах меди, лазеры на красителях, лазеры с удвоением или суммированием частоты в нелинейных средах, рамановские лаэеры. (https://www.rp-photonics.com/visible_lasers.html?s=ak).

Долгое время существовала проблема в создании компактных лазеров в сине-зеленой части спектра. Имелись газовые лазеры, такие как аргоновый ионный лазер (с 1964 года), у которого две основные линии генерации лежат в синей и зеленой части спектра (488 и 514 нм) или гелий кадмиевый лазер. Однако для многих приложений они не годились из-за своей громоздкости и ограниченного количества линий генерации. Создать полупроводниковые лазеры с широкой запрещенной зоной не удавалось из-за огромных технологических трудностей. Однако в конечном итоге были разработаны эффективные методы удвоения и утроения частоты твердотельных лазеров ИК и оптического диапазона в нелинейных кристаллах, полупроводниковые лазеры на основе двойных соединений GaN и лазеров с повышением частоты накачки (upconversion lasers).

Источники света в сине зеленой области позволяют увеличить плотность записи на CD-ROM, качество репрографии, необходимы для создания полноцветных проекторов, для осуществления связи с подводными лодками, для снятия рельефа морского дна, для лазерного охлаждения отдельных атомов и ионов, для контроля за осаждением из газа (vapor deposition), в проточной цитометрии. (взято из “Compact blue-green lasers” by W. P. Risk et al).

Литература:

Ультрафиолетовый диапазон

Считается, что ультрафиолетовый диапазон занимает область от 10 до 380 нм. Хотя границы его четко не определены, особенно в коротковолновой области. Он делится на поддиапазоны и это деление также не является однозначным, так как в разных источниках привязано к различным физическим и биологическим процессам.

Так на сайте "Health Physics Society" ультрафиолетовый диапазон определен в границах 40 - 400 нм и делится на пять поддиапазонов: вакуумный УФ (40-190 нм), дальний УФ (190-220 нм), UVC (220-290 нм), UVB (290-320 нм), и UVA (320-400 нм) (черный свет). В англоязычной версии статьи об ультрафиолете в Википедии "Ultraviolet" под ультрафиолетовое излучение выделяется диапазон 40 - 400 нм, однако в таблице в тексте представляется его деление на кучу перекрывающихся поддиапазонов, начиная с 10 нм. В русскоязычной версии Википедии "Ультрафиолетовое излучение" с самого начала границы УФ диапазона устанавливаются в пределах 10 - 400нм. Кроме того в Википедии для диапазонов UVC, UVB и UVA указаны области 100 – 280, 280 – 315, 315 – 400 нм.

Ультрафиолетовое излучение несмотря на свое благотворное влияние в небольших количествах на биологические объекты является одновременно самым опасным из всех других естественных широкораспространенных излучений других диапазонов.

Основным естественным источником УФ излучения является Солнце. Однако не все излучение достигает Земли, так как поглощается озоновым слоем стратосферы и в области короче 200 нм очень сильно атмосферным кислородом.

UVC практически полностью поглощается атмосферой и не достигает земной поверхности. Этот диапазон используется бактерицидными лампами. Чрезмерная экспозиция приводит к повреждению роговицы и снежной слепоте, а также к тяжелым ожогам лица.

UVB наиболее разрушительная часть УФ излучения, так как она имеет достаточно энергии для повреждения ДНК. Она не полностью поглощается атмосферой (проходит около 2%). Это излучение необходимо для выработки (синтеза) витамина D, однако вредное влияние могут повлечь ожоги, катаракту и рак кожи. Эта часть излучения поглощается озоном атмосферы, снижение концентрации которого вызывает беспокойство.

UVA практически полностью достигает Земли (99%). Оно ответственно за загар, но чрезмерность приводит к ожогам. Как и UVB оно необходимо для синтеза витамина D. Облучение сверх меры приводит к подавлению иммунной системы, жесткости кожи и образованию катаракты. Излучение в этом диапазоне называют еще черным светом. Насекомые и птицы способны видеть этот свет.

На рисунке ниже для примера показана зависимость концентрации озона по высоте на северных широтах (желтая кривая) и уровень блокирования озоном солнечного ультрафиолета. UVC полностью поглощается до высот в 35 км. В то же время UVA почти полностью достигает поверхности Земли, однако это излучение практически не представляет какой-либо опасности. Озон задерживает большую часть UVB, однако некоторая его часть достигает Земли. В случае истощения озонового слоя большая часть будет облучать поверхность и приводить к генетическому повреждению живых существ.

Краткий список использования электромагнитных волн УФ диапазона.

  • Фотолитография высокого качеста для изготовления электронных устройств таких, как микропроцессоры и микросхем памяти.
  • При изготовлении оптоволоконных элементов, в частности брэгговских решеток.
  • Обеззараживание от микробов продуктов, воды, воздуха, предметов (UVC).
  • Черный свет (UVA) в криминалистике, в экспертизе произведений искусства, в установлении подлинности банкнот (явление флуоресценции).
  • Искусственный загар.
  • Лазерная гравировка.
  • Дерматология.
  • Стоматология (фотополимеризация пломб).

Рукотворными источниками ультрафиолетового излучения являются:

Немонохроматические: Ртутные газоразрядные лампы различных давлений и конструкций.

Монохроматические:

  1. Лазерные диоды, в основном на базе GaN, (небольшой мощности), генерирующие в ближнем ультрафиолетовом диапазоне;
  2. Эксимерные лазеры являются очень мощными источниками ультрафиолетового излучения. Они излучают наносекундные (пикосекундные и микросекундные) импульсы со средней мощностью от нескольких ватт до сотен ватт. Типичные длины волн лежат между 157 нм (F2) до 351 нм (XeF);
  3. Некоторые твердотельные лазеры, легированные церием, такие как Ce3+:LiCAF или Ce3+:LiLuF4, которые работают в импульсном режиме с наносекундными импульсами;
  4. Некоторые оптоволоконные лазеры, к примеру, легированные неодимом;
  5. Некоторые лазеры на красителях способны излучать ультрафиолет;
  6. Ионный аргоновый лазер, который, несмотря на то, что основные линии лежат в оптическом диапазоне, может генерировать непрерывное излучение с длинами волн 334 и 351 нм, но с меньшей мощностью;
  7. Азотный лазер, излучающий на длине волны 337 нм. Очень простой и дешевый лазер, работает в импульсном режиме с наносекундной длительностью импульсов и с пиковой мощностью несколько мегаватт;
  8. Утроенние частоты Nd:YAG лазера в нелинейных кристаллах;

Литература:

  1. Википедиа "Ultraviolet" .

Теория показывает, что электромагнитное излучение образуется тогда, когда электрические заряды движутся неравномерно, ускоренно. Равномерно движущийся (свободный) поток электрических зарядов не излучает. Нет излучения электромагнитного поля и у зарядов, движущихся под действием постоянной силы, например у зарядов, описывающих окружность в магнитном поле.

В колебательных движениях ускорение непрерывно меняется, поэтому колебания электрических зарядов дают электромагнитное излучение. Кроме того, электромагнитное излучение произойдет при резком неравномерном торможении зарядов, например при попадании пучка электронов на препятствие (образование рентгеновских луей). В хаотическом тепловом движении частиц также рождается эдектррмагнитное излучение (тепловое излучение). Пульсации

ядерного заряда приводят к созданию электромагнитного излучения, известного под названием у-лучей. Ультрафиолетовые лучи и видимый свет производятсядвижением атомных электронов. Колебания электрического заряда в космических масштабах приводят к радиоизлучению небесных тел.

Наряду с естественными процессами, в результате которых создается электромагнитное излучение самых различных свойств, имеются разнообразные экспериментальные возможности по созданию электромагнитного излучения.

Основной характеристикой электромагнитного излучения является его частота (если речь идет о гармоническом колебании) или полоса частот. Ложно, разумеется, при помощи соотношения пересчитать частоту излучения на длину электромагнитной волны в пустоте.

Интенсивность излучения пропорциональна четвертой степени частоты. Поэтому излучение очень низких частот с длинами волн порядка сотен километров не прослеживается. Практический радиодиапазон начинается, как известно, с длин волн порядка что соответствует частотам порядка длины волн порядка относят к среднему диапазону, десятки метров - это уже короткие волны. Ультракороткие волны (УКВ) выводят нас из обычного радиодиапазона; длины волн порядка нескольких метров и долей метра вплоть до сантиметра (т. е. частоты порядка употребляются в телевидении и радиолокации.

Еще более короткие электромагнитные волны были получены в 1924 г. Глаголевой-Аркадьевой. Она использовала в качестве генератора электрические искры, проскакивающие между взвешенными в масле железными опилками, и получила волны длиной до Здесь уже достигается перекрывание с длинами волн теплового излучения.

Участок видимого света весьма мал: он занимает всего лишь длины волн от см до см. Далее следуют ультрафиолетовые лучи, невидимые глазом, но весьма хорошо фиксируемые физическими приборами. Это - длина волн от см до см.

За ультрафиолетовыми следуют рентгеновские лучи. Их длины волн - от см до см. Чем меньше длина волны, тем слабее рентгеновские учи поглощаются веществами. Наиболее коротковолновое и проникающее электромагнитное излучение носит название у-лучей (длины волн от см и ниже).

Характеристика любого вида из перечисленных электромагнитных излучений будет исчерпывающей, если будут произведены следующие измерения. Прежде всего, тем или иным методом электромагнитное излучение должно быть разложено в спектр. В случае света, ультрафиолетовых лучей и инфракрасного излучения это может быть сделано с помощью преломления призмой или пропусканием излучения через дифракционную решетку (см. ниже). В случае рентгеновских и гамма-лучей разложение в спектр достигается отражением от кристалла (см. стр. 351). Волны

радиотехнического диапазона раскладываются в спектр с использованием явления резонанса.

Полученный спектр излучения может быть сплошным или линейчатым, т. е. может заполнять непрерывно некоторую полосу частот, а может также состоять из отдельных резких линий, соответствующих крайне узкому частотному интервалу. В первом случае для характеристики спектра надо задать кривую интенсивности в функции частоты (длины волны), во втором случае спектр будет описан заданием всех имеющихся в нем линий с указанием их частот и интенсивностей.

Опыт показывает, что электромагнитное излучение заданной частоты и интенсивности может отличаться своим поляризационным состоянием. Наряду с волнами, у которых электрический вектор колеблется вдоль определенной линии (линейно поляризованные волны), приходится сталкиваться с таким излучением, в котором линейно поляризованные волны, повернутые друг по отношению к другу около оси луча, наложены друг на друга. При исчерпывающей характеристике излучения надо указывать его поляризацию.

Следует обратить внимание, что даже для самых медленных электромагнитных колебаний мы лишены возможности измерять электрические и магнитные векторы волны. Нарисованные выше картины поля имеют теоретический характер. Тем не менее в их истинности не приходится сомневаться, имея в виду неразрывность и целостность всей электромагнитной теории.

Утверждение о принадлежности того или иного вида излучения к электромагнитным волнам всегда носит косвенный характер. Однако число следствий, вытекающих из гипотез, столь огромно и они находятся между собой в таком спаянном согласии, что гипотеза об электромагнитном спектре давно приобрела все черты непосредственной реальности.



Включайся в дискуссию
Читайте также
Определение места отбывания наказания осужденного
Осужденному это надо знать
Блатной жаргон, по фене Как относятся к наркоторговцам в тюрьме